103

Ergodrc ‘theorems for gages

By I. KOVACS in Szcged

To Professor ‘Béla Szokefalvi-Nagy on his 50th birthday -

Introduction . o

-The theory of ‘‘non-commutative integration” which summarizes various
analogies between the theory of measures and the theory of von Neumann-algebras
has been investigated by several authors in- the last decade (espe01a11y of. 3], [8)
and [10}).-

’ ‘The purpose of the present work is to extend some of the notions and results
of ergodrc theory to the case of non-commutative 1ntegrat10n

.§ 1 is devoted to general preliminaries. In § 2 a special case of the Riesz con- .
vex1ty theorem is extended to non-commutative L?-spaces. This result is applied
in § 3 where a-non-commutative analogue of the concept of measurable transfor-
mation is introduced and a non-commutative extension of the. von Neumann—
Dunford—Miller mean ergodic theorem is given. In §4 an ergodrcrty concept for
“gages” on a von Neumann algebra A with respect to a group of *-automorphisms
of A is introduced, and it is shown that the extreme points of the convex set formed
by the probabrhty gages on a von Neumann algebra A, which are invariant under
a group of *-automorphisms of A, are precisely the ergodic-ones.

The proofs are modelled on the. corresponding proofs in the ordinary 1nteg-
ration ‘theory supplemented by some devices necessitated by the non-commutative
character of the situation. The key role in the course of our proofs is played by a
:method of J.. Dixmier used in § 3 of [3].

The results of this paper were announced in. [6].

§ 1. Deﬁnitions and preliminaries

1. Let ﬁ) be a complex Hilbert space. A von Neumann algebra') on § wrll
meéan a self-adjornt algebra of bounded, every-where defined linear operators on-
9, which is closed in the weak (6r strong) operator topology, and contains the

identity operator Iy of $2). In what follows, A, wrll denote the set of the projec-
tions of the von Neumann algebra A. .

1) For the theory of von Neumann ‘algebras cf. [4], chap 1, §8 1 —6. Reference to this book
in each particular case will.be omitted.

2) For any Hilbert space 9, I@ will denote its 1dent1ty operator
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Let A be a von Neumann algebra A non- negatlve valued functlon <p on A+ 3)
is called a trace on A*, if it has the following prope=rties:.

(i) if S, TeA+ and A, u=0; then p(AS+ul) = )(p(ﬂ‘)%-ﬂ(p(T)

(i) for every T€ A+ and for every unitary operator U'in A: o(UTU- n= (p(T)

A trace «p on A+ is said to be a) Jaithful if the conditions T€A*, . p(T)=
imply T'=0; b) normal if, for every increasing drrected set FEA+ with sup §=T¢ A+

. we have (p(T)—sup @(S); ¢) finite-if @(T)< + o for every TecA+, d) semi-finite

if, for every T€A+ T#O there exists SEA*+, S0 such that §=T and P(S) <.+ oo.

Let A be a von Neumann algebra, anid let ¢ be a trace on A*. The set of ele-
ments T of A+ for which ¢(T) < + =, is the positive portion of a two-sided ideal
mt,, called the two-sided ideal assot:iated with ¢. @ can be uniquely extended to a
posmve linear form ¢ on m,, and for every S¢im,, T€A, we have ¢ (ST)=¢(TS).
If ¢ is normal, then for every Sem the linear form 7'— ¢ (ST) (T€A) is strongly
~continuous on the unit sphere of A. If @ is finite, evrdently ‘we have m,=A (1n
this case ¢ is a positive linear form on A).

Let now ¢ be a semi-finite farthful normal trace on A+, For any S, Teluq, ),

we define {S|TY = ¢ (T*S). Then m,,, becomes a unitary algebra®) with i 1nner product
(S|T. Let Si)ma} be the completion of the pre-Hilbert space m?. For any. Rem* -

the mapping S—~RS (resp. S— SR) can be uniquely extended to a bounded lmear
operator ®(R) [resp. ¥(R)] on .SZ)mar @ (resp. V) is a *-isomorphism®) (resp.

-antusomorphlsm) called canonical *-1somorphzsm (resp. *-antiisomorphism) be-
tween A and the left ring R? (resp. right ring RY). of m?. - :

2. Under a non-commutative measurable space we shall mean a system ©, 8
composed of a complex Hilbert space § and a von Neumann algebra A on §. A gage-
space (9, A, m)'is a non-commutative measurable space (9, A) with a non-negative
- valued function m on Ap which is completely additive, unitarily invariant and
such that every projection in A is the supremum of the projections on which m is
finite. (We say that m is completely additive, if m(P)= 2 m(P,) for any set (P.).er

el
of mutually orthogonal projections 1n A with ¥ P.=P, and we say that m is unit-
) el
arzly invariant if for every unitary operator U €A and projection P€A,, we have
m(UPU-') = m(P).) . The function m is called a “gage” (a “non- commutative,

3 ‘For any set M of linear operators in a Hilbert space 9, M+ denotes the posmve portion
of M, i. e. the set of all non-negative symmetric elements of M.

4) Let m be a two-sided ideal in a von Neumann algebra A. If T runs over m+ then
T2 (0<a-< -o0) rins over the positive portion of a uniquely determined two-sided ideal of A
it will be denoted by ma (cf 2D. .

