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Characterizations of congruence lattices 
of abstract algebras 

By G. GRATZER and E. T. SCHMIDT in Budapest 

INTRODUCTION 

In this paper we deal with the charactcrization problem of the lattice ©(A) 
of all congruence relations of an abstract algebra A (briefly, congruence lattice). 
In § 1 of the Introduction we summarize our results concerning the general characte-
rization problem, the solution of which answers Problem 50 of G. BIRKHOFF [1], 
originally proposed by BIRKIIOFF and FRINK [2]. In § 2 we show that the represen-
tation theorems of WHITMAN and JONSSON are easy consequences of our results; we 
also solve the problem of complete representation. Concerning congruence lattices 
of type 2 and 3 we are able to prove more than the results stated in § 1. These 
results are summarized in § 3 in the form of embedding theorems for abstract al-
gebras. In the next section we outline the method of the paper based on the sys-
tematic study of partial abstract algebras. The contents of the paper are sketched in 
the same section. 

§ 1. Congruence lattices 

An element x of the complete lattice L is called compact if (XX; 1 6 A ) 
implies (xx; A <E A') for some finite A' g A . A lattice L is compactly generated 
if it is complete and every element of L is the complete join of compact elements. 

If A is an abstract algebra, a,b£A, then there is a least © €©(A) such that 
a=b(&); this is denoted by ®ab. Every ®ab as an element of ©(A) is easily shown 
to be compact and thus every congruence lattice is compactly generated.1) 

The question whether or not every compactly generated lattice is isomorphic 
to a congruence lattice was proposed by BIRKHOFF and FRINK [2], again in BIRKHOFF 
[1] as Problem 50. One of our principal results is to answer this problem affirmatively. 

T h e o r e m I. To any compactly generated lattice L there corresponds an abstract 
algebra A for which ©(/!.), the lattice of all congruence relations of A, is isomorphic 
to L. 

') This assertion was first observed by BIRKHOFF and FRINK [2]; the conditions they have 
used are equivalent to, yet different from, those used above. The notion of compact element goes 
back to BUCHI [3] and NACIIBIN [10]. In [7], HASHIMOTO proves that every congruence lattice is iso-
morphic to the lattice of all ideals of a semilattice, a statement again equivalent to the above one. 
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One may hope to get a stronger form of Theorem I, so as to impose further 
conditions on A. In order to do this, consider ©, <D € © (A) and x, yd A, It is known 
that x= j (©U<D) if and only if there exists a sequence x=z0,z1, ..,, zm, zm+1 =y 
of elements of A such that s z ^ ^ Q ) or z^z^A®) (i = 1, 2, m +1) . We 
say A is of type n if, for every x, y, ©, $ (x =y(© U <D)), the sequence {z;} may be 
chosen so that m=n. This means, that while in an arbitrary abstract algebra, corres-
ponding to a fixed quadruple x, y, ©, <D, the least m may be arbitrarily large, in 
algebras of type n, m may not exceed n; e. g. a ring or a group is always of type 1. 

It is easy to prove that if A is of type 1 or 2 then ©(A) is modular. Hence, f rom 
this point of view we get the best possible result if we can replace A of Theorem I 
by one of type 3. This is done in 

T i e or em II. Let L be a compactly generated lattice, Then there exists an 
abstract algebra A of type 3 such that L and ©(A) are isomorphic. 

As we said above, if A is of type 2 then ©(A) is modular. This raises the question: 
which lattices are isomorphic to such a ©(A)? This is answered by 

T h e o r e m I I I . Every compactly generated modular lattice is isomorphic to 
the congruence lattice of a suitable abstract algebra of type 2. 

§2. Representations 

If H is a set then the set S'(H) of all equivalence relations of H is a complete 
lattice and S(H) = ©(H) if His considered as an abstract algebra without operations. 

By a representation of the lattice L we mean an ordered pair (F, IT), where 
H is a set and 

x -> F(x) 
is an isomorphism of L into S(H). If this isomorphism preserves complete join 
and meet, then the representation is called complete. 

It is well known that (F, A), < 
F(©) = ©, 

is a complete representation of ©(A); this will be called the natural representation 
of ©(A), Further, it is easily shown that a lattice having a complete representation 
is compactly generated. Hence Theorem I implies at once 

C o r o l l a r y I. 1. A complete lattice L has a complete representation if and 
only if L is compactly generated. 

This is the analogue of WHITMAN'S fundamental theorem [11], asserting that 
every lattice has a representation. In fact, WHITMAN'S theorem is a trivial consequence 
of Corollary I. 1. Indeed, if Lx is a lattice then we extend it to L2 by adding a zero 
element. Then we define L as the lattice of all ideals of L2 • Obviously, L is compactly 
generated, hence by Corollary I. 1 it has a representation (F, H) which is at the 
same time a representation of L1. Thus 

C o r o l l a r y 1.2. (WHITMAN [11].) Every lattice has a representation. 

JONSSON [8] defined the concept of representation of type n. If x, y£L and if 
(F, H) is a representation of L, then define F(x); F(y) as the relation theoretic 
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product of F(x) and F(y), i. e. u=v(F(x); F(y)) (u, v £ II) if and only if there is a 
will such that u = w(F(xj) and w=o(F(y)). Then F(x) U F(y) is the join of the 
asccncling series 

Fix); F(y), F(x); F(y); F(x), F(x); F(y); F(x); F(y), .... 

