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Matrices of normal extensions of subnormal operators

By .T. ANDO in Bloomington (Indiana, U.S. A.)

1. A (bounded) operator T on a Hilbert space © is called subnormal in case
there exists a normal operator N, called a normal extension of T, acting on a Hilbert
space & containing 9 as a subspace such that

1 ©ONf=Tf (fEDH):

A characterization of subnormality in terms of T has been obtained by HaLMOs
‘[2] and Bram [1]; T is subnormal if and only if

) zj (T'f;, Tif) =0

for every finite sequence (f;) in 9. Their construction of the space &, however,
depends heavily on T. It seems natural to raise a problem whether & can be taken
to be a fixed Hilbert space, independent of T as in SCHAFFER’s construction [4] for
a unitary dilation of a contraction, and whether N can be constructed on & along
a definite line from 7. In this paper this problem will be settled (Theorem 1), producing
another characterization of subnormality (Theorem 2). At the same time a discussion
concerning a commutative family of a subnormal operators will be made (Theorem 3).

Introduction of some notations will simplify later discussions. For any
positive integer n, 9" staids for the orthogonal sum of n copies of 9, indexed .
by 0,1,2,...,n—1. In other words,. the elements of Sg" are the n-sequences -¢ =

—{fo,fl, s Sue1} of elements f;€9 with norm ||(p|]2—2 £l = is similarly

defined. In case n>m, SZ)'” is embedded 1nto D" by 1dent1fy1ng {fosSis eorsSme1} EH™
with {fo, /15 ---sSm—-105 .., 0, 0} €H" § is always.identified with H'. ‘An operator
© M on @ (I1=n=o)can be associated with a square n-rowed matrix each of whose

entries is an operator on . More precisely, if M(f, j) stands for the (i, j) th entry of
"M, {g;}= M{f,} means that -

n-1 .
g= .Z(') MG, j)f; O=i=n-1).
. J= . .
The requirement that § is invariant under M and the restriction of M to § coincides

with T can be expressed by the requirement that M(0,0)=T and M (1 0) 0 for
all i=0. Fmally we shall formulate a 51mple Lemma.

- Lemma 1. If T is subnormal and V is an operator from $ into another Hilbert B

'space WM such that V¥VT =T, then VTV* is subnormal on .
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In fact, since (VTV*)k: VT V* (k=1,2,...) by assumption, for every finite
sequence (¢,) in M , :

z ((VT'V*)"%, VTV g)= 3 (VT'V=g;, VIV g) =
—Z(V*VT‘V*q)J,TJV*(p) Z(T V*(pJ,TJV*(p)ZO

(the last inequality follows from (2)) hence the criterion (2) yields the subnormality
of VTV*,

2. First of all, if N is a normal extension of 7, from (1) and the normality
of N it follows that

3 } NN*f=N*Nf=N*Tf,
@ o N, =(T*,8)  (f8€9),
) o T T =INA = INf = T

and moreover on account of BraM’s theorem {1} the norm ||N|| may be assumed
to be equal to | T||.

(5) is equivalent to the positive deﬁmteness of T*T —TT*Let S=(T*T— TT*),
then . '

(6) ' o ANE=THA =057, (feD),
becalse by (4) and (5)

AN* =T*)f|2 = IN*f]|2 =2 Re(N*f, T*f) + | T*f||* = ITA12 = T*f 12 = 1571

From this it follows that Sf=0 is equivalent to N*f=T*f, and the latter, in turn,
is equivalent to the fact that N*fis contained in £). Now each element @ in +N*$g

can be written in the form
o =f+N*-T*)g with fg€9

. and this decomposition is unique, because of the orthbgonality of © with
(N* —T*)$ by (4), consequently - . '

0 ‘ Il = /12 + (N* — T*)g] 2.

Combining (7) with (6), it follows that the operator V which assigns {f, Sg} to ¢
maps isometrically §+N*9 into D2, and can be extended isometrically on the
‘closure & of D +N*9. On the other hand, € is invariant under N because by (2)

N(@+N*@)cT@+N*T\wc@+N*9

Therefore the restriction M of the normal operator N to the invariant subspace
& is subnormal with norm equal to | T|| by the definition of subnormality. Since
cledrly V*VM =M, Lemma 1 yields the subnormallty of T =VMV* and the norm
IT| is equal to | T|.