5) A unitary.algebra R is an algebra over the complex numbers, on which an involutive anti-
automorphism x -~ x* and an inner product (x| ») are defined, such that R becomes a pre—Hllbert :
space satisfying the followmg axioms: (i) (x|y)=(* |x*> @) {xy|2)= (ylx*z) (iii) the mapping -
X xy with fixed y is continuous; (iv) the set of elements of the form xy is dense in R (x, y, z arbit-
rary in R). Let §, be the completron of the pre-Hilbert space R. For every x €R there exists a bound-

ed operator U. (resp. V) on- &)R satisfying U.y =xy (resp. V»y = yx) for every yeR. The weak

(or strong) closure of the operators U. (resp. Vx) is'a von Neumann-algebra Re (resp. R9), called
the left (resp right) ring of R. The commutant (Rf)’ of R is identical with Rd (¢f. [4], chap. 1, § 5).
8) A *.isomorphism is an isomorphism (in algebraical sense) preserving the adjunction.
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‘measure’) of A, It is evident that the restriction on A, of a semi-finite normal trace
on A+ is a gage of A. Conversely, one can show (cf. [1]) that every gage of A can be-
uniquely extended to a semi-finite normal trace on A+ For any gage m, ¢, will
denote this extension.

A gage space (@ A, m) is sa1d to be finite (resp regular) if Pm ‘is finite (resp
faithful).

In any gage space (D, A, m) there ex1sts by Vlrtue of the complete additivity’
of m, a maximal among those projections of A on which m vanishes; let it be denoted
by F£,. It belongs to the centre of A. Iy—F, is called the support of m. In the
following it will be denoted. by E,,. Then for every P€A, we have m(E P)= m(P) '
- (D, A, m) is regular if and only it E w=1g.

Let (.SZ) A) be a non-commutative measurable space. A closed hnear operator
T on D is said to be “measurable” with respect to A if:

(i) T is affiliated”) with A;

(i) there exists a sequence {P,}._1 of prolecnons of A such that, for every
n, P9 <Dy (D denotes the domain of T), Iy— P, is algebraically ﬁn1te8) and
6 —P, 40 strongly’ (n— o). It is evident that ACB(A). Defining the *“‘strong sum’
and “strong product” of any two S, T€¢B(A) by the closure of their usual sum
and product, respectively, B(A) is a selfadjoint algebra relative to.the strong sum
and product, the usual operation of- multiplication by scalars, and the adjunction..
In what follows, when sum or product of measurable operators gccurs, always
the. strong. sum or strong product is understood, respectively.. ‘

Let (9, A, m) be a gage space. For every -T€B(A)*, we put

m(T) < 'sup on(S). -

Sem S =T

Then m can be uniquely extended to a complex (possibly infinite) valued linear
form on B(A) (identical with @, on i, ), designated by the same letter 7. An ele-
ment T¢B(A) is said to be zntegrable (with respect to m) if m(|T) < +°. An
element T'¢B(A) is said to be ph power integrable if |T|? is integrable. Let L?(m)
(1=p < + o) denote’ the set of all p* power integrable operators of B(A). The -
Le-norm of T€L?(m) is defined as [m(|T|?)]'/?, and denoted by |T,. = .

Let (H, A, m) be a regular gage space. Then, for every 1<p< +oo L?(m)
1is a Banach space with the LP-norm defined above. Further we have

(i) my/? is dense in L’(m) (1=p<+e);
(i) if 1<) pP<+4oco and ~—+=="=1, there is -an isometric isonlorphism between

the -dual space [L"(m)]* of L?(m) and L%(m) in which correspondlng elements

7) A closed, densely defined linear oparator T in a Hilbert space 9 is said to be affiliated with
a von Neumann algebra A on 9 (in sign TnA) if it commutes with every operator of A",

8) A projection P¢A is called algebratcally finite if there exists no partlally isometric operator
VeA such that V*V=P, VV*=Q<P."

9) Every closed densely defined operator T in a Hilbert space can be uniquely written as a

product of a partially isometric operator with the closure of the rangs of |T|=(T* T)* as initial
domain and the closure of the range of T as final domain. The decomposition 7= WIT| is called
the polar decomposition of T. If TpA (A being a von Neumann algebra), then WeA, |T|nA. Hence,
if TeB(A), we have |T|e B(A).
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FE[LP(m]* and Sp€Li(m) are related by the identity
F(T)=m(TSg),  T€Lr(m).

The dual space L=(m) of L‘(m) is identical with the Banach space A considered
‘with the usual operator norm;

(iii) if ;+———1 where lsp, qs -|—oo then m(ST) m(TS) for SEL”(m),
TeLi(m); A , ) : : . A

@ (T T n)|'sm(|T1T2..,Tn|)§'1|T1||,,1||T2u,2...nT,,u,,,, T,€Lr(m) with

2 =1 p=l (=12, m). | -

i=1p;
: For the enumerated facts concernmg the theory of the non-commutative in-
- tegration, we refer the reader to [3], [8] and [10]. . ’

Let (9, A, m) be.a gage space. An element T of A is sa1d to be quasi- szmple
if it has the form T= VT, where T o is a finite linear combination of mutually ortho-

gonal prOJectlons inm, T, = Z A;P;, PPk—O (z;ék) Piem, and V is a par-

tially isometric operator in A whose initial domain contains the subspace P+ +
+P,) .i) It is easy- to see that for a quasn-smple element T=VT,=

—VZ) P we have
j=1 . R :
T = 2 |41P55
=t

1

Cif Isp<+te
|T|p—_.>:|ﬂ PP; and ||Tn,,=[_21 m,-vm(P,-)];
further = nTua.,—||T||—sup(Mi|,..' 24])-

In what follows the terms and symbols introduced here will be used without
further references '

§ 2. A convexity theorem for finite regular gage spaces

/ "The: following lemma which will be often applied- throughout this paper is
due to J. DixMmIeR (cf. [3], § 3). For the convenience of the reader we recall its proof.

