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CHAPTER I 

PARTIAL ABSTRACT ALGEBRAS 

§ 1. Some notions and notations 

Set theoretical join and meet of the sets A, B will be designated by A v B, A A B 
and by VAa) A A„, if a runs over an index set. A \B stands for the set theoretical 
di f fe rence if AQB, i.e. Bv(A\B) = A, BA(A\B) = 0 ( the vo id set). 

Let a set A be given. A partial operation f on A is a function which maps a part 
of AX AX... XA (n times) into A. The domain of / will be denoted by D(f,A) 
(<gAxAx...XA).ii D(f,A) — AX Ax •••X A, t hen / i s an operation. If D(f,A)=0 
then / is called trivial. 

A partial abstract algebra (briefly: partial qlgebra) is a set A and a set P(A) 
of partial operations defined on A. Let P*(A) denote the set of all non trivial opera-
tions of A. We say that the partial algebra B is the homomorphic image of the partial 
algebra A, if there is a many-one mapping r\ of A. onto B and a one-to-one corres-
pondence / -+g between P*(A) and P*(B) such that the usual property 

nf(a a2, ..., a„) = g(tiax, r\a2, ..., j?«„) (a1} a2, ..., an)£D(f, A) 
holds true. It is an isomorphism if rj is one-to-one. We should like to point out that 
in the definition of homomorphism and isomorphism the trivial operations are 
dispensed with. Endomorphisms and. automorphisms are defined as usual. 

According to the definition of homomorphism, an equivalence relation © of A. 
is called a congruence relation if («! , . . . ,«„) , (blt ..., Z>„) £ D ( / , A), ai=bi(&) 
(/ = 1,2, . . . ,«) , feP(A) imply / ( « ! , . . . , « „ ) =/(&!, ,)(©). Under the usual 
partial ordering the congruence relations of A form a complete lattice ©(A) called 
the congruence lattice of A. 

T h e o r e m I. If A is a partial algebra, then ©(A) is a compactly generated 
lattice3). 

P r o o f . The proof of the similar assertion for algebras uses the well known 
description of the complete join in © (A). Although this fails to be true in case of 
partial algebras, the following weaker analogue is true: if x=y(V©^) (x,y£A) 

V ©«•)• Using 

this weaker assertion one can prove that the congruence relation © is compact 
n 

if and only if it is of the form V ©«¡¡x, where ®al, (a, b£A) denotes the least congru-
>=i 

ence relation under wich a = b. From this the assertion of the theorem follows 
as usual. 

Let A be a partial algebra and H a subset of A and P a subset of P(A). I f / i s a 
partial operation of A beloging to P then it may be also considered as a partial 
operat ion 4 ) of FI\ (ht, ..., h„) (h^H) is in the domain of / i f (hi, ..., h,)£D(f, A) 

3) The notion of compaoily generated lattice is defined in § 1 of this Introduction. 
4) There is no danger of confusion, therefore we do not introduce notation for the restricted 

operation.. , 

then there exists a finite subset {©J of the {©A} such that x =y 
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and f{hit ...,h„)£H. With this definition FI is a partial algebra and P=P(H 
QP(A). In this case A will be called an extension of FI. (Or we may say that H is a 
restriction of A.) Using this construction of partial algebras one says that a generating 
systems of an algebra may always be considered as a partial algebra. The converse 
of this statement is thé 

T h e o r e m 2. Every partial algebra may be extended to an algebra. 

P r o o f . The assertion is trivial: if A is a partial algebra then let D = {A,p} 
where p is a new element and if f£P(A) and (w1; ..., u„)({ D(/, A) (u1}..., u„Ç.B) 
then define f(ut, ..,, u„)=p. Obviously, B is an algebra and it is an extension of A. 

§ 2. Free algebras 

In the proof of Theorem 2 the least extension of a partial algebra to an algebra 
has been constructed. Nevertheless, this construction fails to have the property 
.that every congruence relation of the partial algebra may be extended to the algebra, 
which is a very important property in this paper. Therefore we confine now our 
attention to the construction of an extension having this additional property. 

It is much» simpler to perform this construction if on tlie'partial algebra only 
partial operations of one variable are defined. Since in this and in the next chapter 
only such partial algebras are dealt with we suppose that this is the case. 

Let S be a partial algebra such that P(S) consists of partial operations of one 
variable. In this case if ( p £ P ( S ) then D(cp, S)QS. Further, let cp(H), HQD(tp, S) 
denote the set of all 9 o ( x ) , x £ H . If 90, r// £P(S) we put cpij/(x) = cp(i//(x)). Similarly, 
we use the notation cpi...(p„(x) (9^, ..., cp„£P(S)>x^S). 

We fix a cp£P(S) and to every x£S\D(cp, S) we define a new element x, 
such that S and x?±y, x,y£S\D(95, S) imply x?±y. The set formed by S and 
all the x is denoted by «S[r/>]. We define partial operations on S[<p]: 

1. Let every partial operation 1¡/ of S different from (p be a partial operation 
of £[95] with an unchanged domain: D(1//, S) = D(1//, £[?>]); 

2. 99 is a ,part ial operation of S[(p]; on D(cp, S) it is defined as it was; if 
xeS\D(cpt S) then tp(x)=x; tp(x) is defined for no x€^[95]\S. 

£[99] with the partial operations defined under 1 and 2 is a partial algebra; 
it is an extension of S. The element x (xd S\.D(cp, S)) will be denoted by fp(x). 

To every cp£P(S) we construct £[99] such that if 9 t h e n £[</;] A iS'fi//] = S. 
We define S j as the join of the S[(p]: 

S, = V (S[<p];<p£P(S)). 

Si as the set theoretical join of partial algebras is itself a partial algebra. We 
may write also P(S) = P(Sl), for every partial operation of »Ŝ  is the extension of 
a partial operation of S. Thus Sx is an extension of S. In a similar way we define 

= V ( £ i M ; <pzp(S)), ..., sn = V O V i M ; <pdP(s)). 

The partial algebras S±, S2, ... form an ascending chain, all of them are extensions 
of S, indeed, S„ is an extension of Sn„ t; thus their join S is also a partial algebra 
and it is also an extension of S, and P(S) = P(S). 
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T h e o r e m 3. S as constructed above is an algebra, and S is generated by S. 
The algebra S is free in the following sense: if the algebra S* is generated by the 
partial algebra S', P(S") =P(S'*) and x ->x' is an isomorphism between S and S' 
then x->xf may be extended to a homomorphism of S onto S*. 

P r o o f : trivial. 

§ 3. Extension of congruence relations 

Let the partial algebra B be an extension of the partial algebra A. We say that 
the congruence relation c]> of B is the extension of the congruence relation © of A. 
if x = j ( © ) and x=j>(<D) are equivalent whenever x,y£A. If © has an extension, 
then it has, obviously, a least extension, which will be denoted by ©. 

T h e o r e m 4. Every congruence relation of S may be extended to Sfq?]. 

S u p p l e m e n t . If © (i ©(5*) and © is the least extension of © to £[</>] then © 
may be described as follows: u =v(&) (u, v 6 £[<7?]) if and only if one of the following 
conditions hold: 

I. u,v£S and I / 5 D ( 0 ) ; 
II. u, v£S[(p]\S, i.e. u — (p(x), v = cp(y), where x,y£S\D((p, S) and either 

1. x = j(©) or 2. there exist a = y(x0), b = cp(y0) € S such that x =x0(&), y =y0(&), 
a=b(&); 

III. udS,v£S[cp]\S (or symmetrically, interchanging u and v), i. e. v = (p(y), 
y £ S\D(<p, S) and there exists an a = (p(y0)£S,for which u=a(&) and y SJJ0(®). 

Fig. 1 helps to visualize case I III. 
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In Fig. 1 a broken line connecting two elements means that the two elements, 
are congruent modulo ©. 

