Elementary divisors in von Neumann rings

By ISRAEL HALPERIN in Kingston (Ontario, Canada)

1. Introduction

1. 1. Terminology. In this paper L will always denote a complemented modular
lattice and M will denote an associative regular ring with unit element. )

"~ We will call L an R-geometry if:

Luy Whenever x,€ L for each ocEI with cardinal power of I={, the union
x=U,(x) and intersection x"= M, (x,) exist and for each y: if yN
N (U (x,la€ F))=0") for every finite subset F of I then yNx = 0, if
yU (N (x, IocEF)) 1 for every finite subset ¥ of I then yUx' =

If (1. 1. 1) holds for all 8, we will call L a von Neumann geometry.?)
In every von Neumann geometry there exists a unique normalized: dimension
function D, vector-valued with OSD(x)<1 for all x in L such that x ~y3) if and
conly if D(x)=D(y): [9 6). When L is irreducible D is numerical-valued and its range

of values is either 0, ; s ; for some integer n (then L is called a finite dimensional

or discrete geometry of von Neumann) or all real numbers 0=¢t=1 (then L is
called a continuous*) geometry of von Neumann) [9, Part I, Theorem 7. 3).

"Ry, Ly will denote the set of principal right (respectively, left) ideals of R,
ordered by 1nclu510n Ry and Ly are complemented modular lattices [9, Part II,
Theorem 2 .4]. R will be called an §-ring or a von Neumann ring if Ry (hence also

Ly) is an 8-geometry, respectlvely a von Neumann geometry.
In a von Neumann ring R there exists a unique, normalized rank-function
R(a), vector-valued with 0=R(a)=1 for all a in R, defined by: R(a)=D((a),).%)

If R is irreducible, R is numerical-valued and Ry must be discrete or continuous;
then R will be called a discrete ring, respectively a continuous ring (of von Neumann).

1) {u|<p(u)} will denote the class of ‘u for Wthh @ (u) holds.

2) Thus L satisfies voN- NEUMANN’s axioms I—V; his axiom VI (1rreduc1b111ty) is not postu-
ifated [9, pages 1, 2). .

3) In any lattlce, X~y means: x is perspective to y (that is, for some w, x U w=y U w and

-xNfw=yNw; x<y means x~w for some W=y,

4) In our terminology a continuous geometry is always irreducible. -

5} (a), and (a); denote the principal right and the pr1nc1pal left ideal’ generated by a, respec-
tively (smcc R is a regular ring, (a)r =aft).
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A discrete ring must be of the form D,°) w1th ‘D a (possibly non- commutatlve)
division ring [9, Part II, Theorem 14.1 and page 292].

If n=1, R, must also be a regular ring [9, Part 1I, Theorem 2. 13] but if N is
a von Neumann ring, Ji, need not be a von Neumann ring (the union of a countable

subset of 1%3;,, may not exist”)); but if 9 is an irreducible von Neumann ring then
N, is also a von Neumann ring (sée the Corollary to Lemma 3. 2 below).

The centre of 9 will be denoted Z (if f is a von Neumann ring, Z will be a
commutative von. Neumann r1ng) Z will be a d1v1s1on ring if and only 1f Z is irre-
ducible and if and only if % is irreducible.

A non-zero -element x in a lattice- L will ‘be called minimal if y1 =X,
Y2 =X, yy~y, together imply y;=y,. ,

By P we shall denote the set of all polynomials

p() = + Zy- 1" Y44z

"with m=1 and all z; central.?) p, g in P will be called relatively prime if h (t)p(z)+
+k(@®q() = 1 for some h, k of the form t"+z,_ "~ 1+...+z, with m=0 and -
all ‘z; central®). p will be called irreducible if p cannot be expressed as a product
p=p.p, With p,, p, in P and each of degree less than the degree of p.

- If Z is not a field, Z contains a non-zero non-invertible?) z, and p=t, g=t-z,
are irreducible, dlfferent but not relatwely pnme This motivates the fol[owmg
definition.

Call pin P pure zrreduc:ble if for every non-zero central 1demp0tent e, epis
irreducible in the ring eR. If N is a von Neumann ring then for each p in P there is
(obviously) a-set of orthogonal non-zero central idempotents, {e,} with U,(e)),=N
and with the property that for ‘each 1:e,p=¢;Il,q; ; witha ﬁmte set of i and with
each g, ;in P and e¢,g, ; pure irréducible in e;N. _

Let P, be a subset of P and let P, consist of all p=p,.. p,,, (all p;in P;). We shall-
call an element a P -algebraic if p(a) =0.for some p in ‘P, P, -almost-algebraic if

- N({(p @)l pEPl) = 0. When P, coincides with.P we omit it in this nomenclature
[10, 4].
a-and b are called similar or conjugate in R if b=dad~" for some invertible d. -
Then for each p in P, p(b)=dp(a)d~', (p(b)), =(dp(a)), and we shall show in Co-
rollary 1 to Lemma 2. 1 below that in " von Neumann ring (p(b)) ~(p(a)), and
hence R(p(a)=R(p (b)) for cach pin P.