_ Lemma 2. 1. Let (9, A, m) be a regular gage space. Then the set of the quasi- .
szmple elemenrs of Ais dense in LP(m) for 1 =p < + .

Proof As m, is dense in L?(m) for 15p< + oo (cf. § 1.), 1t is enough to show
that .every element of m,, is the limit in- L?-norm of a sequence of qua81 -simple
elements of A. e .

Let T be an arbitrary element of: m,, . Let T=W|T| be the polar decomposition
of T. Using the spectral representanon of |T|, we can determine a sequence {7, }a=1
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4

of elements of A+ commuting with T such that: 1) 0=T,=1s; 2) TT, is quasi-
simple for every n=1,2,...; 3) T,tIg strongly as n—eo, .
By the uniqueness of the polar decomposition, we can see that [T—TT,|=
=|T(Ig—T,)| = |T|(s—T,). ‘Therefore |T—TT,; = m(T|?(Is—T,F) =
on(ITIP(Ig~TYP). As |TiPem, , 0= (I@—T)P:SI@ and (Is— T,)40 strongly, we
have |T—TT,|,~0 as n—~o (cf. §1. '
To facilitate the statement of the next lemma which is a companion result -
to Lemma 7 of VL. 10 of [5], it will be convenient to .introduce the following no-

: tatlons

Definition2. 1. Let ©, A m) be a finite regular gage space. If a¢ R' 1%) and .
a=0, we define A(a) to be the set of qua51-51mp1e elements T of A for which ’

1

() ' ‘m(T°)=1. ,
If a=0, the condmon (%) is replaced by -
(* %) ‘ A IT|=1.

. Definition 2.2. Let (HO, AD, m») be a finite regular gage space for each
Jj=1,2. Let o be the product of A" and A®: o = ADXAD, If a=(a,, a,) € R?
with @, =0, a,=0, we define d(a) to be the set of all elements T=(T,, T,) of
o with T; EAU)(a) : s ‘ :

Lemma. 2.2. Wzth the notations of the precedmg definitions, let F be a com-
Dlex valued bilinear form on sf =AM XA® and let :
1. - M(a)— _sup |F(ST)|. ')

Se 1, TES(a)

Then log M(a) is a convex function'?) of a=(a,, a,) for 0=a, =1, O=a,=1.

Proof. Let o/ *(a) denote the totality of all T=(Ty, T) in .sz¢ (a) for which
T,=0, T,=0. First we prove that
) M (a=_ sup  |F(ST?)|,

) o sed), Tea *()

where T*=(T1',T7") and &/ (1)=sZ(1, 1). To see this we have to show that the
sets I = {ST}sem Tewm and = {ST*}sew,, Tewq) are identical. Let T= (T, T,)=

'=< 3 }f-l )P(l) Zz' /1(-2 )P(-Z) be an arbitrary-element of o/*(1). Then, for every

]=l j=1
a= (al,az) w1th a,=0,a,=0, T"=(T1,T) = 2 (i(l))“‘P(l) 2 (/1(2))"21’(2)) “is
an element of o +(a)cd (a) and it follows that eazcgm Let now T’ =T, Ty)=

10) Rk (k—l 2) denotes the k-dimensional real Euclidean space.

1) For a von Neumann algebra A, A;.denotes its unit sphere.

12) Let C be a convex subset of R2, and let M be a function defined on C havmg values which
" are either real or + . M is said to be convex if for any u, ve C

M(au+ (1 —a)v)faM(u)-}—(l —a)M@)
whenever Oéaél.’ . ’ .
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LT ' om ; ) .

= (V1 > )f,-”P;l), v, > P(,-2)>‘ be arbitrary in «/(a). First suppose that
j=1 . j=1 o . K .

a;>0,a,>=0. It is evident that

", v Z ' N
T = V1< Z‘ eiarg).j P‘1)>|Tll, T = V2< Z’ erargl‘l)P(‘2)>|T£|. »
. j=1 i

~ Putting

S=(819 SZ) (Vl (' etargl‘, P(l) V2 2 elargl} )P(z))
. J_ . =
1 1.

=(T,, T,) = (Ti|=, T3],

we have SE,@A,TEM*(I) and T =ST=. If a, =a,=0, then we have T’E.sz{’l
‘and T'=T'T° for every TC¢o/*(1)(0=(0,0)). As o, =/ o,, it follows that
N c . The cases when either a,>0, a,=0 ‘or a;=0, a,>0, can be treated
by ‘a similar way. Hence 9Il=8T which proves (2).

"Let now b=(b;, 5,)€R? and T=(T,,T,)€/*(1) be arbitrary. Put Tv=
_(T"’l "’2) Then for every a= (al,az)ERz with a,=0, a, =0, we have
_ sup* IF (STa+b)| = sup ]F(ST"’T")| = M (a).
. : SEaf1, TES +(1) Seds, TES+(1)
Therefore, o :

: ' sup{ sup  |F(ST**")|} = M(a).