P r o o f . Let ©[95] be the relation defined by I—III of Supplement to Theorem 4. 
It is enough to prove that it is a congruence relation, for the relation ©[99] = © is 
then obvious. 

Owing to I and II/l we get that ©[99] is reflexive and, by the symetry of I—III in 
u and v, it is also symmetric. The substitution property may be proved as follows: 
Let 1l/eP{S[<p]) = P(S), xs j (©[r / )]) and x, S[(p]). We distinguish two-
cases : 

(1) 99^1/r. Then x,y£D(\j/, £[99]) = D(\l/, S) and by I we get X 5 ^ ( 0 ) and so-
= F (Y) (©), and again by I ^ (x) = 1¡J O)(@[95]). 
(2) 95 = 1̂ . Then necessarily x, y £ S . We want to prove 95 (x) = 95 (^(©[99]); 

this follows from I if x,y£D(cp, S), f rom III with a = 99(x) if x £D(95, £*), y (J D(95, S)• 
(and in the symmetrical case), from II / l if x,y$D(cp, S). 

It remains to prove that ©[95] is transitive. 
Let u=v(&[cp]), dsw(@[?)]); we have to prove u = w(&[99]). We will distinguish. 

8 cases. 
(a) u,v, w £ S. In this case M = ii'(©[f/;]) is clear owing to I and the transitivity 

of ©. 
OS) u,veS; w£S[cp]\S; i .e . w = cp(x), x£S. By I u=v(&); f rom III we 

conclude the existence of an a= cp(x0)£S satisfying v = a(G), x 0 = x ( © ) . Thus-
u = a(0) and x 0 = x ( © ) , a=(p(x0)£S, i .e . by III we get u = w(&[95]). 

( f i ' ) v, w(iS; u£S[cp]\S. The proof is the same as under (/?). 
(y) u, w£S;v£S[(p]\S; i .e . v = cp(x), x£S. By III m =^>(©[93]) means the 

existence of an a = cp(x0)£S such that u = a(&), x0=x(@). Similarly, there exists 
a b = v(y0)eS with w=Z>(©), j 0 = x ( © ) . Thus x 0 = j 0 ( © ) , i- e. a = cp(x0) = cp(y0) = 
= ¿ ( 0 ) ; consequently, u = a(&), a = b(@), b = w(&), so u = w(©), and by I we get 
M = W(©[9>]). 

(<5) u£S;v,w£S[(p]\S; i .e . v = cp(x), w = cp(y). Owing to III we get that 
with suitable a = cp (x0) 6 S the congruences u = a (©), x0 = x (©) hold. The congruence 
u = w(©[99]) means that either 

1. x =>>(©), or that 
2. there exist a' = <p(xo) and b = cp(y0) such that x'0 =x(&), y0 =y(&), and 

a' =b(&). ' , 
In the first case x0=y(&) and a = cp (x0) = cp (j;) = w(© [99]). But u=a(&). Thus 

owing to III we get u = w(&[cp]). 
In the second case x0 sx6(©), thus a = cp(x0) = cp(x'Q) = a' (©) implying a = b(&) 

and so u = b(&). But y0 =y(&), resulting — by III — ti = w(©[r/;]). 
(¿0 w 6 S; u, v 6 £[99] \ S. The proof is the same as under (<5). 

. (e) v£S;u,w£S[cp]\S; thus u = cp(x),w = cp(y). 
Owing to III we get the existence of a = 9'(x0), b = cp(y0) £ S such that v = a(®), 

x 0 = x ( © ) , v=b(©) and y0 =y(@). We get from these a = b(&), and thus owing 
to II/2 we get w = w(©|>]). 

(99) u, v, S t ^ X S , thus u = cp (x), v = cp(y), w = <p(z). Let a- cp (x0), b = cp(y0)f 
c — cp(z0), d=cp(v0) be suitable elements of S. means either 

a/1 x=y{&), 
or a/2 x=x 0 (@), a=Z>(©), j 0 =K©)-
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D E w f ® ^ ] ) is equivalent to either 
b/1 y=z( ©) 

01- b/2 y =z o (0 ) , c =(/(©), =z(@). 
If a/1 and b/1 hold then * s z ( ® ) , thus - by IT/1 - u = w(®[<p\) holds. 
Tf a/1 and b/2 hold then x=z0(@), thus II implies = vf(©[</>]). The case when 

a/2 and b/1 hold is similar. 
If a/2 and b/2 hold then a=b(@), y0=y(e),y=i<>(©), c = d(@), i. e. a=d(&), 

thus u = w(®[(p]). The proof of Theorem 4 is finished. 
Based 011 Theorem 4 we prove 

T h e o r e m 5. Let S be a partial algebra and S be the free algebra generated 
by S (as defined in § 2). Every congruence relation of S may be extended to S. 

Before proving this theorem, we need 

L e m m a 1. Let be given a partial algebra S and a set of partial algebras {£„}, 
for which 

1. Sa is an extension of S, (P(S) = P(Sa)); 
2. SttASp = S i f a ^ p ; 
3. x£Sa, (p£P(S), (p{x)£Sp and a^fS imply <p(x) £ S; 
4. every congruence relation of © may be extended to every S„. 
Then S* = V Sa is a partial algebra containing S, S* is an extension of S, and 

every congruence relation of S may be extended to S*. 

P r o o f . Only the last assertion calls for proof. Let ©a be the extension of © 
to Sa. We define the relation <I>: 

I. x = j (O) , x,y£Sa is equivalent to x=y(&a); 
II. x=j>(<I>), xksa, y£Sp, a?if3 if and only if with a suitable a<ES we have 

x=a(&„), a =y(&p). 
It is routine to check that $ is a congruence relation and, obviously, it is an 

extension of © to S*. 
Now we prove Theorem 5. Let © Theorem 4 guarantees the extenda-

bility of © to the ,S'[<pa], (pa£P(S). The set of the S'O/vl satisfies the hypotheses of 
Lemma 1, thus © may be extended to iŜ  (which is the S* of Lemma 1). In a similar 
way we get that © may be extended to S2, S3, ... and hence to S, finishing the 
proof of Theorem 5. 

CHAPTER H 

COMPACTLY GENERATED LATTICES AS CONGRUENCE LATTICES 

§ 1. Preliminary constructions 

Our principal aim in this chapter is to prove Theorem I (Theorem 10). This 
will be done in § 3 while in §§ 1 and 2 some preparations are made. 

Let Sbe a partial algebra, <pi(x), cp2(x), cp3(x)^P(S),D((p1, S) = {a},D(cp2, S) = 
= 0, D (cp3, 5) = {b}, a, b £ S and cp^d) = c, cp3(b) = d, c, d£ S. In the partial algebra 
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3 

V w e identify (pt(b) with cp2(b) and tp2(d) with <p3(a) getting the partial algebra 
1=1 
T' (see Fig. 2). 

Fig. 2 

T' is an extension of S but it is not necessarily true that every congruence 
relation of S may be extended to T'. Call a congruence relation 0 of S admissible 
if it satisfies one of the following conditions: 

Ay.a^bi©)-

A2:a=b(®) and c = d(@). 

Roughly speaking, 0 is admissible if a=b(&) implies c = d(0). 
Now suppose that © may be extended to T' and let © be an extensions of ©. 

I f a = Z>(0) then a = b(&) and c = cp^a) = cp^b)(©), cp2(a) = cp2(b){&), <p3(a) = q>3(b) = 
= i/(0), thus the assumptions <Pi(b) — cp2(b) and <p2(a) = (p3(a) imply that c=d(&), 
consequently c = rf(@). 

This proves that if a congruence relation is extensible then it is admissible. 
This and the converse of this statement is contained in 

T h e o r e m 6. The congruence relation © of S is admissible if and only if it may 
be extended to T'. 

