On a pair of commutative contractions

By T. ANDÔ in Bloomington (Indiana, U. S. A.)

1. Introduction

Let T be a contraction on a Hilbert space \mathfrak{F}, i. e. $\|T\| \leqq 1$. A unitary (resp. isometric) operator \mathbf{U} is called a unitary (resp. isometric) dilation of T if. \mathbf{U} acts

$$
\begin{equation*}
T^{n} f=\mathbf{P U}^{n} f \quad(f \in \mathscr{S}) \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

where \mathbf{P} is the orthogonal projection from Ω onto $\sqrt{\mathrm{K}} . \operatorname{Sz} .-\mathrm{NAGY}[3,4]$ proved the existence of a unitary dilation of any contraction. In this paper we shall concern ourselves with a pair of commutative contractions and prove the following theorem.

Theorem. Let T_{1}, T_{2} be a pair of commutative contractions. Then there exists a pair of commutative unitary operators $\mathbf{U}_{1}, \mathbf{U}_{2}$ on' a Hilbert space Ω containing \mathfrak{k} as a subspace such that

$$
\begin{equation*}
T_{1}^{n_{1}} T_{2}^{n_{2}} f=\mathbf{P U}_{1}^{n_{1}} \mathbf{U}_{2}^{n_{2}} f \quad\left(f \in \mathfrak{G} ; n_{1}, n_{2}=1.2 \ldots\right) \tag{2}
\end{equation*}
$$

where \mathbf{P} is the orthogonal projection from $\mathfrak{\Omega}$ onto \mathfrak{G}.
This gives a partial answer to a problem raised by Sz.-NAGY [5] in which a finite number of commutative contractions comes into question.

The author would like to thank Professor Sz.-NAGY for his valuable suggestions.

2. Reduction of the problem

First of all, if the theorem is proved, replacing the word "unitary" by "isometric", the unitary operators in question can be readily obtained, because a pair of commutative isometries can be extended to a pair of commutative unitary operators on a larger Hilbert space by Ito's theorem [2] (see also Brehmer [1]). Secondly, if $\mathbf{U}_{1}, \mathbf{U}_{2}$

$$
\begin{equation*}
T_{i} f=\mathbf{P U}_{i} f \quad(f \in \mathfrak{W} ; i=1,2) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{U}_{i}(\mathfrak{\Re} \ominus \mathfrak{W}) \subset \mathfrak{R} \ominus \mathfrak{G} \quad(i=1,2) \tag{4}
\end{equation*}
$$

then the condition (2) is necessarily satisfied. Thus it suffices to prove the following proposition instead of the theorem.

For any pair of commutative contractions T_{1}, T_{2} there exists a pair of commutativeisometries $\mathbf{U}_{1}, \mathbf{U}_{2}$ with the properties (3) and (4).

3. Proof-

For the purpose, SCHÄFFER's construction [6] is used in the following modified form; Ω is the orthogonal sum of countably many copies of \mathfrak{E}, indexed by all nonnegative integers: the elements of $\mathfrak{\Omega}$ are the sequences $\varphi=\left\{f_{n}\right\}_{0}^{\infty}$ of elements $f_{n} \in \mathfrak{F}$. with norm $\|\varphi\|^{2}=\sum_{n=0}^{\infty}\left\|f_{n}\right\|^{2}: \mathfrak{H}$ is embedded in $\mathfrak{\Omega}$ by identifying $f \in \mathfrak{F}$ with the sequence $\left\{f_{n}\right\}$ where $f_{0}=f$ and $f_{n}=0$ for $n>0$. Then operators $V_{i}(i=1,2)$ are defined as follows: $\left\{g_{n}\right\}=\mathbf{V}_{i}\left\{f_{n}\right\}$ if and only if $g_{0}=T_{i} f_{0}, g_{1}=Z_{i} f_{0}, g_{2}=0$ and $g_{n}=f_{n-2}$ for $n>2$ where $Z_{i}=\left(I-T_{i}^{*} T_{i}\right)^{1 / 2}$. Since

$$
\begin{equation*}
\left\|Z_{i} f\right\|^{2}=\|f\|^{2}-\left\|T_{i} f\right\|^{2} \quad(f \in \mathfrak{F} ; i=1,2) \tag{5}
\end{equation*}
$$