_ bERZ S, TES *(1)
" On the other hand, it is ‘clear that

sup{ . sup |F(ST*+®)|}= M(a).
bER2 Seo ), TEA (1)

‘Hence sup{  sup |F(ST“+“’)I} M(a).
- bER? SE 1, TESX *(1)
- Let now T= (TI,TZ)Ed’f(l) be arbitrary. Then, for every b=(by, b,)€ R?
and a=(a,, a,)€ R? with a;20,a,=0, T =(T7"*", T3*™) belongs to (a).
In fact, if T, = 2“ ,:.(,.k)Pg.“) (k= 1,‘2); then 1'2**‘"“: 2 Py P which means
. = e
. 1
that Tp*™ is a quasi- 51mp1e element of A®, Further m® (| Tty =
=™ MmO (T)=1if a0, and |73 ™| = €™ ™| =1 if 4,=0"2). Con-
. sequently, )
' : |F(ST‘*+“’)|§sup |F(ST"+“’)|§M(a).
. . bER?2 :

It follows that : _
' M(a)=sup{ sup |F(ST**®)}=
" bER? SEM},TE.{J D

=sup{ sup [sup |F(ST=+)|]} =
b€R2 Sed,, Ted”(l, bER2

= sup {sup |F(ST"+'b)I}<M(a)
ses, TEd*‘(l) beR?

13) We may suppose that Tie= 0 for k=1, 2.
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Hence we have

Q) ' M(a)— sup {sup |[F(ST*+")]}.
Se«, TE.:l*(l) bER

Let z=(zy, 23)=(a, +iby, az +iby) and let T=( 3 wpn 3 A‘”P‘”)e
\j=1 j=1

.sz(*(l) We may suppose that every A k)>0 (]—1 ,n,,; k=1,2). Then, for

every S=(S;, S;)€&,, we have - . )

ST =( (2(1))215 P(l) Zzl (‘/1(]-2)):25’2})5'2)) =
\ij=1 j= ]

' =<Z enlossf’ g pV, e221°8‘3‘2)SZP§~2)>. T
' j=1 : = S
" As Fis bilinear, F(ST?) can be written as a finite sum 3 ,.f,(z,, z,) F(B,) with B, € «Z,
where f,(z,, z,) is an analytic'4) function of the complex variables (z,, z,) and is-
bounded on the strip 0=q;=1 (=1, 2). Hence, by VI. 10.4 and VI. 10. 2 of [5],
. and the mcreasmg nature of the logarithm, we obtain that. ‘

log-M(a)— sup log {sup ]F(ST“"’)]} .
Sed;, Ted ‘*(l) bER2 .

is a convex function of a=(a,, a,) for 0<a1<1 0=a,=1. Hence Lemma 2. 2
is proved.

. The next theorem can be considered as a non-commutative extension of a
special case of the Riesz convexity theorem (cf. [5], VI. 10. 11).

Theorem 2. 1, Let (9, A, m) be a finite regular gage space, and let ® be a li-
near-mapping of A into itself. If for agiven.p (1=p=+ o) ® has an extension to a
bounded linear mapping of the Banach space L*(m) into ltself let ||®||, denote the
- norm of this extension; if no such extension exists, let [®ll,= + 0. Then log (D ¢/a
-is a convex function of a for 0=a=1. )

Proof. It is evident that
 F(M)=F(Ty, T,) =m(®(T,) T,)

is a complex valued bilinear form on Z = AxA. Let a'=—;— (I=p=+4w; a=0
if p= + o), and let] '

M, 1 —a)= - sup |F(ST)|.
. Se, TEH (a,1-a)

Now we are gomg to show that | @], ,,,__M (a, 1 —a). If both of M(a,1—a) andv
I®,/, are identically infinite, our assertion is trivial. Therefore, we show that

14) Jet G be an oﬁen set in the space of the complex variables (z:, z2). A complex valued func-
tion f defined on G is said to be analytlc in G if fis continuous and the first partial derivates 8//32‘
(i=1,2) exist at each pomt of G .
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M(a, 1 - a) is finite 1f and only if ||<I>|| 118 finite and in thlS case we have M(a, 1 —a)

—"q)lllla
For any _ae[O, 1] we have
M(a,1—-a)= - sup |F(ST)| = ~sup  |m(®(S,Ty)S,T,)|=
: : segal,.re‘%(a,l—a) SeB,, TeB (6,1 -a)
= sup - |Sall 1721, Il<I>(S1T1)lI
Se#y, TeH(a 1-a)
. 1
= sup lI<I>(S1T1)II,, : <p=—-)-
Sed,, TeB (4,1~a)

As ||.S1T1||,,S||S1||||T1||p§1 and A, conmtains the 1dent1ty operator by virtue of
Lemma 2.1 -we have . :

1®ll,= sup [ ®T))ll,= sup 19(S: T, =
T\E/(a) s€#, Te B, 1-a)

= sup (O, =Pl

' Ted, | T|p=1
which implies . sup (@S T)I,= 1P,
. SEB(, TERB(@,1-a)
Hence . M(a1-d)s sup (S, T =],

Sed,, TeH (@ 1-a)

It follows that if ||®], /a 1S finite for a given a€ [0, 1], then M(a, 1 —a) is ﬁmte and
M(a, 1—a)5||<I)|I 1/a- Conversely, suppose that M(a, 1 —a).is finite for some a in

[0,1]. Let p=— (p =+towifa= 0), and let i+l—1 Then for every quasi- 51mp1e

v/

element T7 of A the linear form

Hr(R) —m(q>(T;)1§) (ReA)

is bounded in L”-norm on:a dense subset of L? (m), namely on ACLP (m) In
fact

: _ . ~ T
Hyl, = ®(T7)R)= Tilllm| R)\=
1#rily Reiﬁ?_@'"’( TDR)= sup ‘”"'”’( <||T np> )l