P r o o f . We have to prove the „only i f" part of the theorem. Suppose that 
, © is admissible and define a relation ©* of T' as follows: let u=v(&*) mean for 
u, v(i S that u (©) and for u,v£(pt(S)(cpt(S) denotes the set of all <pt(x), x <E S) that 
u = (pi(x),v'= cpi(y),x,y£ »Sandxsy (©), otlierwiseletu^.v(&*). Then 0 * is a symmet-
ric and reflexive "relation having the substitution property. Let © denote the transitive 
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extension of ©*. The relation © is trivially a congruence relation of T'. We prove 
that on S and on the 'pt(S) the relations © and 0 * coincide. It is enough to prove 
this for S, a similar reasoning applies then to <pi(S). Per definitionem u=«(©), 
u,v£S if and only if there exists a sequence u=x0, xt, x„ —v of elements of 
7" such that Xt-t =*,(©*) (/ = 1,2, . . . ,«) . If all the xt£S then u=v(&), thus 
u=v(®*) is obvious. S and a cpi(S) ((pt(S) and a <Pj(S), i-Aj) have at most one 
element in common. This if we impose the natural condition on the sequence 
x0,..., x„ that no element may occur more than once, then we see that the sequence 
must contain elements from all the 'pi(S). It is easy to see that such a sequence may 
be substituted by the following simpler one: u = x0, xt = c, x2 = <Pi(b), x3 = <p2(d), 
X4 = d, xs=v (or interchanging u with v). x 1 = x 2 ( © * ) implies a=b(&), and by 
A2 we get c = c/(@); thus u=v(&) and u=v(©*), proving that © and ©* are equi-
valent on S, finishing the proof of this theorem. We proved a little more than re-
quired; we have exhibited at the same time a well-described extension of an admis-
sible congruence relation. 

H: * 

Now let S be a partial algebra; the operations of S will be .denoted by OJV(X) 
(vgi^i) and the partial operations by cpf(x) (ji££l2,i—l, 2,3); we suppose that 
D(cp>',S) = {a"}, D(cp>i,S)=0, DM,S) = {b»} and <P'}(a") = c", <p№) = d» 
(a", b", c", d"£S). To each fi the cp1} are of the type described at the beginning of 
the section, thus the corresponding T' — which now will be denoted by Tfl — 
may be constructed. We also suppose that n^p i ' implies T/t C\Ttl, = S. Further, 
let and T the free algebra generated by T. 

The congruence relation © of S is called admissible if it is admissible for any 
fixed iu££22 0- e. if f ° r 2 the congruence a1 '=b f l(©) holds, then c"=(/"(©)). 

Let © £ © ( £ ) ; then there exists a unique admissible congruence relation ©' 
which is ininimal with respect to ©' s ©. Indeed, let denote the set of those 
fi£Q,2 for which a"=b''(&), and define © t =©UV(©c , . , i , . ; ¿i ^ is de-
fined, set ©„ = (©„-1)1 and © ' = V ©«• Obviously, ©' is admissible and the n=i 
least admissible congruence relation =£©. 

A central result of this paper is 

T h e o r e m 7. The congruence relation © of S may\ be extended to T if and only 
if it is admissible. To every pair u, v of elements of T, there exists a uniquely deter-
mined least admissible congruence relation © such that under © (the minimal exten-
sion of © to T) u and v are congruent. 

The first assertion of the theorem is obvious from Theorems 5 and 6 and Lemma 
1. The second assertion is rather involved; as a preparation we will prove Lemmas 
2 and 3. 

L e m m a 2. Let S and T' be as in Theorem 6. Then to every u,v£T' there exists 
a least admissible © 6 © (S) such that u=v(&). 

P r o o f . If u,v£S and a^b(@,w) (resp. a=b(©„„)), then ©„„ (resp.*©„„U©e(i) 
is the least admissible congruence relation. © may be found similarly if u,v^(Pi(S). 
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If u and v are not both in S or in 9ot(S) then it is not simple to find ©. We will show 
how to construct © in a typical case, the complete discussion will be left to the 
reader. 

Let ueS, v£(p?(S); i. e. v = <p2(x), x£S. We state © = @axU 0,,xU 0„ cIJ @c(,. 
This © is admissible for a = b(&) and c=d(&). Further, u = <:/(©), b = a(&), 
a = x(&), so u = d(&), q>3 (b) = (-/)3 (a) = rp2(a) (©), cp2(a) = (p2(x) (©); consequ-
ently u=v = q)2(x)(&). Finally, we have to prove that if <I> € 0(5') , O is admissible, 
and u=v(iD), then Indeed, u=v(iD) (by the proof of Theorem 6) implies 
that either 

1. M=rf(®*), d=q>3(b) = <p3(a) = q>2(a)(0*), <p2(d) = 9>2(*)(®*) 
or 

2. w = c(®*), c = <p1(a) = <p1(b) = <P2(b)(p*), 92(b) = Vz(x)(®*), 
where is the relation defined in the proof of Theorem 6. 

Let us consider the first possibility. By the definition of we get from the 
relations of 1 the congruences u = d(Q>), b=a(<b), a=x($). Consequently, @„(,U 
IJ ©ifl U ®ax S ci). Thus a s 5 ( $ ) ; hence by A2 we get c = d(<I>), i. e. @„,3<I>. So 
© 1 ( ; ,U© f l 6U©„ xU© c ; ,^$. But © = ©,,(( U ©fl6 U © „ U ©cd is obvious, thus in the 
first case © S $ is proved. The second case may be proved in the same way, thus 
the proof is finished. 

L e m m a 3. Let S and T be as in Theorem 7. Then to every u,v£T there exists 
a least admissible congruence relation © £ ©(5') such that u=v(&). 

P r o o f . Let u, v£ T=\jTfl,-it is enough to consider the case u 6 Tlt\S, v £ TV\S, 
pi -/-v, for the other cases were treated in Lemma 2. 

There are nine cases to be distinguished; from these we pick out a typical one, 
the others may be treated similarly. 

Let u£(p%(St)\S and v£<pl(S), i. e. u = cp%(x), v = cpv
2(y), x,y£S. Let ® 

be admissible such that u=v(<S>). Then one of the following conditions 1—4 holds; 

1. u = ç>3(x)=rp§(b>>) = d'1 ($*), d*5C" = cp\(av)($*), 

cp\(a») = cp\(Z>v)($*), Cpi(pv) = (¿») = q>l(y)=v(<É*) 

from which we get 

©! = ®xb„ u e^v u ©„v6v u ©6v, s 
2. u — (p3 (x) = (№) = J"($*), d" = dv = (pv

3 (bv) ($*), 

9>5 (¿>v) = yl ( f l v)($*) , <pv3 («v) = <Pl ( O = <Pi (y) = e ( ® * ) 

from which we get 

© 2 = © x b t l U ©;ifli,v U ©6v„v U ©„V, = 

3.-4. u = rt(x) = < f t M = rt(ar)(9*), ^ ( f l " ) -
= cp2 (bf0(®*),- (b,d = (pi (Z>") = (pi (a") = c" (® *), 

further in case 3 c" = cv ($*), cv = (av) = cpv (Z>v) = 9^ (6V) (® *), 9^ (Z>v) s (y) = 
= «(®*) and in case 4 c"=c/v(<£*), dv = q>v

3(.bv) = (pv
3(av) = (pv

2(av)(®*), 9 ^ « ) = 



-46 G. Grftlzor-E. T. Schmidt 

= «(<!>*), and so wc get respectively 

©3 = ©,„». U ©„,.„,. U 0c„cv U ®„vbv U e„vy ss <[>, 

© 4 = ©*„,. U ©„,.,„. U ©c„,,v U ®6v„„ U ©(lvj, S <T>. 

Wc prove that © = ©i (the notation was introduced before Theorem 7). It is enough 
to show that ©i =§©£ for i = 2, 3,4. But (<!>')' = <I>' holds for every <I> £©(/!), thus 
it is enough to prove © ^ © J (¿ = 2,3,4). 