- 1.2, Elementary divisors. When R=9, with D a commutatwe division ring
(we shall call this-the classical case) it is known {1, page 283], [11, pages 120—124],
{7, pages 92—98] that: :

(1.2.1) aandbare szmllar If and only if they have the same elementary divisors.

‘) The ting of nXxn matrices with entries in (5 will be denoted S,

7) This failure occurs in KAPLANSKY’s example [8] where R is the ring of sequences of com-
plex numbers a = {a,,|m =1} with all but a. finite number of a,. real, with’ componentmse rmg
addition and mult;phcatlon

8) An element of N is called centra[ ifitis in the centre Z; a, b are orthogonal if ab= ba =

"9) In any ring & with unit, d is called invertible if for some ¢ in &, de=cd=1; cis called
. the reciprocal of d and denoted d-1.
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We give now a definition for ,,elementary divisors of @’ in terms'c')f the rank
function, applicable in any von Neumann ring.
Note first that for b in & and integer s =0, (b°+1), =(b%0), = (b%), and *°) -

4(-1 2.2) ‘ [, (bs+2)]_<[(bs)r_(bs+1),]

(¢1.2.2) will be proved in Lemma 2.2 below). Thus R(b)=R(b5*1) and R(H) —
R(bs+l)2R(bs+1) R(bs+ 2)
We set R,(p)=R(p(a)) for each p in eP= P(e%)%) for arbltrary Non-zero-
central 1dempotent e. For each integer s=1 we define

1P, ) = s((Ra(p*") = Ry () — (Ro(7) — R (2" 1))).

- Then ' Sps s)>0 The function fa(p §) is determined by the function R(p); the:
converse also holds since

R(ps D—R,(p*) = Z’ ﬂ(p,t),

Ci=s
RGO - R(ps==25,§% @0,

RGY=1-5 510000,

It can- be shown that if P, q are relatlvely prnne then 1—R (pq) (1 —R (p))+
+ 1- a(q)

( Thus m) any von Neumann rmg the function R,,(q) for all ¢ in- P is determined
by the values of f,(ep, s) for all p in P with ep pure irreducible-in )i and e a non-
zero central idempotent and all s=1. We shall say for each non-zero central idem-
potent e and p in. P with ep pure irreducible in e, and f,(ep, s) >0 that g=p° is an
elementary divisor of a in eN occurring with normalized frequency f,(ep, s). This.
definition agrees with the usual one for the classical case (there, the only possibility
for e is 1) except that the normalized frequency is the usual frequency multiplied

s: (degree of p)
n

by the factor . It can be shown that in every irreducible von Neumann -

ring

I—Zf,,<p; $ = Rlaeg) =0

where ae, is the transcendental part of @ [4] (thus ,, =" holds if a is almost algebrarc
in particular for all a in the classical case).

We have noted that each p in P can be expressed ,,locally” as a product of pure
irreducible factors. We shall call a subset P, of P fully factorizable if for each p in
- P, there are central idempotents {e} such that U(e), =R and such that each ep is a
product ep,...p,, with each p;in P, and ep; pure irreducible in eJt.

, Clearly P itself is fully factorizable. If N is irreducible then P, is fully factoriz-
able 1f 1t contains$ all irreducible p in P. '

19) If x =y then [x — y] denotes any (ﬂxed) wsuch that yUw=x (the dotin U indicates mde~
pendence of the addends); such w exist m every. complemented modular lattice.
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1. 3. Statement of main theorem. The main object of this paper is to prove
the following theorem, a generalization of (1.2.1) to any von Neumann ring:

Theorem 1.1. Let a and b be arbitrary elements of a von Neumann rmg .
(1) For a and b to be similar zt is necessary that .

{1.3.1) R,(g)= R,,(q) for all g in P. . ! _
(ii) For a and b.to be similar it is sufficient that for some fully factorizable P, :

(1.3.2) R(p)=Ry(p) forall p in P, and s=1,
(1.3.3) a and b are P,-almost-algebraic.*!)

(1.3.4) Whenever é is central idempotent such that éR contains minimal ele-.
ments then &N is a finite dimensional matrix ring over &, Z for some
non-zero central idempotent &, such that &,é=é,.

(1.3.5) R, is a von Neumann ring.!?) _
Remark. The definition of R, is given in footnote 6) It is ‘shown in the Corol-

lary to Lemma 3. 2 below that 3, is a von Neumann ring whenever } is an irredu-

cible von Neumann ring (equ1valently, if Ry is a discrete or continuous geometry) :
more generally whenever 9 is a direct sum of irreducible von Neumann rings.