=ITil, s Im(@STS,TS) = ITil,M(a, 1-a)
SE.?ZI,TG.%’(al a) :

' (S (Sl, S,), T=(T,, T,)). Consequently, HT can be.uniquely extended to all
L?(m), i. e. Hy;€ (L7 (m))*. Hence there exists an element Q € L?(m) with || ol,=
= M(a, 1—a) ITill; (cf. §1) such that

" Hp(R)= m(CD(Tl)R)_m(QR)
for all ReL” (m) It follows (¢f. §1) that Q= CIJ(T,) Hence -
DT, = M(a, 1=a)|Til,
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for all quasi-simple elements T1 in A. Hence
v 1®l,=M(a,1-a)
and we can conclude that |1<I>||1,‘,_M(a, 1—a) for 0=a=1. By Lemma. 2. 2,

logM(a)=log[ - sup = [F(ST)[] °
' se#,, TeB@

is a convex functlon of a=(a,, a;) for 0=q,=1, OSazél therefore log Ild)ll,,,,.“
is also convex for 0<a<1 and the proof is completed

‘§-'3 The4non-commutativel'mean-ergodic thegrem

We begm this section by giving a non-commutatrve analogue ‘of the concept:
of measurable transformation. - : o .

Let (X, S) be a “measurable space i e.a set X'and a o-algebra S of subsets,.., g
of X. Denote by B(X) the algebra of. all complex valued functions f(x) defined.
on X which are measurable with respect to S. Let T be a measurable transformation.
of (X, S), i. e. a mapping of X into itself such that the inverse image of every element
of S by T belongs to S. By f(x) ~0(f(x)) =f(Tx),.T defiriés-an endomorphism 0 of -
B(X). By the nature of the theory of gage spaces as a non- -comimutative extension
of the classical theory of integration over an abstract measure space, it will be na-.
tural to define a non-commutative measurable trasformation as a mapping of the-
set of all measurable operators into itself with analogous algebralcal and topolo--
gical properties as 0.

Definition 3. 1. Let (&), A) be a non—commutative measurable space. A meas-
urable transformation of (9,A) is a *-endomorphism (homomorphism into.
itself which preserves the adjunctron) 0 of B(A) w1th the followmg propertles

@) 0(s)=Ig;

(i) the restriction of 6 to A is a norma115) *.endomorphism of A sending
the set of all algebraically finite projections of A into itself. An invertible measur- -
able transformation of (9, A) is a *-automorphlsm of B(A), whose restriction
to A is a *.automorphism of A.

It follows immediately from the preceding deﬁnmon the

Proposrtron 3.1. Let (9, A) be a non-commutative measurable space and let

0 be a measurable transformation of (9, A). If a sequence {T,}nz1 of elements of ™
B(A) converges nearly everywhere') (relative to A) to an element T of B(A) then:

{0(T,)}n=1 converges nearly everyhere to B(T). .

15)°A *—endomorphlsm 6 of A is said to be normal if it has the following_ property Cif TehA+

is the supremum of an mcreasmg directed set F of elements in A+, then we have 6(T)=sup S. .
. SeF

16) A sequence {T,.}" 1 of elements of B(A) is said to be convergent nearly everywhere (relative-.
to A) to an element T of B(A)) if for every & > 0 there exists a sequence {P.}, -1 of projections in.
A such that P, t I@ as n—-e=, (T—T)P.l<e'(n=1,2,...) and I@— , is algebraically finite-
for every n=1,2,... (¢f. [9], def. 23). ‘ . '
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The next proposmon can be proved by the same' way as Theorem 1 in [8], hence
‘the details are omitted.

Proposition 3. 2. Let ©, ‘A) be a non-commutative measurable space, and let

0o be a normal *-endomorphism of A with the following properties: (i) 0,(Ig) =1Ig;
(ii) O, sends the set of all algebraically finite projections of A into itself.

Then 0y can be uniquely’ extended to a measurable transformation 0 of (9, A).

The preceding propositions imply

Proposition 3. 3. Let 8 be a measurable transformation of the non-commutative
. -measurable space (9, A). Then 0 is uniquely determined by its restnctton to A.

Now we formulate our main résult which can be considered as a non-commutative
.extension of the von Néeumann—Dunford—Miller mean ergodic theorem (cf {51,
VIII. 5.9. )

Theorem 3.1. Let (9, A, m) be a fmzte regular gage space, and let 0 be a
- measurable transformatzon of (,i) A). Suppose that, for every projection P€AP and.
for every n=1,2,..., 0 satisfies the inequality

j=

(3.1) - S %‘Elm(ef(m)éM‘m(P)

with a constant M independent of P and n. Then, for every p with1 =p < + o0, T -06(T)
is a continuous linear ‘mapping of LF(m) into itself and the. sequence of operators

n—-1 b .
{% > 4. )} ‘is strongly convergent in the Banach space LP(m).
“ . , _

The folllowing'lemmas,ére required_ for the proof.