The case i—2 is trivial because of ©i = ©2. (This follows from the special 
choice of u and v.) Now we prove © t S ©3 as follows: obviously 

® «6» — ®*ai' U ©(,,.„» , 

further ©(,„cv S (©,,„„„ U ©c,„v U ©flv6v)'; 

thus the relation 
© ! ^ © 3 

is obvious. The last relation © t S ©4 may be proved similarly finishing the proof 
of Lemma 3. 

Now we are going to prove Theorem 7. Let u,v£T, u=yi...y„(x),v=81...8m(y), 
yt, 8tdP(S), x$D(y„, S), y$D(Sm, S). Now we use the assumption that all the 
partial operations of S are either operations (the cov(x), v ££2^ or of the special 
type f'l- It follows that y„ and <5,„ are of type (pf. 

Let T1' denote the set of all elements of T which may be represented in the 
form 

yi-y„(x), n^p, x£S, x$D(y„,S), yu ...,y„£P(S). 

Then S=T°^T1--=T^T2... 

and T= U T\ 
We suppose u,v£Tp and prove our assertions by induction on p. 

The case p — 1 was settled in Lemmas 2 and 3. Let us suppose that we have 
proved the assertion for all k<p. The set T p \ T1''1 is the join of sets of the form 

¡=1 

(a depending on , ... ¡i and i). If both u andi; are in Tp~l then the assertion 
follows from the induction hypothesis. So we may suppose that u $ T p - 1 , thus 
u £ H a for some a. 

Now we may repeat the chain of thoughts of Lemmas 2 and 3; the role of 
S is taken by Tp~x, that of Tv by Ha. The only difference is that for S the assertion 
was trivial; now, for T?- 1 it is the induction hypothesis. This is essential when 
we are looking for the least admissible congruence relation, under whose extension 
e. g. c" and dv are congruent. 
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§ 2. Compactly generated lattices 

Before proving Theorem I we need two easy theorems on compactly gener-
ated lattices the first of which is probably well-known while the second is due 
t o NACHB.IN. 

T h e o r e m 8. Let L be a compactly generated lattice and H a complete sublat-
tice of L. Then H is also compactly generated. 

P r o o f . A principal ideal of a compactly generated lattice is obviously com-
pactly generated. Thus we may suppose that the unit element of H is the unit ele-
ment of L. Now let u be an arbitrary element of L, and define a(u) as the meet of 
all h£H with h feu, 

a(u) = /\(h;h£H,he='u). 

H is a complete sublattice, thus a(u)£H; in fact a(u) is the least element of H which 
is SM. It is routine to check that if u is compact in L then a(u) is compact in H. 
From this the' assertion follows easily. 

Let F be a semilattice with 0, i. e. let be defined on F a binary operation U, which 
is idempotent, commutative and associative, further, x U O =x for all x£F. A sub-
set I of F is called an ideal, if it is non-void and xUy£I(x, y £F) if and only if 
x and y£F. A natural partial ordering of F is: if and only if x U y = y\ then 
xUy is the least upper bound of x and y. Now, I is an ideal if and only if 1. x, y 
imply xUj>£ / ; 2. x£l, y£F, y^x imply y g/, The set 1(F) of all ideals of inform 
a complete lattice if the partial ordering is the set-inclusion. 

T h e o r e m 9. (NACHBIN [10].) A lattice L is compactly generated if and only 
if L is isomorphic to the lattice of all ideals of a semilattice F with O. In fact, if L 
is compactly generated then F is isomorphic to the semilattice of all compact ele-
ments of L. Further, the compact elements of 1(F) are the principal ideals. 

A sketch of the proof Let L be the compactly generated lattice and F the se-
milattice with zero of the compact elements of L. First, one has to prove that F is 
really a semilattice, i. e. the join of two compact elements is again compact. Then 
take an a£L and define I„ as the set of all x£F with x S a . The correspondence 
a ->-/„ is ail isomorphism between L and 1(F). The only non-trivial step is to prove 
that if I is an ideal of F and a = \/(x; x£l), where the complete join' is in L, then 
/ „ = / . Indeed, if y£l„, then yS\j(x; x£l). Thus by the compactness of y \ve get 
the existence of a finite subset I ' of I such that y ^ \ / ( x ; xd l ' ) , i. e. y£ L We proved 
I a Q I while IQI„ is trivial, thus I = I „ as required. 

§ 3. A characterization theorem 

Now we are ready to prove Theorem I. 

T h e o r e m 10 .A lattice L is compactly generated if and only if there exists 
an abstract algebra A such that L is isomorphic to 0(A). 

P r o o f . It is known that ©(A) is compactly „generated (e. g. it follows easily 
from Theorem 8). 
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Now suppose that L is a compactly generated lattice with more than 2 ele-
ments. Then there exists a scmilattice F such that L is isomorphic to 1(F). By using 
this fact, we construct first a partial algebra B with © (B) si L. 

The elements of B arc the finite subsets of l''\{0}. The void set is also an 
• element of B if we identify it with the element 0 of F. Therefore, it will be denoted 
by O. We define operations and partial operations on B (V and A denote the set 
theoretical union and intersection, i. e. the operations of B; U denotes the only 
operation of F): 

1. to every u £ B let be assigned two operations 

(p„(x) = iNx and i//„(x) = u/\x, 

2. to any a,b,cZB with c^aXJb let a partial operation oc„bc(x) be defined, 
whose domain is 0 and {a,b} \ let a„/)C(0) =0 , a„bc({a, £}) = {c}. 

We assert that ©(B)ml(F). First observe that B is a generalized Boolean 
.algebra endowed with the partial operations aabc (x); in fact, the join and meet 
operation of B was given in such a way that one variable was fixed. Thus every 
congruence relation © is completely determined by /(©) = {x; x = ()(©)}. Every 
element of B is a finite join of atoms, thus /(©) is completely determined by /{©}, 
the set of atoms contained in /(©). The elements of /{©} are of the form {a}, where 

. a <iF. Let /{©} denote a subset of F consisting of 0 and of all a for which {a} € 
€/{©}. ' 

We prove that © -»/{©} is an isomorphism between © (B) and / (F) . 
First we prove that /{©} is an ideal of F. If a, bfj{&\ then {a} and {b} £/{©}, 

thus {a, b} €/(©). But applying aUb we get aub({a, 6}) = aBji)j 8U6(0)(©), i. e. 
{aUZ>}£/(©) and so aUZ>£?{©}. On the other hand, if then {«}£ 
£/{©}; thus {a} s O (©) and then am c({a})=aa a c(0) (©) i. e. {c} = 0 ( 0 ) and we 
reached c <$/{©}, as required. 

. Now let I £ 1(F), we prove that there exists a © <E © (B) such that / = / { © } . 
On defining © it is enough to give a criteria for an element x of B to be congruent 
to 0. This is the following: let x = 0 (©) if and only if x = 0 or x is the join of atoms 
{a} such that It is routine to check that © is a congruence relation and 
/{©} =/. 

Thus ©-*-/{©} is a one-to-one order preserving correspondence between 
•®(B) and 1(F), so this is an isomorphism. 

To make possible the application of the results developed so far we change 
B to B'. This new partial algebra B' is essentially the same as B only every oper-
ation a{lhc(x) is replaced by three operations: a},hc(x) (i= 1,2,3). Let 

D(ai„c, B') = {{a, Z>}}, D(a2„ic, B') = 0, D(a3
abc, B/) = {0}, 

a n d albc({a, ¿>}) = { c } , a L ( 0 ) = 0 . 

Obviously, B' has more congruence relations than B had, but using the notion 
of admissible congruence relations, as defined before Theorem 7, we see that a 
congruence relation © of B' is a congruence relation of B if and only if it is admis-
sible. 