If this scries terminates at its «-th member for all x,y<cL then the representation 
(F, I I ) of L is said to be of type n. 

It is obvious that an abstract algebra A is of type n if and only if the natural 
representation of ©(A) Is of type n. Thus we get 

C o r o l l a r y II . 1. A complete lattice L has a complete representation of type 3 
if and only if it is compactly generated. 

C o r o l l a r y 11.2. (JONSSON [8].) Every lattice has a representation of type 3. 
And, similarly, the consequences of Theorem III are: 
C o r o l l a r y 111. 1. A complete lattice L has a complete representation of type 2, 

if and only if L is modular and compactly generated. 
C o r o l l a r y I I I . 2. (JONSSON [8].) Every modular lattice has a representation of 

type 2, and conversely. 
* 

Another type of representation is obtained by means of subgroups of a group. 
A subgroup representation (F, G) of a lattice!, consists of a group G and an isomorph-
ism F of L into L(G), the lattice of all subgroups of G. The subgroup representation 
is complete, if the isomorphism preserves complete joins and meets. 

From Theorem I we conclude easily 

C o r o l l a r y I. 3. A complete lattice L has a complete subgroup representation 
if and only if L is compactly generated. 

C o r o l l a r y 1.4. (WHITMAN [11].) Every lattice has a subgroup representation. 

§ 3. Embedding of abstract algebras 

To prove Theorem II and III it is enough to construct only one abstract algebra 
A satisfying the hypotheses. In fact, we can prove much more. Given an arbitrary 
abstract algebra A we embed it in an abstract algebra B, such that © (A) s= © (B) 
and B is of type 3, or of type 2 if ®(A) is modular. These — together with Theorem I 
— are much more than Theorems II and III. For a precise formulation of these 
new theorems we need a definition of embedding, because in these constructions A 
is not a subalgebra of B. 

We say that the algebra B is an extension of the algebra A i f 2 ) 
1. A<gB\ 
2. to every operation / o f A there corresponds an operation/ of B (the extension 

of f ) , such that f{al,a2, ..., a,) = / ( a 1 ; a2, •••, «„) if aua2, ..., a„£A. 
If B is an extension of A and © is a congruence relation of B then it includes 

a congruence relation © on A: let a = b(&), a, b£A if and only if a=b(&). If © ->• © 

2) S is the set theoretical inclusion. 
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is an isomorphism between ©(B) and ©(A) then we say that ©(B) and ©(A) are 
isomorphic in the natural way. 

T h e o r e m II ' . Every abstract algebra A may be extended to an abstract algebra 
B of type 3, such that ©(A) is isomorphic to ©(B) in the natural way. 

T h e o r e m I I I ' . Let A be an abstract algebra such that ©(A) is modular. Then 
A has an extension B of type 2, such that ©(A) is isomorphic to ©(B) in the natural 
way. 

§ 4. The method and lay-out of the paper 

To prove the theorems listed above we have to construct abstract algebras; to 
carry out these constructions seems to be rather difficult. But if we dispense with 
the assumption that an operation ,of an abstract algebra must be defined for every 
72-tuple (n depending on the operation), thus getting the definition of partial abstract 
algebra, then the task is fairly easy. The difficulty lies in the next step: we want 
to extend the partial abstract algebra to an abstract algebra so that the „good" 
properties should not be altered. E. g. such a property is that © (A) be isomorphic 
to L, where L is fixed. 

We use two methods to bypass these difficulties: the first is the extension of a 
partial algebra to a free algebra; and the second is a procedure which identifies 
the „new" congruence relations of the free algebra with the congruence relations 
of the partial algebra. 

It is not surprising that on proving theorems for abstract algebras the key 
role is played by partial abstract algebras, for partial algebras are nothing but 
generating systems considered in abstracto. This was kept in mind when the analogues 
of the notions of abstract algebras were defined for partial abstract algebras. 

In the Introduction only the most important results are listed. All the theorems 
of the paper are numbered by arabic numerals; these are related to the results 
mentioned in the Introduction as follows: Theorem I is essentially Theorem 10; 
Theorem II is part of the Corollary to Theorem 14; Theorem II' is part of Theorem 
14; Theorem III is contained in the Corollary to Theorem 15; Theorem III' is con-
tained in Theorem 15. 

The contents of the paper are the following: In Chapter I the notion of partial 
abstract algebra and the free algebra generated by a partial algebra are introduced 
and some of their properties are examined. The most important result of this part 
is Theorem5 which states that every congruence relation of a partial algebra may be 
extended to the free algebra generated by the partial algebra. In Chapter II contrac-
tions are developed in order to prove Theorem 10 (Theorem I). In the last section 
several applications of Theorem 10 are proved. In Chapter III our first task is to 
modify the construction in Chapter II in order to prove Theorem 14 (Theorem II). 
Finally, an analysis of the proof of Theorem 14 shows how to make further modi-
fications which lead us to Theorem 15 (Theorem III). 

Some open questions are mentioned in the last section of Chapter III. 