Lemma 3. 1. (¢f [5], VIIL 5. 3)..Let T be a bounded operator in gn arbitrary

' ' v . B R T
«complex Banach space X. If the sequence {7 Z’ T/ 1 is bounded (in norm),
s M j=0 - )=

: : 1 ,
then it converges strongly in X if and only if — T"x -0 as.n—oo for x in a fundamental

ser'7) in X and the sequence { 2 T Jx} is weakly'8) sequentially' compact!®)
=1 .
Jor x in a fundamental set in X. ' ' '

Lemma 3.2 (cf. [12], th. 3). Let (D, A, m) be a finite regular gage space,
.and let K be a bounded subset of L)(m). If, for any sequence of projections {P,}n=1
in A with P, 0 (n—o<), m(TP,) converges to zero umformly with respect to T€K,
then K . is weakly sequentially compact ’ .

”) A subset € of a Banach space X is said to be fundamental in X if the lmear subspace span-
. ned by € is equal to X.
18) By the weak topology of X is understood the weak topology induced by the dual of %.
19) A subset & of X is said to be sequennally compact if every sequence of points in & has
a subsequence converging to a pomt of X.
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‘Lemma 3.3. Let (§,'A, m) be a finite regular gage space, and let 0 be a rheas-
urable transformatzon of (H, A) Suppose that, for every PEA,,, m satisfies the
inequality
3.2 ‘ . m(O(P))<Km(P)

with a constant K 1ndependent of P. Then for every p with 1=p< + o, T—»O(T)
is a continuous linear mapping of L¥(m) info itself.

Proof. For the sake of brevity, denote by A, the set of all quasi—simple elements'
of A. It is not hard to see that 6 maps A, into itsélf. Further for every T¢€ Ao w1th

T= VZ'AP we have R .

I9(T)I"—9(ITI”) =, Il PO(P)),
and . :
‘ . 1
) 1@, = [;; Iljl”m((?(P,-))],-
Hence, by (3.2), we have ’

(3.3) ' ’lIB(T)II,,éK"[Zl Iijlpm(Pj)] =K?|T|l, (sp<-+eo).
j= . ) :

Let now T€A be arbitrary. As in the proof of Lemma 2.1, we can determine a

sequence {T,}n=1 of elements of A+ commuting with |T| such that DO=T,=1;
2) TT,€Ay; 3) Tt I strongly asn— e, It follows that [TT,,|P |T|1’T tT|P strongly :

as 11— oo, As P i normal we have || TT,,Ilp—m(iTT |P)P—<pm(]TT [”)P—»tpv (ITll’)P—

=m(|T[P)"—-!|T||,, (n—»oo). Further, IB(TT,,){P-—O(|TT|P) for every 1=p-< + oo,
Since 0 is normal on A (cf. Def 3.1, IB(T DIP116(T)|P as n—~o and thus

lim |0(TT,)], =lim m(IG(TT,.)I”)"=m(19(T)I”)”“|]9(T)II,, Since TT, EAo, by (3. 3)_

N—co
we have
1

I - NOTT N, =KP|TT,|,. .
. Thus, we_obtain N :
» . g .o 1
10(T)l,=1lim [|0(TT,)||,= K? lim 17T, =K? 1T 55
S 1e. .
(3.9 o eI, =K*|T], (1=p<+<)

for every T €A. The 1nequa11ty (3.9 shows that the restriction of 6 to A, denoted
by 0,, is a continuous linear mapping of A into itself with respect to the L?-norm."
Since A is dense in L?(m), 0, can be uniquely extended to a continuous linear mapping
- 6, of L?(m) into itself. Now, using the fact that every sequence {T,},=1 of elements

of A which converges in L”-norm to a measurable operator T contains a subsequence

A8
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converging nearly everywhere to T (¢f. [8] and [10]), it can be seen as in the- clas-
sical case that 0,(T)=60(T) for every T€L?(m). Thus Lemma 3.2 is proved.

Proof of Theorem 3.1. If n=2, the inequality (3.2) gives m(0(P))=
=M~ l)m(P) for any projection P in A. Hence, by Lemma 3. 3, 8 is a bounded

" linear operator in L?(m) (1 =p< + ). To complete the proof of Theorem 3.1,

we have only to show the following (cf. Lemma 3. 1):
.1

a) for every TEL”(m),“ §M7IIT”,, n=1,2,..);
p .

i 2 o)
b l 6"(T) converges étrongly' to zero as n—eo for T in a fundamental set

in L"(m), . | S
¢) the. sequence {— Z‘ 0!(T)} ., of elements of LP(m)‘_is Wéakly sequéri-

tially compact for T in a fundamental set in L”(m)
Let us ‘prove a). First we show that

1 ,.2 6’(T)“ =MITl;  (n=12,..),

j=0

3.5

for every T€A. The reasdning in the proof of Lemma 3 -3 shows that it is enough
to prove (3.5) for the quaSI -simple elements of A, Let T= VTO be an arbitrary

element of A, with T, O—Z AP;. Then we have

. n— n—-1 n-1
WHZWmWﬂlzwwmméizwwwwmm§
=0 1 nj=0 . 1 R jzo .

n-1

=1 2 3 m(@E) = ZDM—ENMMMJSMMM

which proves (3. 5). Further, for every T€ A we have

. 1 n—1 . 1 n—1
= 2 16Ml=— 2 ITI=ITI.
j=0 n j=o

1zt
(3. 6) "ZFZO 0/(1")‘

. n-1 ' ‘ . o
Putting <I),,(-)=% 2 /() for every n=1,2, ..., we have obtained
Jj=0 . .
1@l =M, |O,].=1.
®,(-) is a linear mapping of A into itself, Theorem 2. 1 now gives
i ' 1 | . 1 - 1
log|®,], §<1 - ;) log [|®@,].. + > log|®,[, =log |®,l|f =log M?, .