Now we apply the construction of Theorem 7 (we may do so, for every partial 
-operation of B' is either an operation, or one of the type i = 1, 2, 3, 
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here is the set of all triples a, b, c of F, for which c g a U b ) , leading to an al-
gebra Bi (which was T in Theorem 7). Now, according to Theorem 7, every ad-
missible congruence relation © of B' may be extended to a congruence relation 
© of B1 ; further, to every pair u, v of elements of B1, there exists a smallest admis-
sible congruence relation ©, such that w=u(©). Denoting by O' the smallest ad-
missible congruence relation it is obvious that © = ©^(HjU)0 with a suitable 
a(u, v)£B'. But ©',(„,„) 0 = ©no„i,)o (this is perhaps the most important property 
of B' !) thus we can associate with © an element a(u, v) of B'. If we require that 
a (u, v) be an atom, then it is uniquely determined. 

Now we define for every u,v£B, three partial operations a'uv(x), such that 

D{al,Bi) = {u}, D(aflv,B1) = 0, D(afm, Bl) = {v}, 

and alw(u) = a(u,v), afw(v) = 0. ' . 

If we consider B1 together with these new partial operations, we get B{. 
We assert that a congruence relation © of B1 is admissible if and only if it 

is the extension of an admissible congruence relation of B'. 
First, let ® be an admissible congruence relation of Bt, and let © denote the 

congruence relation of B' which is induced by <D (i. e. x = j ( © ) , x, y £ B' if and 
only if x=j(<D)). Let u=v(Q>), u,v£B{. <D is admissible, so a(u, v) =0(<I>); thus 
a(u, D)SO(@). We get that in B' the relation 0„ ( „ i l l ) O S® holds true. By definition 

u = v(@a(l,>VJo), 

thus u = !>(©), 

and we see that 0 = O. On the other hand, if <D = © with a suitable ©£©(B')> 
and « S D ( $ ) , then Q„(„,„)O = © by the definition of a(u,v), and so a(u,v)= 0 ( $ ) ; 
i. e., <D is admissible. 

Now, we construct from Bi an algebra B2 by the method of Theorem 7, and 
proceeding so we get B'2, B3, ... and so on. 

We have constructed an ascending sequence (of type co) of algebras 

B'czB1czB2c:... 

Let A be the union of these: 

A = \JBl. , • 
i=l 

A is obviously an algebra. Every admissible congruence relation of B' may be ex-
tended to B±, f rom B1 to B2 and so forth to A. We assert that A has no other cong-
ruence relation. Of course, a congruence relation <D of A induces a congruence 
relation <D„ of Bn (n = I,,2, .,..). But O,, may be extended to Bn+1 (in fact, ®„ + 1 is 
such an extension), thus — as we have proved above — <D is an extension of an 
admissible congruence relation of ,B' . Thus ®(A) is isomorphic to the lattice of 
all admissible congruence relations of B', which is isomorphic to L, completing 
the proof of Theorem 10. 

A 4 
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§ 4. Applications 

In this section we will draw some conclusions from Theorem 10. 
C o r o l l a r y 1. To every finite lattice L, there corresponds an abstract algebra 

A such that L'~ ©(A). 
M o r e generally: 

Corol lary 2. Let L be a lattice with zero element and satisfying the ascending 
chain condition.*) Then there exists an abstract algebra A with L^0(A). 

The assertion of Corollary 2 is obvious from Theorem 10, for if L satisfies 
the hypotheses of Corollary 2, then every ideal of L is a principal one, thus LsiI(L); 
Theorem 10 gives an algebra A with © (A) ^ I(L); hence we get L = ©(A), as as-
serted. 

C o r o l l a r y 3. A lattice L has a complete representation if and only if L is com-
pactly generated. 

This is now obvious, for <f ( / / ) (see the notation in § 2 of the Introduction) 
is compactly generated and by Theorem 8 every complete sublattice of a com-
pactly generated lattice is itself compactly generated. Thus if L has a complete 
representation (F, IF) then the sublattice of S'(H) formed by the F(x), x 6 L i s com-
pactly generated and so is L. Conversely, if L is compactly generated, then by The-
orem 10 there exists an algebra A with L'^©(A); let (p:x -*xcp£&(A) be this iso-
morphism. If (F, A) is the natural (complete) representation of ©(A) (see § 2 of 
Introduction) then (F<p, A) is a complete representation of L, where Fcp denotes 
the product of the mappings F and cp. 

C o r o l l a r y 4. (WHITMAN [11].) Every lattice has a representation. 

Hi Hi Hi 

We get an other type of application if we consider the special properties of 
the algebra A, constructed in the proof of Theorem 10. 

In our paper [6] we have proved the following theorem: 
To every abstract algebra C there exists an abstract algebra D such that 

© (C) © (D) and every compact congruence relation of D is of the form ©„,,.. 
The question arises Whether or not it is possible to choose such a D where 

the element a may be fixed. An answer is given in 

C o r o l l a r y 5. To every abstract algebra C there exists an abstract algebra 
D and a fixed element o of D such that ©(C) = ©(D), and every compact congruence 
relation of D is of the form ®<M (a € D). 

Let L = ©(C) and D = A, where A., is the algebra constructed in Theorem 10' 
if we start with L. Then A = D has the property stated with o=0. The easy proof 
is left to the reader. 

Let G(A) denote the automorphism group of A. The question arises what 
relation has the structure of G(A) to ©(A). We will prove that already the simplest 
G(A) allows ©(A) to be arbitrary. 

*) This means that if xi, x2,... are elements of L such that xi 5 . . . , then there exists 
an integer n such that x„ = x„+1 = . . . . 
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C o r o l l a r y 6. The algebra A constructed in § 3 has a trivial automorphism 
group, i. e. G(A) ch 1. 

P r o o f . The reader should remember that there is a subset B' of A such that 
B' generates A; there is an operation cp0 which is the identity operation on B', i. e. 
<p0(x)=x for all x£B'. But if x$B', then by free generation tp0(x) Ax; thus 

(i) x^B' if and only if cp0(x)=x, where cp0 is a fixed operation of A and B' 
is a generating system of A. 

Suppose a£G(A) and x£B' then q>0(ax) = atp0(x) = ax and thus by (i) we 
get ax£B'. On the other hand if x£A and ax£B' then x = a~1(ax)£B'. We get 
the following result: 

(ii) a (restricted to B') is an automorphism of B'. 
By free generation this implies 
(iii) the automorphism groups of B' and A are isomorphic. 
B' is a generating system of the whole A; it follows that if aA/3 are automorph-

isms of A then their restrictions to B' are different automorphisms of B'; we con-
clude : 

(iv) if G{B') = 1 then G(A) = 1. 
Thus Corollary 6 is proved if G(B') = 1. 
Now suppose G(B') A 1, i. e. a £ G(B'), x£B' and ax Ax. It is no restriction 

to suppose x is. an atom. Obviously, there exist in B, elements u, v such that 
a(u, v)=x, i. e. there is a partial operation /? of Bi which is defined only at u and 
P (u)=x. This implies a (P(u))AP(u), i. e. j](au) A ¡3(u), thus auAu and P(au) = 
=ax£B'. But /?(«) is in B' if and only if a=u or a=v thus au=v, and we reach 
ax = 0, a contradiction. 

Finally we mention 

C o r o l l a r y 7. A complete lattice L has a complete subgroup representation 
if and only if L is compactly generated. 

An application of Corollary 3 shows that it is enough to prove that fi (H), 
the lattice of all equivalence relations of A, has a complete subgroup represen-
tation. It is a result of G. BIRKHOFF that S (H) has a subgroup representation (see 
[11], where the proof is reproduced). But his proof gives, in fact, a complete sub-
group representation of S(H), as may be easily checked. Thus Corollary 7 is pro-
ved. 