Also, it follows from Lemma 3. 1 and Lemma 3. 2 below that every von Neumann
ring can be expressed as a direct sum RSN in such a way that ('), is a von Neu-
mann rmg and N is a von Neumann ring in which every idempotent is central (equl-

valently, Nz is a Boolean algebra).
Let E be the céntral idempotent for which ' =RE; then clearly, a and b are
similar in. R if and only if Ea, Eb are similar in 91" and (1 — E)a, (1 — E)b are similar

in RN If a, b satisfy (1. 3. 2), (1. 3.3) and (1. 3. 4), then at least Ea, Eb are similar in
N (hence in N) since R’ satisfies (1. 3. 5).. Thus @ and b will be similar in N if

and only if (1—E)a, (1—E)b are similar in the ring gt((l—E)a'and (1—-E)b
satisfy (1. 3. 2), (1. 3.3), (1.3.4) in B).

In such a rmg BN condmon (1 3. 2) can be expressed in the s1mpler equlvalent
form:

(1.3.2y . (p(a)),=(p(b)),for allpin P;.

_ We shall postpone to another occasion further discussion of thé case.of a ring
R, noting here only that it is easy to see that Theorem 1. 1 (ii) holds without (1. 3. 5),
if R is the example given by KaPLANSKY {(and described in footnote 7)).

Corollary to Theorem 1. 1. Suppose f is a von Neumann ring which is
irreducible, or.more generally, is a direct sum of irreducible von Neumann rings, or
more gen.erally, has the property: N, is a von Neumann ring and that (1.3.4) holds.

11) In the presence of (1.'3.1) the condition (1.3.3) for a will imply (1.3.3) for 4.
12) For the classical case 3t = D, (D commutative) our proof specializes of course, to a proof
of the known result (1.2.1). . : :
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If a and b'in R are almost algebraic then they are similar if and only if they have the
same elemeniary divisors. _

However, we shall not use rank (or dimension) functions. "In (1.3.1) and
(1. 3. 2) we shall replace equality of rank by perspectivity of correspondmg principal
right ideals.

1. 4. Plan of the proof of Theorem 1. 1. Corollary 1 to Lemma 2.1 below will
show that (dp(a)), ~(p(a)), if d is invertible. From this follows (i) of Theorem 1. 1.

To prove (ii) of Theorem 1. 1 we prove-first the special case:

(1.4.1) aand b are similar in an Ryring R if R, is an Ro-ring, and (@), ~ (),
for all s=1 and (N ((*),|s=1)=0 (see Theorem 4. 1 below),

~ and then the case:

(1 4.2) aandbare szmzlar in a von Neumann ring R if (1. 3. 4) (1.3.5) hold and

for some pure irreducible p in P, (p%(a)),~(p* (®), for all. s=1 and
N ((7°(a)), lszl) 0 (see Theorem 4. 2 below).

) ',Then in the general’ case weA show that the unit in i can be decomposed into
orthogonal idempotents e (not necessarily in the centre) with U (e),=R and

(usmg Theorem 3. 1 below) such that, for some b=dbd-1: for each e, ae= ea and
be=eb and ae, be satisfy the hypotheses of (1..4. 2) in eRe.

This will yield: ae and be are similar in eMe. Then, usmg a theorem Wh]Ch
permits ,,combining” such local similarities in the case that ?)fz is'a von Neumann

-ring (Theorem 3. 2 and its Coro]lary 1 below) we deduce that @ and b, and hence .
also a and b are similar.

- 2. Proof of (1. 2. 2) and Theorem 1. 1 @

If d is in t we shall write d" to denote {bldb 0} Ifxc R we write X" to denote
{b[xb 0}. Similarly for &' and x':

Lemma 2. 1. Suppose dGSR and xERR Let xo=d’ﬂx. If xﬂdx=0 or if
. R is an Ry -ring, then [x — xo] ~dx

Corollary 1. If also x,=0 (i in parttcular if dis mverttble ), then x~dx 50 (1}
of Theorem 1. 1 holds. ; _

- Corollary 2. If R is a von Neumann ring, then D(x) D(dx) +D(x0)
" Proof of Lemma 2.1. Let e, f be 1dempotents such that x = ©,,dR=0),,

and let x; = [x—x,). Then a€x implies a = a5 +a, with a;€x;. Thus dx=dx,. _

Let T denote the mapping of 0=y=x, onto 0=w=dx, defined by: T(a),
——(da) Then T has the propertles

() Tis order-preservmg indeed, (db), = (dc), is equivalent in turn to_eachlof L
for some a in R, db=dca, d(b—ca) = 0,b—ca = 0, (b),é(c),,
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(11) T(a), ~(a), if:T(a),N(a),=0: 1ndeed (a+da), is an axis of perspectmty
since

T(a), U (a+da), = (da); U (a+da), = (a), U (a+ da),
From [4, Lemma 6. 1] it follows that x; ~dx; = dx.