from the definitions of $\dot{V}_{1}, \mathbf{V}_{2}$ it is readily seen that they are isometries with the properties (3) and (4) for $\mathbf{V}_{\boldsymbol{i}}$ instead of $\mathbf{U}_{\boldsymbol{i}}$. Moreover from (5) it follows that

$$
\left\|Z_{2} T_{1} f\right\|^{2}+\left\|Z_{1} f\right\|^{2}=\left\|T_{1} f\right\|^{2}-\left\|T_{2} T_{1} f\right\|^{2}+\|f\|^{2}-\left\|T_{1} f\right\|^{2}=\|f\|^{2}-\left\|T_{2} T_{1} f\right\|^{2}
$$

and similarly

$$
\left\|Z_{1} T_{2} f\right\|^{2}+\left\|Z_{2} f\right\|^{\dot{2}}=\|f\|^{2}-\left\|T_{1} T_{2} f\right\|^{2}
$$

hence the commutativity of T_{1} with T_{2} implies that

$$
\begin{equation*}
\left\|Z_{2} T_{1} f\right\|^{2}+\left\|Z_{1} f\right\|^{2}=\left\|Z_{1} T_{2} f\right\|^{2}+\left\|Z_{2} f\right\|^{2} \tag{6}
\end{equation*}
$$

Now consider the orthogonal sum $\mathcal{G S}$ of four copies of \mathfrak{F}, i. e. $\mathfrak{F s}=\mathfrak{G} \oplus \mathfrak{G} \oplus \mathfrak{5} \oplus$. $\oplus \mathscr{G}$ and let \mathfrak{M}_{1} and \mathfrak{M}_{2} be the subspace consisting of all the elements of the form

$$
\left\{Z_{2} T_{1} f, 0, Z_{1} f, 0\right\} \quad(f \in \mathfrak{G})
$$

and

$$
\left\{Z_{1} T_{2} f, 0, Z_{2} f, 0\right\} . \quad(f \in \mathfrak{G})
$$

respectively. From the relation (6) it follows that there exists an isometry W with domain \mathfrak{M}_{2} and range \mathfrak{M}_{1} wich assigns $\left\{Z_{1} T_{2} f, 0, Z_{2} f, 0\right\}$ to $\left\{Z_{2} T_{1} f, 0, Z_{1} f, 0\right\}$ $(f \in \mathfrak{H})$. If $\operatorname{dim}\left(\mathbb{S} \ominus \mathfrak{M}_{2}\right)=\operatorname{dim}\left(\mathbb{S} \ominus \mathfrak{M}_{1}\right), W$ can be extended to a unitary operator on (A). This restriction on dimensions is actually guaranteed; in fact, in case \mathfrak{F} is finite dimensional, it follows from the fact $\operatorname{dim}\left(\mathfrak{M}_{1}\right)=\operatorname{dim}\left(\mathfrak{M}_{2}\right)$, and in the contrary case, $\operatorname{dim}(\mathfrak{y})=\operatorname{dim}(\mathfrak{S}) \geqq \operatorname{dim}\left(\mathfrak{S} \ominus \mathfrak{M}_{i}\right) \geqq \operatorname{dim}(\mathfrak{G})(i=1,2)$, because each $\mathscr{S N} \ominus_{M_{i}}$ contains the subspace, isomorphic to \mathfrak{y}, consisting of all the elements of the form. $\{0, f, 0,0\}(f \in \mathfrak{H})$. The unitary operator obtained is denoted by the same symbol W..

Now $\overparen{\Omega}$ can be identified with the. orthogonal sum

$$
\mathfrak{G} \oplus \cdot \sum_{n=1}^{\infty} \oplus \mathfrak{S}_{n}
$$

where each \mathscr{S}_{n} is a copy of \mathbb{H}, under the correspondence

$$
\left\{f_{0}, f_{1}, f_{2}, \ldots, f_{n}, \ldots\right\} \leftrightarrow\left\{f_{0},\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}, \ldots,\left\{f_{4 n-3}, f_{4 n-2}, f_{4 n-1}, f_{4 n}\right\}, \ldots\right\}
$$