CHAPTER III 

ABSTRACT ALGEBRAS OF TYPE 2 AND 3 

§ 1. Preliminary results 

If we want to prove Theorems II' and III' then it is not enough to have the 
theory of free algebras developed only for algebras with unitary operations. There-
fore we now formulate these results for arbitrary algebras. 

Let S be a partial algebra and 'cp£P(S) . D(jp, S) denotes the «-tuples (alt...,a,) 
for which (p is defined. We assigne to every n-tuple (w1; .,., u,D$D(cp, S) a new 
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element Z,„ such that if (ult . . . ,«„)¡¿(«I, ...,«„) then Xllt Ull^XVl 
denotes tlie set S together with the new elements. Wc define operations on 

S[f]: 
1. \l/(alt..., a„) is defined for a i¡ /^ (p if and only if (« ! , . . . , a j €D(il/, S). 
2. cpicii,...,a„) is unchanged if ( r t 1 ; . . . , a„)£D((p, S); if all the a££iS" but 

(«!,..., a„)(il> ((p, S) then (p(a1} ..., a„) = A/
Bl> ...iH|i; for other «-tuples <p is not 

defined. 
Now construct S[<p] for all (p£P(S) such that if <p ^ i// then , % ] A S[\//] = S; 

define Si=:y(S[(p]; (p£P(Sj), S2 = V(Si[9?]; and so on and S= \/ St. 

The same proof as those of Theorem 3, 4, 5 applies to get the following result. 

T h e o r e m 11. S is the free algebra generated by S. Every congruence relation 
of S may be extended to S. 

* * * 

Let S be a partial ¡algebra, whose partial operations are either operations 
...,X,) (veQJ or of the type <p?(x): i = 1 ,2 ,3 , yu<£02 and D((pi{, S) = {a'1}, 

D(<p$, S) = 0 , D((p%, S) = {b'i}. The congruence relation © is called admissible 
if for every n£Q.2> a" = Z>"(@) implies cp'{{qft) = (p^{b") (©). • 

T h e o r e m 12. [5" may be extended to an algebra S1 such that a congruence 
relation © of S may be extended to a congruence relation © of S1 if and only if © 
is admissible. Further, if (I) is a congruence relation of S1 then there exists an ad-
missible congruence relation © of S such that <& = ©. Finally, the relations < = 
= <P%(a") = (p!i(a"),' hold true in S1. 

* * * 

We need also a new form of the result of our paper [6]. 

T h e o r e m 13. Every abstract algebra A may be extended to an abstract al-
gebra Ax such that 
__ 1. every congruence relation © of A may be extended to a congruence relation 
© of A,; 

2. © — © is an isomorphism between ©(A) and ©(Ax) i. e. to every <I>^©(A^ 
there exists a © £ © (A) such that $ = ©; 

3. every compact congruence relation of Ax is minimal; 
4. if a, b, c, d£.A then there exists e,fg£Ai such that ©ttb = ©ef, ©ci = ©fg, 

, ©a&U ©c,l — ©eg. ' 

R e m a r k . Conditions 1 and 2 mean that ©(A) and ®(At) are isomorphic 
in the natural way. 

The theorem stated in [6] is weaker than our Theorem 13, but we actually 
proved Theorem 13 for algebras with unitary operations; a slight modification 
of the construction of [6] gives the result of Theorem 13.5) 

5) In [6] we used the fact that the algebra has only unitary operations only at the step, when 
we constructed Ai from A, in § 3. If A has operations / o f more than one variable, then we define 
its extension on Ai as follows: f(ai,..., a„)=f(bi, b2, •. •, b„) where a,=bu if ait A, b, = a 
otherwise. One can easily that with this definition one can carry out the proof of the theorem. 
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§ 2. Abstract algebras of type 3 

We will prove the following theorem: 
T h e o r e m 14. To every abstract algebra A there corresponds an abstract al-

gebra B such that the following conditions are satisfied: 
1. B is an extension of A; 

__ 2. every congruence relation © of A may be extended to a congruence relation 
© of B; _ 

3. ©->© sets up an isomorphism between ©(A) and ©(B); 
4. B is of type 3; 
5. every compact congruence relation of B is minimal. 
R e m a r k . Conditions 2 and 3 mean that ©(A) and ©(B) are isomorphic in 

the natural way. 
One can see that Theorem 14 contains Theorem IF of § 3 of the Introduction. 

Further, according to Theorem 10, for every compactly generated lattice L there 
exists an algebra A with L = ©(A). Now if we construct the algebra B of Theorem 
14 corresponding to this algebra A, then we get that there exists an algebra B with 
Ls= © (B) and B is of type 3. Summing up we get the following. 

C o r o l l a r y . The following conditions on a lattice L are equivalent: 
1. L is compactly generated; 
2. L has a complete representation; 
3. L has a complete representation of type 3; 
4. there exists an abstract algebra A with Ls^©(A); 
5. there exists an abstract algebra A of type 3 with L^.©(A). 
Now we are going to prove Theorem 14. We start with the algebra A0 = A 

and we extend A0 to A\ according to Theorem 13. Let x, y, u, v£A^ such that 
x s j > (©„„); then we define three partial operations <px, q>2, cp3 on A&: 

D{Vi,A® = {U}, D(<p2,Ah) = 0, D(cp3, AQ)~{V} 

and 99j(11) = x, (p3(v)=y. Let be defined as the partial algebra which we get 
if the cpi are defined on A& for every quadruple x, y, u, v(x=y(@lw)). 

Every congruence relation of A% is admissible; it further satisfies all the as-
sumptions we have made in Theorem 12, therefore we can extend A§ to an algebra 
Alt such that Ay already satisfies conditions 1, 2, 3 of Theorem 14. Now we con-
struct A2 from Au A3 from Az, and so on, in the same way as A t has been con-
structed from The algebras A0,A1,... form an ascending chain, therefore 

B= V is an algebra. Since all the At satisfy 1, 2, 3, and 5 of Theorem 14, there-
i n 

fore so does B. It remains only to verify condition 4. Let x=y(©U <!>), then there 
exist compact congruence relations 0 , S © and O ^ ® such that x =y(©i U d^). 
By condition 5 0 , =©„6 and <I>, = © c d with suitable elements'«, b, c, d of B. There 
exists an integer n with x, y, a, b, c, d£An. By condition 4 of Theorem 13, there 
exist elements e,f,g of A\ such that ©ab = © e f , ©C(, = © f g and ©n6U©C(, = © a s . 
Thus x=y(©eg). Therefore A% has operations <pi,(p2><p3

 s u c h that; q)i(e) = x, 
9'ife) = 92(g), 92(e)= <P3(e), 93(g)=y-6) Then z 0 = x , z1 = cp1(f), z2 = cp2(f), 

See the construction in § 1 of Ch. II and Theorem 12. 
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z3 = <p3(f), Z4=y is a scquencc of elements such that z0=z1(© f l l )), =z2(@e(I), 
z2 = z3 ( © J , z 3 = z 4 (©„,). Indeed, e =/(©„,,) (for ©„„ = ®e /), thus z0 = cp1(e) = 
= P i C / ) = * i ( ® J . Similarly, = <Pi(./') = ^ l feX®^) (for ©f„ = ©al) and f/^fe) = 
= (p2te) = (p2(jO=z2(©C(,) thus z1=z2(©C((), and so on. 

To sum up, whenever x=j(©U<I>) (x,y€A, ©, tf> <5 ©(/!)) we can find ele-
ments x = z0, z 1 ; z2 , z 3 , z 4 = j / such that z0 s z , ( 0 ) , zx =z2(<I>),z2 =z 3 (©) , z3 =z4(cl>) 
(we lake into consideration thai ©„ f ts ©! S ©, ©„, S <I> t g <I>), wihch is the defi-
nition of algebra of type 3, Thus condition 4 of Theorem 14 is also verified. 