Proof of Corollary 2. D(x) = D(xo)+D(x,) and D(dx) = D(x,) since
dx~xy.

v Lemma 2.2. (1.2.2) holds in an R¢-ring.

, Proof. Let x*=($*),MNb". By Lemma 2.1, [(b‘) —(b‘“)]L xs—(b‘) for'
some X~ xS, Since x3tl=x5, X+ < x (perspectmty is transitive in an §,- geo-
metry |2]) Now (bs+1),<(bs),, 0 from [2, Lemma 6. 5] follows (1.2.2).

3. Lattice sums of ring elements

3. 1. Preliminary Lemmas.

Lemma 3. 1. Suppose Ry has a basis'3) x, x5, x3 with x; ~x, x35 x,. Then
if N is an R-ring (respectively von Neumann ring) so is N,.

Proof. This coincides with [5, Corollary 2 to Theorem 3. 1].

Lemma 3.2. Evéry von Neumann ring Rt is a direct sum RSN with R satisfy-

ing the hypotheses of Lemma 3. 1 and R auvon Neumann rmg in which every idempotent
is central 1%)

oo

Proof. If L is a von Neumann geometry then L = eaL where L; has’
i=0

a homogeneous basm consisting of i minimal'5) elements if i=1, and L, has the

property: O¢x€L01mpl1esO #ZYy Nyzforsomeley2 x [9, Part 111, Theorem 3.2].

There are elements x(lo), A(zo) which form a homogeneous’ basis for L0 indeed

‘take a maximal class of pairs {y1,13} with {yl,yzjall oc}_Lls) and ¥i~y5 for
“each a and set x\”=U%, x2 =U,)5.

For i>1,L, has a basis x%’, x5, x? with 2@~ xf x(')-< : indeed, if

Yis - , yl is a homogeneous basis for 'L; then accordmg as i=2m or z—2m+l

take =y, U e Uy %2 =yma U U Y, X3 =0 or respectively.
Let L= LI,L =Ly® ZEBL Then I = LGBL’ and L is a Boolean al-

gebra ‘whereas L has a baSJS xX;= U(x(’)lz #1), j=1,2,3, with x, ~x1, x5 L Xg-

13) X1y... Xm are sald to be a basis for a lattice L if U;x, = the unit of L; the basis is called
Hhomogeneous if x;~x; for all i, j [9].

14) If M is a regular ring with unit, all idempotents in N are central if and only if Rsn isa -
Boolean algebra [9, Part 1I, Theorem 2.5 (Note) and Theorem 2.10].

15) A non-zero element x in a lattice L is called minimal or locally-atomic if y1=x, y,=x,-
1~y together imply yy =y, (for another definition, see’ [9 Part 111, Deﬁnmon 3.1)).

16) | indicates ,,mdependence
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Every direct decomposition of L= Ry is determined by a oorresponding direct
decomposmon of N and from this follows Lemma 3. 2.

Corollary ‘Suppose- 3t is a von Neumann ring. Then R has the property Eﬁz
is a von Neumann ring whenever I is irreducible, more generally whenever R is a
direct sum of irreducible von Neumann rings;, more generally whenever N is a direct
sum of von Neumann rzngs N each of which has the property: (N9, is a von Neumann
ring.

.Proof. Since (2 EBER“)Z = > & (9%, we need only show that N, is'a von Neu- -
marnn ring whenever 9t is an irreducible von Neumann ring. But if 90 is irreducible,
then with the decomposition R = RON of Lemma 3.2, we must have R=R

or R=N". Since (N'), is a von Neumann ring (according to Lemma 3. 2), we need

only prove: N, is a von Neumann ring whenever 3 is an irreducible von Neumann .
ring in which every idempotent is central, equlvalently, Risa d1v151on ring. But in
this case N, is (trivially) a discrete von Neumann ring.

Lemma 3. 3. If (a),=U/a,), in Ry then ba,=0 for all « if and only if ba= 0.
Proof. [9, Part II Corollary 2 to Lemma 2. 2.]

Lemma. 3.4. If N is an 8-ring and {xalozEI} 1L in Rs)t with cardmal of IS N,
there exist orthogonal idempotents {e,} with (e,),=x. 2 Jor all a. :

. Proof. Let y=[R- Uxa] and choose e, so that (e);=x, and (l1-e), =
—(Up¢axp)Uy :

Lemma 3.5. Suppose {e,|« EI } are orthogonal idempotents with cardinal of
I=R in an }-ring and let e be an idempotent with (), =U,(e,),. Then e is the unique
idempotent with also (1—e), = Nl —e).r?) if and only if (e),=U,((e,),; then
de,=e,, dey=0 for B#y imply de=e,;ed=e,, epd=0 for =y imply ed=e,.