In order to obtain the matrix of T on 2 it sufﬁces to calculate T{/, Sg}
(f; g€9), because V*{0, i} =0 whenever S$*h(=Sh)=0 and the orthogonal comple-
ment of the null space of S coincides with the closure of the range of S. To this
effect, consider the densely defined operator S—!, called the partial inverse of S,
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such that S— 15‘ P and S—!(I— P)=0 where P denotes the orthogonal projection
from $ onto the closure of the range of S. From (3) and the definition of V it follows

that
' T{f Sg} = VN(f+(N* =T*)g) =
= V(Tf+(T*T—TT*)g +(N* — T*) Tg) = {Tf+ S, STg)
T S

0STS-1
Jfortiori STS—1 is bounded. The bounded. extension of ST'S—1 on $ will be denoted
by the same symbol. Moreover, since N*f¢$ implies N*Tf = NN*/¢ D by (3), it
follows that Sf=0 implies STf=0, i.e. ST=STP=STS~ LS.

Summing up, if T is subnormal, then T*T —TT* is positive definite, STS~ !

T S

0 STS—1>‘ on $? is subnormal A
. ‘with norm equal to || 7). This can be further generalized as follows: -

Lemma 2. Let T be subnormal and let R,,, S, and T, be defined by ‘the followmg
" recurrent formulas:

and this, in turn, means that the matrix in question is given by , a

is bounded and ST = STS~1-S, and the oper,ator‘(

R0:S0=09 TO‘_:T, .
Ro=SEs 4TS r Tyt —TuorTior, Sa=RE, To=S:To1S7'  (n=1,2,...)
Then, in each step, R, is positive definite, T, is bounded and S,T,_,=T,S,, and the
operator N, on 9" with the entries N,(i,)=T; (0=i=n—1), NG, i+1)=S;,,
O=i=n— 2) N,,(I D=0 ( for all other indices ), is subnormal with norm equal to
1.

Proof by induction. The assertions for n=1 have been just proved above.
Suppose that the assertions on R;, S; and T; (0=i=n—1) and on N, have been
proved. On account of the arguments preceding this lemma, N3N, —N, N* is positive .
definite, WN, W—1 is bounded, where W= (N,’.kN —N,N?* and"W ! is its partial

N, W
inverse, and WN =WN,W-'W and the operator 0 WN,W-!

sum " G H" is subnormal with norm equal to [N,| =|T]. Puttmg N*N* =A and
N,N ¥ =B, simple calculations show that

on the orthogonal

AG i—-1)=8T,_, (I=i=n—1),
CA@, D) =SE4TIT; O=i=n-1),
AW i+ D) =TS O=i=n—-2),
- A(G.j) =0 (for all other mdlces)
and similarly : ,
- BG,i—1). =TS, C(I=isn-1), .
BG, ) =TT +S%, ~ (O=i=n=2),
B(i,i+1)  =SuaTia (O=i=n-2),

Bn—1,n—1)=T,_ 1T.. 1 o
B(i, ) =0 _ _ (for all other indices).
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Since, by assumption, - ' .
: S-T,~_1=T-S- ' (I=i=n-1),

S?+T7 ¥+ St O=i=n-2),
‘all the entries of NIN, — N, N} are equal to 0 except the (n—1, n—1)th, which is
equal to S2 ,+ Tk _1T —T,_1T¥ . = R, by definition. Hence the positive

definiteness of NiN,—N Nﬁ implies the positive definiteness of R,. Slmllarly all

the entries of WN, W1 are equal to 0 except the (n—1, n—1) th which is equal

to S,T,.,Si1=T, by definition and is bounded. Moreover WN,=WN,W~-1.W

implies S,7,_,=7,S,. Finally considering the operator V, with norm one, from

‘@ ?’b 1nt0 %n+1 deﬁned by V{{f03f19 . ’f;l 1} {gO’ 815+ 9gn 1}} - {f0=f17
n—-1>8n-15>

v W N, W ; N, W .

o wN,w-1) =\ o wN,w-1) 24 R =V g w1 )Y
hence by Lemma 1 N, is also subnormal with norm equal t0 [Nyl =T Thus
induction is complete.

Inspecting the above proof, from the definitions of R,, S, and T,, and of N,
and from the relations S,7,_,=T,S, (n=1,2,...), it follows.

®) CINRapl = Nl (pE$Y)

where, on the right side, ¢ is considered as an element of §+!.
Now the matrix representation of a normal extension of T is near at hand,
- using R,, S, and T, in Lemma 2.

Theorem 1. If T is subnormal, the operator N on = with the entries N(i, i) =T;
(=0), NG, i+1)=S;4, ({=0), N(i,j) =0 (for all other indices ), is a normal extension
with norm equal to | T|.