§ 3. Abstract algebras of type 2 

The analogue of Theorem 14 for modular lattices is the following: 

T h e o r e m 15. Let A be an abstract algebra such that ©(A) is modular. Then 
there exists an abstract algebra B such that the following conditions are satisfied: 

1. B is an extension of A; 
2. every congruence relation © of A may be extended to a congruence relation 

© of B; 
3. ©->-© sets up an isomorphism between ©(A) and ©(B); 
4. B is of type 2; 
5. every compact congruence relation of B is minimal. 

R e m a r k . Conditions 2 and 3 mean that ©(A) and ©(B) are isomorphic in 
the natural way. 

Of course in Theorem 15 the essential conditions are that &(A)s= ©(B) and 
that B is of type 2. 

Again, combining Theorem 15 with Theorem 10 we get the 

C o r o l l a r y . The following conditions on a lattice L are equivalent: 
1. L is compactly generated and modular; 
2. L has a complete representation of type 2; 
3. there exists an abstract algebra A of type 2 such that Ls£0(A). 

For the Corollary the only thing we must verify is that condition 2 implies 
condition 1; it is enough to prove that if L has a representation of type 2 then L 
is modular; this is a theorem of [8]7). 

For the proof of Theorem 15 we need some preliminary results. The proof 
of Theorem 15 will be given after Theorem 18. 

The crucial point of the proof of Theorem 14 was the following: we can prove 
that B is of type 3 because the construction given at the beginning of § 1 of Chapter 
II and which is perfomed in the construction of B several times gives rise to a se-
quence of elements which guarantee that B is of type 3. In the construction in ques-

7) For completeness' sake we prove this. Let L have a representation (F, A} of type 2, 
a, b, ceL, a^c. Then a ( l ( A U c ) a ( « n b) U c holds always, hence it is enough to prove that 
p,qeA. p = q(F(a(\(b\Jc))) imply p = q (F((a D 6) U c)). Indeed, if p = q(F(a fl (b U c))) then 
p = q{F(a) D F(b U c)), thus p = q(F(b U c)) and p = q{F(a)). We have a representation of 
type 2, thus p =q{F(b U e)) implies the existence of r and s such that p = r(F(c)), r = s(F(b)), 
s = q(F(c)). Then e g a implies that r=p=q = s (F(a)), thus r = s(F(a D 6)). We get 
p = q(F(a fl b) U F(c)) that is p = q{F((a fl b) U c)), which was to be proved. 
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tion we start from a partial algebra S and we take three further copies of S, and 
we identify some elements. One can easily seen that if we want to get an algebra 
of type 2 then we must reduce the number of new copies of S to 2. This is the main 
difficulty. Of course, the analogue of Theorem 6 for this modified construction 
may be proved easily, but Theorem 7 is already not true. We have to introduce 
some new operations — using the modu-
larity of Q(/l) — to enforce the existence 

' of the least admissible congruence rela-
tion, the existence of which is the main 
statement of Theorem 7. 

So first we modify the construction 
of § 1 of Chapter II. Let S be a partial al-
gebra, <px(x), cp2(x)£P(S),D(<pu S) = [a], 
B(tp2, S) = {b}, cpi(a) = c, cp2(_d) = d. We 
identify in .STipJ U iS*[992] the elements 
9^(6) and y2(b) (see Fig. 3), getting the 
partial algebra T'. The congruence relation 
© of S is called admissible again if either 
a^b(©) or if a = b(&) and c=d(®) (i. e. 
if a = b(®) „implies" c = d(®)). Then 

T h e o r e m 16. The congruence rela-
tion © of S is admissible if and only if it 
may be extended to T'. The minimal ex-
tension © of © is the transitive extension 
of ©*, where 0* is identical with © on S, and (pt(x) = ^¿(j) (©*), if and only if 
x = J>(©) (*> y £ S). The relations 0* and © are identical on S, on (p±(S) and on cp2 (S). 

P r o o f . Copy the proof of Theorem 6. 

Now we want to see what can be said about the congruence relation © of S 
for which u=v(@), with u, v £ T' fixed. To do this we make three assumptions on 
S: 1. 0 ( S ) is modular, 2. the compact congruence relations of S are minimal; 
3. every congruence relation of S is admissible. We distinguish several cases. 

A. u, v 6 S. Obviously8), © = ©TO is tlie smallest admissible congruence re-
lation for which u=v(®). 

B. u£S, v^cp^S), i. e. v = cp1(x), x£S. Let © be admissible, u=v(&). Then 
either 

(a) M S C ( © ) , a=x(®), 

or (b) u=d(©), a = ¿ ( 0 ) , & = *(©). 

Thus the,two congruences 
©1 = ®„e u © « , ©2 = ©,,„ U ©a6,U ®bx 

Fig. 3 

8) The reader should remember that if & is a congruence relation of S then ©' denotes the 
least admissible congruence relation S & (see the text of § 1 of Chapter II, before Theorem 7). 
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have the property that either © i s © or © 2 © . If we prove © i s © 2 , then we 
arc through. Indeed, a = x(Qab U ©6ï), thus ©,(V.S ©2; further a~b(&2), thus 
c=cl(e2); we get @„cS©m,U0,,cS©2. Hencc ©j ==©2, so 0 i s ( 0 0 ' = © ^ 
q. e. d. 

C. u£S, v£(p2(S). Proof as in case B. 

D. u,vÇ.(i>1(S), i. e. u = (p1{x)> v = (p1(y), x,yÇ S. Then u —«(©) implies either 

(a) x=y(&), 

or (b) x = «(©), c=d(<3>), a=b(&), b=y(&), 

or (c) y = «(©), c = d(&), a=b(<d), b = x ( & ) . 
This shows that, obviously, 0 = ©¿y is the smallest admissible congruence relation 
under which u=v(&) . 

E. u,vÇ.(p2(S). Proof as in case D. 
We see that the three conditions imposed 011 S have not yet been used. 
F . uÇ. <Pl(S), v£(p2(S) i. e. u = cp1(x), v—cp2(y), x,y£S (or symmetrically, 

interchanging u and v). If u=v(@), then either 

(a) x=b(&), y=b(&), 

or (b) x=a(@), c=d(©), a=y(&). 

Let ©! = © ^ U ©,,,,, ©2 = ©.«i U ©Cil U ©j,„. Then, if any, © [ or ©2 should be 
the smallest admissible congruence relation © such that u =v(&). But it turns out 
that neither © i s © 2 nor ©2 = &i hold in general. Now we use conditions 1—3. 

Let ©3 = © X „ U © ^ . Then © t U © 2 = © t U © 3 and ©3 S © 2 . Thus by the 
modularity of ©(£) we get 

© 2 = © 2 n ( 0 j . U © 3 ) = ( 0 2 f l © J U © 3 . 

©2 and ©3 are compact congruence relations, therefore we can find a ©4 s 0 2 f l ©3. 
such that ©4 is compact and © 4 U © 3 = © 2 . Because of © A . J , S © 1 n © 2 we may 
choose ©4 such that ©XJ) £ © 4 is true. 

Every compact congmence relation is minimal, therefore © 4 = ® e f ( c , / £ 51). 
Of course, e and / are not uniquely determined by u and v; already © 4 is not uni-
que, but if it were, we coùld, in general, choose several e and / . But let us fix a pair 
e, f ; we may write e = e(u,v), f=f(u,v). 

Suppose that to every uÔ.cpxiS), v(-jp2(S) we have found e and / . Then we 
assign to every u,v a new pair of partial operations a ^ x ) and a2(x) such that 

£>(«!, T') = {ej, £>(a2,T') = { f ) , a1(e)=u, cc2(f)=v. 

Let T' denote the partial algebra T' endowed with these new operations. 

T h e o r e m 17. T" is an extension of S. A congruence relation of S may be ex-
tended to T" if and only if it is admissible. To every u, v£ T' there exists 'a least ad-
missible congruence relation © of S such that w=i>(©). 