Proof. By [9, Part. II, Lemma 2.2, .Corollary 2] (1—e), = N(1—e), is
-equivalent to (e); =(1 —e)) =U,(1 —e, ) =U,(e.);. : ‘

- Next, (de—e,)e,=de,—e,e,=0 for all o.. Hence, by Lemma 3. 3, (de — ey)e =0,

de=e,

Lemma 3. 6. Suppose U,x, exists in Lg{ Then Jor any d in §R U,(x d) exists
and is equal to (U xa)d

Proof. Let x=U,x,. Then for each «, xd=x,d since x%xa. To prove
Lemma 3. 6 we need show if y=x,d for all « then nyd

Suppose y = x,d for all a. Then y N (d),=x,d for all « and therefore it clearly :
sufﬁces to prove: (d),zy=x,d for all 1mp11es y=xd. Now for some a in R,

=(ad),=(a),d. Let u=(a);Ud'. Then y= ud. Hence it is sufficient to prove that
uZx for all «; this would yield u=x and hence y =ud = xd as required.

To prove u=x, suppose c€x,; then cd€cud since x,d=ud, hence cd=c,d for
some ¢; €u. Then (c— ¢;)d=0,50 c—c;€u. Now uis a left ideal so (¢; +¢—¢y) Eu,
c€u. Thus x,=u, as required. ThJS proves Lemma 3. 6.

17) .This e exists because L{J',(ea),l and ﬂ&(l —e,)- are complements (f is an N-ring).
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3. 2. Lattice sums of ring elements. In this section, R will be an &-rmg for some
N, Ja set of indices a with cardinal =§.

Definition 3. 1. A set of orthogonal idempotents ¢'={e,} will be called a
separating system (s.s.); then e=e, will denote the unique idempotent with (e), =
=U,(e,),, (&);=U,e,), (existing by Lemma 3. 5). .

Definition 3.2. An s.s. ¢ will be called a right separatmg system (r.s.s.)
for {d,} if ed,=d, for all a

Definition 3.3. Ifsisar.s.s. for {d}then Z &d, will.denote an elementd

such that deU,(d,), and e,d=d, for each a; such an element d (if existing) will
be called a-g-right lattice sum of the d,. Similarly for o-left lattice sum.

Lemma 3.7. A r.s.s. o exists for' {d,} if and only if {(d,),} L (by Lemma
3.4). If for some r.s.s. o, a o-right lattice sum of the d, exists then its value d
is unique, d=e,d, (d),=U, (da),, and for any element b,db=d for some y and
db=0 for axy imply db=d,

Proof. If e, (d— d) 0 for all «, then by the right-left dual of Lemma 3. 3,

e,(d—d)=0; e,d=e,d. This means: the o-right lattice sum (if existing) is unique.
Next, (d),—(e d),—(ed)d so by Lemma 3.6, (d),=U(e,d),=Ud),.
Finally, e, (db—d)=0 for all «, so by the right-left dual of Lemma 3.3,
e,(db—d,)=0. Hence db=d,.

Definition 3.4.'If {(d,),} L, we denote by ZGBd an element d such that

d is a o-right lattice sum of the d, for every I.s.s. a for {d,}. This d (unique, if it
exists, by Lemma 3. 7) will be cal[ed the right lattice sum of the d,.

Definition 3. 5. If {(d,),} L and {(d,);} L we denote by ZGBd an element

d such that d is a right lattice sum and a left lattice sum of the d,. Thn d (unique, if
it exists, by Lemma 3. 7) will be called the lattice sum of the d,. :

Lemma 3.8. If {(d,), }_L and {(d)),} L and d is a o-right-lattice sum of the d
(for some r. s. s. o) then d is a lattice sum of the d,.

Proof. Let t={f,} be any left separating system for {d,} and let f=F,. Then
eg(d, —df,)=0 for all «, B so e,(d,—df,)=0, d,=df,. This shows that d is a t-left
lattice sum of the d, (by Lemma 3.7, (d),—U (d ) =U, (/D)

Now by right-left duality, d is a o--rlght lattlce sum of the d, for every r.s. s. .
o for {d,}.

Lemma 3.9. If {(d).l«€I} L and I is finite then: ZéBd exists and coincides
with the ordinary (ring) sum 2 d,.

Proof. Obvious. ’ , ,

‘Lemma 3.10. If {e,} are orthogonal ldempotents then ZGBe exists and co-

mczdes with the unique ldempotent e with properiies: (e),= U (e),, (), =U o (€
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Proof. By Definition 3. 3 and Lemma 3. 5.

Corollary. Suppose {e,} are orthogonal idempotents and e= 3, ®e,. If for
some a in N, e,a=ae, for each «, then D, @ (e,q) exists and equals ae= ea.

Proof. First we show ae=ea. We have (e),= U,(e,), by Lemma 3. 10, and.
(a—ea)e, = ae,—eae, = ae,—ee,a = ae,—e,a =0 for all «. By Lemma 3.3,
(a—ea)e=0 so ae=-eae. By a left-right dual argument, ea=-eae. So ae=ea.