1

and so - ||‘~'_I),.||,,=M7 l(”=],2,_l~),
which gives a):
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1

To prove b) we note that the set Ap is fundamental in every Lr(m) for
15p< + oo (cf. 1 [11]) Now if PEAp, we have
1

1
75—’11— [m(Ig)]? -0 as n—co,

- [M(I""(P)l”)] P= [m(9"(P))]

o] -

whence b).
Finally, ¢) follows from Lemma 3. 2. Indeed, let P, EAP such that P,} 0 strongly

as n—oo, Then, for every Qchp, _
m( ‘ ,lcﬁ 0’(Q)) ( 2 ||01(Q)u)nPnnrfnPnul—wm(Pn)»o as n--eo
' ' : k=1,2,..)

mdependently from Q, and thlS completes the proof of Theorem 3. L

§4. An ergodlclty concept for gages

v In his paper [11], H. UMEGAKI introduced a concept of ergodicity for “traces’
of a D*-algebra R (a normed *-algebra over the complex number, with an approxi- .
mative identity) which are ‘‘stationary” (i.e. invariant) concerning a group of
*_automorphisms G of A. He called a stationary trace of R ergodic if it is not a linear
. combination with positive coefficients of two other linearly independent stationary .
traces of R, and he characterized the ergodic traces with the aid of*the two-sided
representations corresponding to them. The ergodicity concept for gages introduced
" by us is analogous to that for measures in the ordinary integration theory2°).
We shall show the relation betwéen our definition of ergodicity and UMEGAKT’s, the
latter definition being cons1dered in the case when R is supposed to be a von Neumann
. algebra. .
- Let (9, A, m) be a gage space, G a group of invértible measurable. transformatlons
" of (9, A) (¢f. Def. 3. 1). In what follows, an element T E?B(A) is said to.be (m, G)- -
invariant if for every € G we have E,0(T)=E,T (E, is the support of m). T is
said simply to be G-invariant if for every GEG we have 0(T)= .
- Our ergodicity concept for gages is given by the following

. Definition 4. 1. Let (£, A, m) be a.gage' space, G a group of invertible
measurable transformations of (, A). m is called G-ergodic if for every (m, G)- -
invariant projection P of A(A” we have either m(P)=0 or m(ly~P)=

Analogously to the classical case we have

Theo rem 4. 1. Let (9, A, m) be a gage space, G a group of invertible measurable
transformatlons of (9, A). In order that to- m be G-ergodic it is nécessary and sufficient

20) Let (X, S, #) be a measure space, and let G be a group of one-to-one mappings of X
onto itself and which at the same time is a group of automorphisms of S. We recall that. y is said
to be G-ergodic if for any E¢S such that [EU 6(E)l—[En 0(E)] has u-measure O for every 0¢ G,
we have either #(E)=0 or u(X—E)=0. u is G-ergodic if and only if every S-measurable func- .
* tion f(x) such that, for every 0¢G, f(O(x)) f(x) almost everywhere, is equal to a- constant
almost everywhere
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that every (m, G)-invariant element T of ?B(A) aff zltated with AQA’ be a scalar multiple
of E,.

Proof. If the COIldlthIl of Theorem 4.is fulﬁlled then every (m, G)-invariant
projection P in ANA’ satisfies the equality E,P=AE, with some scalar . Since
E, c(ANA), E,P is a projection, so we have elther 1=1 or 2=0. Hence either
m(P) m(E,, P) 0 or m(ly—P) = m(E,(Ig—P)) = m(E,)~m(E,P)=0. This
means that m is G-ergodic. Conversely, suppose that m is G-ergodic. Let T¢(ANA")

be a self-adjoint (m, G)-invariant operator with T-~f/1dE,1 Since E,,,E(ADA’),

we have E, T—]Ad(E E), and E0(T)= fld(E O0(Ey)) for every 0€G. As
E,(0(T))=E,T, it follows from the uniqueness of the spectral representation that
E,O(E,)=E_E; for every A and 0€G. Since E,€(41A4"), we obtain, by the G-
ergodicity of m, that for every A either m(E;)=0 or m(Ily—E;)=0, i.e. either
E.E,=0 or E,E,=E,. This means that the spectral family of £, T.contains only
two projections, namely 0 and E,,. Hence we have E,T=A,E,. Let now T¢(ANA)
be an arbitrary (m, G)-invariant operator. It is easy to see that 7T can be written
as a linear combination of two self-adjoint (m, G)-invariant operators in ANA’,
Hence T is also a scalar multiple of E,,. Finally, let T be an arbitrary (m, G)-invariant
operator in B(A) .affiliated with ANA’". Let T=W|T| be the polar decomposition

of T with T=jldE,_. It is known that We¢(ANA’), and EAE(AOA’) for every A.
Further, -as  E,0(T) = E,0(W)0(IT|) =(E 0 W))(EO(T)=E,T=E,WI|T| =
=(E,WYE,ITI|), it follows from the uniqueness of the polar decomposmon that
E09(W)=E,W and E,0(|T|)=E,IT! for every € G. Since We{(ANA"), we have
E,W=qE,. Since 0(|T|)_Ild0(EA) (of: ), ELD(TN)= | 2d(E,0(E), similarly
as above, it may be seen that the spectral family of E,|T| contains only two pro-
jections: 0 and E,,. Thus we obtain E,|T|=8E,, which proves Theorem 4. 1.’