In the sequel; this identification will always be in mind.
Let \mathbf{W} be the operator on $\dot{\Omega}$ defined as follows: $\left\{g_{n}\right\}=\mathbf{W}\left\{f_{n}\right\}$ if and only if $g_{0}=f_{0} \quad$ and $\quad\left\{g_{4 n-3}, g_{4 n-2}, g_{4 n-1}, g_{4 n}\right\}=W\left\{f_{4 n-3}, f_{4 n-2}, f_{4 n-1}, f_{4 n}\right\} \quad(n>0)$. Then the unitarity of \mathbf{W} follows from the unitarity of W on G, and both \mathbf{W} and \mathbf{W}^{*} have the property (4). Finally the isometries $\mathbf{U}_{1}, \mathbf{U}_{2}$ in question are defined by

$$
\begin{equation*}
\dot{\mathbf{U}}_{1}=\mathbf{W} \mathbf{V}_{1} \text { and } \mathbf{U}_{2}=\mathbf{V}_{2} \mathbf{W}^{*} \tag{7}
\end{equation*}
$$

Since all $\mathbf{W}, \mathbf{W}^{*}, \mathbf{V}_{1}$ and \mathbf{V}_{2} are isometries with the property (4), $\mathbf{U}_{1}, \mathbf{U}_{2}$ are isometries with the property (4). Obviously each U_{i} has the property (3). It remains only to prove the commutativity of \mathbf{U}_{1} with \mathbf{U}_{2}. For any $\left\{f_{n}\right\} \in \mathscr{\Omega}$ putting
and

$$
\begin{gathered}
\left\{g_{n}\right\} \equiv \mathbf{U}_{1} \mathbf{U}_{2}\left\{f_{n}\right\} \equiv \mathbf{W} \mathbf{V}_{1} \mathbf{V}_{2} \mathbf{W}^{*}\left\{f_{n}\right\} \\
\left\{h_{n}\right\} \equiv \mathbf{U}_{2} \mathbf{U}_{1}\left\{f_{n}\right\}=\mathbf{V}_{2} \mathbf{W} * \mathbf{W} \mathbf{V}_{1}\left\{f_{n}\right\}=\mathbf{V}_{2} \mathbf{V}_{1}\left\{f_{n}\right\}
\end{gathered}
$$

-simple calculations using the definitions of \mathbf{W} and \mathbf{U}_{i} 's show that

$$
\begin{gathered}
g_{0}=T_{1} T_{2} f_{0} \\
\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}=W\left\{Z_{1} T_{2} f_{0}, 0, Z_{2} f_{0}, 0\right\} \\
g_{n}=f_{n-4} \quad(n>4)
\end{gathered}
$$

:and

$$
\begin{gathered}
h_{0}=T_{2} T_{1} f_{0} \\
\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}=\left\{Z_{2} T_{1} f_{0}, 0, Z_{1} f_{0}, 0\right\} \\
h_{n}=f_{n-4} \quad(n>4)
\end{gathered}
$$

Since $T_{1} T_{2}=T_{2} T_{1}$ and

$$
W\left\{Z_{1} T_{2} f_{0}, 0, Z_{2} f_{0}, 0\right\}=\left\{Z_{2} T_{1} f_{0}, 0, Z_{1} f_{0}, 0\right\}
$$

by the definition of W, it follows that $\mathbf{U}_{1} \mathbf{U}_{2}\left\{f_{n}\right\}=\mathbf{U}_{2} \mathbf{U}_{1}\left\{f_{n}\right\}$. Thus \mathbf{U}_{1} commutes with \mathbf{U}_{2}.

References

[1] S. Brehmer, Uber vertauschbare Kontraktionen des Hilbertschen Raumes, Acta Sci. Math., 22 (1961), 106-111.
'[2] T. Itô, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ., Ser. I, 14 (1958), 1-15.
[3] B. Sz.-Nagy, Sur les contractions de l'espace de Hilbert, Acta Sci. Math., 15 (1953), 87-92.
'[4] B. Sz.-Nagy, Prolongements des transformations de l'espace de Hilbert qui sortent de cet espace, Appendice au livre „,Leçons d'analyse fonctionnelle" par F. Riesz et B. Sz.-Nagy (Budapest, 1955).
'[5] B. Sz.-NaGy, Einige Probleme im Zusammenhang mit Operatoren im Hilbertraum, Abstracts of the Second Hungarian Mathematical Congress (Budapest, 1960).
[16] J. J. SChäffer, On unitary dilations of contractions, Proc. Amer. Math. Soc., 6 (1955), 322.