Next, 6={e,} is a r.s.s. for {ae,} and {(ae,);} are independent since (ae,),=
=(e,);. So by Lemma 3. 8, ae= 2, ®(ae,) if only ae is a o-right lattice sum of the
ae,.

So from Definition 3.3 we need only show (i): e,ae =ae, for each « and (iiy
ae€ U,(ae,),. But (i) holds since e,ae=e,ea=c,a=ae,. As for (i), (ae), = (aee,), =
(ae,), so (ae),=U,(ae,),. If (ae), # U, (ae,),, then there exists a non-zero idempotent
g€(ae), such that (1—g),=(ae,), for all «. Then gae,=g(1—g)ae,=0, (ga)e,=0
for all &, so by the left-right dual of Lemma 3. 3, (ga)e=0. But g =qaed for some d,
so g=gg=gaed=0, a contradiction. Thus (ae),=U,(ae,), so (ii) holds and the
Corollary is established.

Lemma 3.11. It o is a r.s.s. for {d,}, then a o-right lattice sum of the d,
does exist if N, is an §-ring.1®)

Proof. Let e=e, and form the matrices:
00 00
d, e,| M= 0e
{D,} are orthogonal idempotents in 3, so by Lemma 3. 5 an idempotent E in.
R, exists such that (E),=U,(D,), and (E),=U,(D,),; in Rg with &=%R,. Now .
MD, =D, for all  so (M), oU,(D,),=(E),, ME=E. Thus E must have the form
00
dg

with ed=d. Since D,E= D, for all « it also follows that e,d=d, for all oc.‘ Thus this
element d is a o-right lattice sum of the d,.

Lemma 3. 12. Suppose d=2,&d,, c=2,,®c,, and some 6 ={e,} is a r. s. s.
Sor {c,} and a l. 5. s. for {d,}. Then 2 ,®(d,c,) exists and is equal to dec.

Proof. Since (d,c,),=(d),, {(d,c,),} L. Similarly, {(d,c);} L. If t={g,} is a
r. 8. 8. for {d,}, then g, dc=d,c=d,e,c=d,c,.

Theorem 3. 1. Suppose e=2,®e, and = 3, ®f, for idempotents e,, f, in a
von Neumann ring R. guppose_(ea), ~(fr for each «. Then there exist d, d in R such
that d=edf, d=fde, dd=e, dd=f, df,d=e, and de,d=f, for each «. Moreover, if
U.le), =N then e=1=f and d is invertible with d as its reciprocal.

o

-]

o
18) If X is an infinite cardinal, 3, may fail to be an R-ring and such d may not exist; this.

happens in KAPLANSKY’s ring (see footnote 7)) if en=(0,...,0,1,0,...), du=1(0,...,0, J—1,
0,...) (m=1) where the non-zero components are in the m-th place. .
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Proofl. The last statement would follow from the additivity of perspectivity
.in a von Neumann geometry [9, Part 11I], [3].

We recall voN NEuMANN’s proof of Theorem 3. 1 for the casc I has a single
index [9, Part II, Theorem 15.3 (a)]; suppose (e), and (f), are perspective, hence
have a common complcment. Then there exist idempotents €', /7 such that:

(e)r = (e,)l'; (1 _e,)r = (1 _fv)r; (f,)r = mr'

Define d(e,f)=¢f, d(e,f)=/"e. Then it follows thai &' =e'f’, [ =f"¢,e=¢e,
@ =ee, f=ff, f=[f. Therefore:

ed(e, )/ =d(e.f); fd (e,N)e=d (e,]);
d(ea.f)/g(ea.f) =d(e=f') “_{ (eﬁf) =e,
d (e, /)fd(e, /) = d (e, )d(e, ) =/.
Next, if R, is also a von Neumann ring, we need only define d= 3, ®d(e,, ),

d=3,®d(e,,f,), using Lemma 3. 11, and Lemma 3. 12,

Finally, every von Neumann ring 3 has a direct decomposition R@R’ as in
Lemma 3.2 and we let E be the central idempotent for which ' =RE.

Then Ea=aqkF for all ¢ in R. Let o’ denote aE, d denote a(l — E). Then in R,

4&,), ~(f,), and since Ry is a Boolean algebra, necessarily &,=Ff,.
In 9V, (), ~(f), and we can apply the argument of the preceding paragraph
since Rg is a von Neumann ring when & =9315. Now

d= (Z’a@éa)—l" Zaead(eo,uf;)J
d=(Z.0f)+Z.0de.f)

:satisfy the requirements of Theorem 3. 1.

Theorem 3.2. Suppose {e,} are orthogonal idempotents in a von Neumann
ring R. Suppose for each o, d,=e,d,=d,e,. If N, is also a von Neumann ring, then
. ®d,=d exists.