" Pefinition 4.2. Let (, A, m) be & gage space, G a group of invertible -
measurable transformations of (§, A). m is said to be G-invariant if for every pro-
jection P of A and for every #€G we have m(6(P))= m(P)

Let now A be a von Neumann algebra, G a group of *-automorphisms of A.

.. Let PG denote the set of all G-invariant probability?!) gages on (9, A), and pe =

={g,:m€PC}. Tt is evident that PG is a convex subset of A*22), The next theorem
- characterizes the G-ergodic elements of PG as follows

.Theorem 4.2, mEPG is G- ergodtc if and only if @,, is an extreme“) point
of pG.

Proof. First we note that if. mEPG then E, is G-invariant. Indeed, for every
0¢G we have m(Iy—0(E,))=m(ls) — m(B(E,,,))—m(E,,,) m(E,,,) 0. This means
that Iy —0(E,)=I;—E, (0€G). It follows that I{, E,=1I;—0-'(E,) for every

21) A gage m of A is said to be a probability gage if m(I y=1.

22) For a von Neumann algebra A, A¥ denotes the dual space of A when A is considered as
a Banach space with 1T} as its norm.

" 23) ¢, is an extreme point of PG if it is not'a mlddle point of any segment belongmg to PG
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BEG As the mapping 0 —~ 9 L of G onto 1tse]f is one-two-one, we have I@—-E = -
=/ly—0(E,) (0€G). Thus we have E,=0(E,) for every 6¢G.

Further, if m€PS ‘then for every T€A and 6¢G we have ¢,(0(7))= @u(T).
In fact, let 7 be an arbitrary element of A*. As in the proof of Lemma 2. 1, we can

choose a sequence {T,}._1 of elements of A* such that: 1) 0=T, I@, 2) Ttig
strongly; 3) 77, is a ﬁnlte linear combination of elements of A, with pos1t1ve coeffi-
cients. The G-invariance of m implies that ,(0(TT,))= @ (TT,). As 0 is a *-auto-
morphism, it follows that §(T,)tIs. Thus 0(TT,)=0(T)0(T,)t16(T). By the norma-
lity of ¢, we have q)m(H(T))zlim Pa(0(TT, ))=lim ©u(TT,)= 9,(T). Since every
element of A can be wrltten as a ﬁmte linear combmatlon of elements in A+, our
assertion follows.

For m € P8, consider the von Neumann sub-algebra Ay, = {T€A:TE,, T} of A,
~ We note that the restriction of ¢, to At , denoted by the same letter g,,, is a ﬁnlte
. faithful normal trace on A} . Let R, oe the unitary algebra associated with ¢,,,
and let @,, be the canomcal *-1somorphlsm between A; and the left ring RY, of
R,,. Since O(E,,,) ' for every 0€G, it is easy to see that the mapping 76§’ (T)_ _

. —<I),,,[6((I>_1(T))] deﬁnes a *-automorphism & of RY, for every 6, and so .G induces -
through @, a group of *-automorphisms G’ of Ré. Further, it is not hard to

see that an element T€RY, is G’-invariant if and only if _d);l(T) is G-invariant.
Let now V,, be the set of all bounded linear operators ¥ on g, for which

(VG(S)]G(T)}M—<VS|T>%

for all S, TER,,, 0CG. It is easy to see that V., is a von Neumann algebra on 9g,,.

By a theorem of H. UMEGAKI (cf. [11], Th. 5), ¢,, is an’extreme point of PG if and -
only if (V,, R NR3) = {afg, }. Hence we have to prove that m€PS is G- ergodlc

if and only if (V,, R ﬂR")—{aIc,R }.
First we show that for an element TE(Ry ﬂR“) we have 7€V, if and only

if T is G’-invariant. Suppose that TE(R? NRY) is G’-invariant. Then (D;I(T) is
G-invariant. Thus, for every #€G and R, SER,, we have

(TO(R)| 0(S)sn= Pm(0(S%) i (T)O(R)) = ., (0(S*®5; " (T) R)) =
= Pu(S*®,  (T)R)=(TR|SY, "

which gives that T¢V,,. Conversely, suppose that T E(V,,,ﬂR” F‘R") Then for
every 0¢G and R, S¢R,,, we have

Pm(@n (T)O(R)O(S¥)) = rp,..(a(S*)m"a)e(R)) <T0(R>|0(S)>q,m—<TR|s>¢m
= §u(S*®p ' (T)R) = 5,(®m (T) RS*) = P(0(@n” (T)B(R)O(S)).
In particular, for S=E,€R, we have '
Pu(0(®n (1)) 0(R) = %(@"(TWR))
Thus for every 6¢G and R€R,,,
107" (1) 05 D1O(R) =0. |
- It follows that @, ()= 6(®n (T)) for every 0 EG which gives that T'is G’-1nvar1ant.

0y
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Suppose now that m¢PS is G-ergodic, and let TE(V,,,ﬂR,‘{,ﬂRf,,)' be arbi- |
trary. Then ©,'(T) as an element.of ANA’ is (m, G)-invariant. By Theorem 4. 1,
®;'(I')=aE,. Hence T=0a®,(E, )—aI@R , which gives that (V,,NR{NRI)=
={algy }. Conversely, suppose that (V.NRENRE) = {olg, }, and let T€(ANA)

be (m, G)-invariant. Then TE, is a G-invariant element of Ag NAz . It follows
that ®,(TE,)e(V,,NRY ﬂR“) therefore ®,,(TE,,)= algy -a(I),,,(E ). "Thus TE, =

-=uokE,,, which comp]etes the proof of Theorem 4.2.
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