In fact, in view of Lemma 2, all P,NP, are bounded with norm equal to |7||
n=0,1, 2, ..., where each P, is the orthogonal projection from H~ onto 9", con-
sequently, as readlly seen, N itself is.bounded with norm equal to |T|, and is an
extension of T. Moreover from (8) .it follows that

IP, +1N*Pntpll =|P,NP,pll = (p€97) (n=0,1,2,...)

" INg| —llm [P, NP, ] —hm ([P N*P, pf| = “N*(PH

hence

This shows the normality of N.
Lemma 2 also produces a characterlzatlon of subnormahty in terms of R,,, S,
and T, in it.

Theorem 2. If, for an operator T, each R, is positive definite, each T, is bounded
and S,T,_,=T,S, (n=0,1,2,..), then T is "subnormal:

In fact, the operator N on 9= in Theorem 1 can be defined on the linear sum
M of all H*’s, and is an extension of T. Moreover by (8)

INgl =IN*gl  (peM).
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 Since M is dense in o=, it follows that N*Ne =NN*¢p (¢ €M), in particular N*/Nif =
=NINtIf (f€9) (5,7=0, 1,2, ...). Therefore, for every finite sequence (f}) in 9.

3 @ Ty = 3 (VN f) = 3 (NI, Nfy =) I N1 =0,

"and the-criterion (2) can be applied.

3. It [3] answered to the question when a commutative family of subnormal:
operators admits simultaneous commutative normal extensions. At this moment,
it seems, however, difficult for us to construct matrices for these simultaneous
commutative extensions along the lin¢ as that developed in § 2. Hére we shall confine
ourselves to a special case, namely, a doubly commutative family of subnormal:
operators.

Let (T,),eq be a doubly commutative family of subnormal operators, that is,
each T, commutes with both T, and T whenever w#y. Let A denote the space
of all generalrzed sequences {zw} such that all i, are non-negative integers and
> i, <<o. 0 denotes the element of A whose terms are all equal to 0. For any w €Q:
(=9}
and FEA wris the co-th term of T and ' 4+ w stands for the element A such that
wy = op+1and y, =1y for all y#w. $* is the orthogonal sum of copies of 9;
indexed by all the elements in A; the elements of 2 are the generalized sequences.
@ ={/fr} whose terms are in § with norm ke —2 Il/cl2. © is embedded in H2 by

identifying f€$ with {f;} where f,=f and f,-—O (F #0). In Theorem 3 below,
Sy and T, , correspond to S, and ‘T, respectively in Lemma 2, starting from T
mstead of T. :

Theorem 3. 4 doubly commutative family of subnormal operators (T weca
has srmultaneous commutative normal extensions (N, ),cq on O with the entries:
N, T) = Topop> No(T, T +w) = Sy 00415 NI, A) = 0 for all other indices..

Proof. Just as in Theorem 1, each N, is a normal extension of T, (0eQ).
For w#y, puttmg N,N,=A and N,N, =B, simple calculations based on the defi--
nitionsof N,’s show that

AQC.T) = T, ,.T B(I“,I“)_T T

@, or~" Y, 7r? 7,9yt w,or?

A(r,r+(0) = m,mr+1Ty e

AT, r+)’) = T,, mrSv yr+1s B(T, r'*‘)’) = 9y, erTw,wr’
A(F F+w+y) - wwr+1Sy~”-+1a B(r F+w+y) }’7[‘+1Sm or+ls

B(F7 F+w) = T‘/,‘lr'Sto,mr+19

and all other entries of A and B are equal to 0. ‘Therefore the commutatrvrty of”
N,, with N, will follows from the commutativity of the family {S,, i To, T, ;}izo With

the family {S, ;, T, ;}i=o. In order to prove the latter commutativity, we shall
show, by mduction that T,=T, , is doubly commutative with all S7 .and T, ,

n=0,1,2, ... The assertion for n =0 follows directly from the assumption. Suppose-
that the assertlon for n is proved, then T, commutes with S, ,. because as in [2],
“the latter is unlformly approximated by polynomrals of 82,4+ Ty, T, w—T, Ty s
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which commutes with T,,. This, in turn, implies the commutativity of T,, with §,;°1,,
. hence with T, ,, . Similarly T, commutes with 7}%,.,. In quite a similar way it

:is proved that the family {S, ;, T,,-;}i=o commutes with the family {S, ., T, ;}i=o.
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