Proof. o0={e,} is a r.s.s. for {d} so by Lemma 3. 11, {d,} possesses a o-
right lattice sum d. But {(d,),} L since (d,),=(e,);, so by Lemma 3.8, d is a lattice
sum D, Bd,.

_Corollary 1. If in Theorem 3.2, {d} satzsfyd =d,e, = e,d,, d,d,=
=d,d, = e, for each a, then d =3 ,®d, satisfies dd =dd =3, ®e,.

Proof. Since o ={e,} is a 1.s.s. for {d,} and L s.ss. for {d,}, it follows from
Lemma 3. 12 that dd= >, ®(d,d,)=>,®e,. Similarly, dd= >, ®e,.

Corollary 2. Suppose {e,} are orthogonal idempotents and {f,} are orthogonal
idempotents in a von Neumann ring R such that R, is a von Neumann ring.
Suppose for each «, d, = e,dy=d, fo,. Then d= 2,44, exists. Moreover if {d“} exists
such that for each «: d,=f.d,=de,, d,d,=e,, dd,=f,, then d= >, ®d, exists
and dd=>,®e,, di=>,0f,.
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Proof, The argument for Theorem 3.2 and its Corollary 1 is valid in the
present case.

4. Proof of the special cases (1. 4.1), (1. 4.2)

Lemma 4. 1. Suppose that ¢ is in an Yo-ring N and ﬁ((cs),.|s§1>=0. Then
R can be espressed as the union of independent principal right ideals:

4.1.1) R =U (x|l =i<oo; 1=j=0)

such that cx, ;=% ;41 and ¢"(x, ;=0 for 1=j<i<eo, and cx; ;=0 for 1=i< oo,
Then'®) necessarily X, ;~%; ;.1 for 1=j<i, RU (U(x;1i=1))=R, and for each
s=1, (Y =x,; if i—s<j=iand () Nx; ;=0 if j=i—s, so (by (1. 1.1) and the
modular law) (Ics)’= UG lizl; i—s<j=i).

Moreover any value of [(c')'—((¢) N ((c*~ 1y UeR))]=[(c) — (=) U (N
NeM))] may be used as x;,;?°) on the other hand, gny value of [(c"Nc'~—1%)—
—(c"Nc'N)] may be used as x,;.

Proof. Suppose x;; given as described and define x; ;=c¢/~1x; ; for 1=j=i.
Then for 1=j<i, cx; ;=x; ;41. If d€x;; and ¢/d=0 with 1=j<i then ¢!-1d=0,

de((c =1y U((c) NeR)), hence (see the definition of x; ;) d=0. Thus ¢"Nxy ;=0

for 1=j<i. Clearly cx; ;=c'x; ; =0.
Next we show that for each j=1

{ng%, X; J|Z§]} 1.

For suppose ¢/v =c¢/~1v; 4 ... + ¢/~ tv, with allv; € x; 4. Then we must have ¢/~1v,=0.
Otherwise, j—1<s and left multiplication by ¢=7 yields: c¢v=c*~'v,. Then
vy = (v, —ev)+cv and (v, —cv) €(*~ 1Y, cwe(ey NeNR; this implies that v, =0 since
vs€x,,, and hence ¢/~1v =0, after all. Repetition of this argument shows that
¢/~1p;=0 for all i=s,5—1,...,j and hence civ=0. This proves the assertion.
From this it follows that for each fixed j=1: {x,,|i=j} L. Also
{U(x,;liz))|j=1} Lsince U (x,;[i=/)NU @y lizs=j) =U (x,;li=j)) NdR=0.
This implies that {x,;|i=1; 1=j=i} L. u
Next, by [4, Lemma 6.2], N((c?),lj =1) =0 sinceby assumption N ((c)),|j=1) =0.
Hence R =(N((c"),lj=1)) = U((¢))y|j=1) (by [9, Part IT, Lemma 2. 2, Corollary 2]).
Since (U (x; 4 li= 1)) U(cR)=(c’) for all j=1 it follows that U (x; ;|l=j=i<)U
UcR=N. Successive left multiplication by ¢ now gives: U(x; [l=j=i<e)U
UenRt=R for all m=1, and since N(c"R|m=1)=N((c"),|m=1)=0, therefore
UQrl1=j=i<ee) =N,

19) Xy~ X1,5+1 follows from exy,;=x1;+1 and ¢ x;,;=0 because of Corollary 1 of
Lemma 2. 1. Further, from exi,; = x;,;+1 follows, because of formula (4.1.1), R =U (4|1 =
<j=i).