P r o o f . Let be an admissible congruence relation of S. It is in general not 
true that (the extension of *F to T ) is a congruence relation of T". The extend-



Congruence lattices 57> 

ability of VF to T" means that extending VF to T" we do not get new congruence re-
lations in S. The extension of *F to T"may be defined as the transitive extension 
of ¥ * , where VF* is a relation equivalent to VP on S, (pt(x) = cpt{y) (*?*) (x, y £ S)> 
if and only if x s j O F ) , and u — cp1(x) = (p2(y)=v(xi/*) if and only if © e / s v F 
[e = e{u,v),f=f{u, v)). 

We have the following remark: let u = (pi(x) (/ = 1 or 2) v — q>j(y) (j=l or 2) 
and a s t f P * ) . Then Indeed, if i=j, then this is true by definition. If i -/-j 
then But e and / were chosen so that 0AJ, S © e / . Thus @tJ) £ VF is obvi-
ous. The transitive extension x¥ i of lF* gives rise to new congruences in S if and 
only if c = dQi'1) while c^dQ¥). We prove that this is impossible. Indeed c s ^ C i ^ 
means the existence of a sequence c = z0,z1, ..., z„ = d, all the z{ being in cp1(S)v 
v<p2(S), such that ¿ ¡ - i = Z;(VF*), / = 1,2, . . , ,«. Let zt = q)j(u^ where j is either 
1 or 2. Then by the remark of the last but one paragraph we have u0=utQlJ), 
% =w20F), ..., = unQ¥) i. e. u0 = u„ OF). But 991(m0) = c, cp2(u,)=d; thus 
U0

 = CI, ll}j b and we have a = b(^¥). Now we use that *F is admissible, therefore 
c = dQV), contrary to the hypothesis. Q. e. d. 

Now we generalize Theorem 17. 

T h e o r e m 18. Let S be a partial abstract dlgebra with the following properties: 
the partial operations of S are qof (x), i = l,2 where D (cpl, S) = {a11}, D((p%,S) = 
= {b11}, <p1 (a") = c'\ cp%(ali) = di'; all other partial operations of S are operations; 
if © is a compact congruence relation then so is9) ©'; every compact congruence 
relation of S is minimal; the admissible congruence relations of S form a modular 
lattice10). 

Then there exists an abstract algebra S* such that 
I. S* is an extension of S; 

,11. every admissible congruence relation © of S may be extended to a congru-
ence relation © of S*; 

III. © •© is an isomorphism between the lattice of admissible congruence re-
lations of S and ©(£*). 

P r o o f . Copy the proof of Theorem 7 and use the construction of Theorem! 
18 rather than that of Theorem 6. 

Now we are ready to prove Theorem 15. We apply the same procedure as in 
the proof of Theorem 14, the only difference is that we use Theorem 18 rather than 
Theorem 16. The algebra B will be of type 2 because the construction given before 
Theorem 16 uses only two new copies of S, therefore whenever x=y (©U<&) we 
can find a sequence x = z0, zt,z2, z3 =y such that z0 z1 = z2(<&), z2 s=z3(@). 
The construction of the zt is also the same as in the proof of Theorem 14. 

9) & denotes the least admissible congruence relation Now a congruence relation* 
0 is admissible if for every p t Q the relations ûi« = 6/t(0), = are equivalent. 

10) The admissible congruence relations of S always form a complete lattice, which is irt 
general not a sublattice of 0(S). 
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§ 4. Problems 

The first main result of this paper is that to every compactly generated lattice 
L there exists an abstract algebra A such that I s ©(A). But the algebra A which 
is constructed in the proof is pathological. Therefore the problem arises as to whe-
ther or not it is possible to construct an A which belongs to certain known classes. 

P r o b l e m 1. Is it true that to every compactly generated lattice there conesponds 
.an abstract algebra A such that L'-a 0(A) and every operation of A is binary and 
assoticative (A is a superposition of semigroups)? Or the same problem, requiring 
A. to be a semi-group. 

In other words, characterize the congruence lattices of semigroups. 
* * * 

If L is finite the construction used gives rise to a countable A. 
P r o b l e m 2. Is it possible to represent every finite lattice in the form ©(A), 

where A is a finite abstract algebra? 
This problem seems to be an extremely difficult one. Its solution should imply 

.an answer in affirmative to Problem 48 of [1] asking whether or not every finite 
lattice is embeddable in a finite partition lattice. A variant of our Problem 2, the 
:solution of which does not imply the solution of BIRKHOFF'S problem, is the fol-
lowing. 

P r o b l e m 2'. Let 91! be the class of all (finite) lattices which may be repre-
sented as ©(A), where A is a finite abstract algebra; let 3t2 be the class of all (fi-

nite) lattices which may be represented as sublattices of finite partition lattices. Is 
3Ii=3t2 true? 

Hi Hi Hi 

Let Sti be the class of all compactly generated lattices, 3tG the class of all lat-
tices which are isomorphic to the lattice of all subgroups of a group, 21° the class 
of lattices which are isomorphic to a complete sublattice of a lattice from 9IG; si-
milarly let 9IB be the class of lattices which are isomorphic to the lattice of all sub-
rings of a ring and 9P the class of lattices which are complete sublattices of a lat-
tice from 9JK. The relations 9tG 3 9lGand %{¡5 91« are trivial. We have proved 9^ = 9lG. 

P r o b l e m 3. Find the proper relations between 9 l i( = 9tG), 9iG, 9(R and 9P. 
Are all identical? 

H: H: * 

In this paper we have completed the argument of [6] to show that every abs-
tract algebra A may be extended to an abstract algebra B such that © (A) = © (B) 
and every compact congruence relation of B is of the form ©„,,. And we proved 
that for every abstract algebra A there exists an abstract algebra B such that 
©(A)si ©(B), and every compact congruence relation of B is of the form ©oa, 
where o is a fixed element of B. Can these two results be combined? 

P r o b l e m 4.11) Prove that every abstract algebra can be extended to an abstract 

1') Added in proof (May 9, 1963): We have proved the following result. 
T h e o r e m . Every algebra A can be extentedto an algebra B such that @(A) and &(1!) are 

.isomorphic in the natural way, further, any compact congruence relation & is of the form @„a 
where o is an arbitrary element of B (a depending on & and o). 
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algebra B such that every compact congruence relation of B is of the form @0B, where 
o is a fixed element of B. 

* * * 

The two main results of Chapter III may be formulated as follows: If L is 
compactly generated and L has a representation of type /'(7 = 2, 3) then L is © (A) 
where A is of type i. We could not prove (or disprove) the similar result for i = 1. 
It is the following: 

P r o b l e m 5. Prove that to every compactly generated lattice L which has a 
representation of type 1, there exists an abstract algebra A such that Ls¿0(A) and 
any two congruence relations of A are permutable (i. é. if x =y{&), j s z ( f ) then 
there exists a w such that x = w(<&), w=z(&)). 

* * * 

G. BIRKHOFF has proved that to every group G there corresponds an abstract 
algebra A such that G is isomorphic to the group of all automorphisms of A. Let 
A be an abstract algebra; we assigne to A a couple (G(A\ L(A)), where G^ is the 
automorphism group of A and TJ-A) the congruence lattice of A. BIRKHOFF'S re-
sult states that every G occurs in the first place in a couple (G, L). We have proved 
that a lattice L occurs in the second place if and only if it is compactly generated. 
And what is more, we showed that if this is the case, then L already occurs in a 
couple (1, L) where 1 denotes the group of one element. These results suggest 
that the first and second components of a couple are independent. More precisely: 

P r o b l e m 6. Let G be an arbitrary group and L a compactly generated lattice. 
Prove that there exists an abstract algebra such that (G<-A\ LW) is identical with 
(G, L). 
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