20) When specialized to the classical case, this result yields: lel T be a linear transformation
of a finite dimensional vector space J into itself (¥ shall be finite dimensional over a division
ring D but D need nol be commutative) and suppose TP =0 but 7P-170 for some p=1.
Let N(T)={v|Tv=0}. Let 1,1, 0, &1, be a basis for the difference-space [N(T) — N(TH N
NWTE-~ Y U TP Then {T9&i|i=1,....,p; k=1,...,5 j=0,1,...,i—1} are a basis
for V. ¢
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On the other hand, if the x;,; arc pre-assighed as some given [(¢"Nci~IR) —
—(c" NN, set x,4 = [{dlc*~1d €x,, i} —(c=1)]. We shall show that these values
for x,;,, satisly the conditions given in the first part of Lemma 4. 1 and that ¢i- 1X4,1
will coincide with the given x; ;.

1"11sit il dex;,, then ¢'- 1(ICM ; and x;,;=c¢*, Hence c'd=0. This proves:

1= (e

Next, x,,, is a rclative complement of (¢/) N((ct=1)"U(¢R)) with respect Lo
(¢')'; to show this we must prove: (i) x, Ny UeR) =0, (1) x5, U((c=)U
Uc%)a(c')'

To prove (i), suppose d€x;, and d =u+cv with ¢*~'u=0. Then c'-ld=
=chex,; and c(c')==0. Hence cwe(c'Nc'RN) so, from the definition of x,; it
follows that ¢ =0. Thus ¢*~1d=0. Now we have d € (ci-1), so from the definilion
of x;, it follows that d=0, This proves (i).

To prove (i), we remark that from the definition of x;:x,; U(c!~Y) =
= {d|c*-1d€x,,}. Hence

X, U((@ )y UeR)={d|c~1d€x,,} U cR.

Now suppose u€(cfy. Then ci-lucer so ci~tuc(e"Nct—19N). Then from the
definition of x;;:c!~'u =v+w for some v€x;; and some we(c"NcR). Now
w=clq for some g. Therefore u = d+cq where d = u—cq has the property:
¢=td = c'~lu—clq = vex;;. Hence u€(x;; U((ci- 1)’Uc§R)) which implies (ii).

Finally, if d€x;, then ¢'-'d€x,;, so ¢'~'x;;=x;,; on the other hand, if
u€x;,;, then u=c- 1y for some w, s0 w=d+v for some dEx,  and some vE(c‘”‘)’
So u=cl-tdeci-1x; ;. Thus x;,=ci~1x, ;. Hence x;,=cl~x, ; as stated.

Now all parts of Lemma 4.1 are established.

Remark. If ¢ is an element in an arbitrary regular ring R with unit and ¢*=0
for some integer 4, then the proof of Lemma 4. 1 is valid; moreover the range of i
may be restricted to 1=i=# (the appeal to [4, Lemma 6. 2] and [9, Part II, Lemma
2.2, Corollary 2]) is unnecessary here since ¥ = U((¢/y|j=1) is an immediate
consequence of c*=0, (chy =N !

Lemma 4. 2. Suppose the hypotheses of Lemma 4.1 hold and that c=p(a)
Jor some element a and some pure irreducible p in P, p(f) = 1"+ Zpu_ 18" + ... + 2.

If z, is invertible, in particular if m=1, then the element a is invertible. In every
case if R is a von Neumann ring?') and (1.3.4) holds N has a decomposition as
described in Lemma 4. 1 with the additional properties: For each i=1,

A x,;= U (@ix,|0=j<m) for some x;;
(i) x;,,=YU(@y;|0=j<m) for some y; with c:~'y,=x;
@) (@)yNy;=0 so aly;~y; for 0=j<mi.
21) Lemma 4.1 (and Lemma 4.2 for the case m=1) hold if R is any No-ring. But if m>1

our proof of Lemma 4.2 uses transfinite induction (or ZorN’s Lemma) and requires it to be a von
Neumann ring in which (1. 3. 4) holds.



Elementary divisors 13

Then (necessarily implied by (i), (ii), (iii) in any R,-ring)
“(v) U(aly,|0=j<ms)=U (i, 11=7=2) for 1 =s=iand {aly;|0=j<mi} 1

W U(@y,)i=1,0=j<mi)=%R.

Proof. Suppose that d€a". Then

0 = N(P@)s=1)= N((P@d),ls=1) = N((z8d),ls=1) = (d),
if z is invertible. Then a" =0, (a),=N. Thus if z, is invertible then (in any 8,-ring
by [4, Lemma 6.2]) a is invertible.

Suppose m=>1. Suppose ¢ is a non-zero central idempotent. If ez, =0, then
ep(t)=et(#"~ ' +... +2z;) which is impossible since p is pure irreducible. Hence
ez, #0 for every non-zero central idempotent e. But z,t =e,R for some central
idempotent e, [9, Part II, Theorem 2.5], and (1 —ep)z, €(1 —ey)eoR=0. This
forces 1 —eq to be 0, sorey =1, z,I =R. This shows that z, is invertible, and there-
fore, by the preceding paragraph, a also is invertible, _

Next, suppose (i), (i) and (iii) hold. Then, by (i), ci~!(a'y,) =a’ci~ly,=
=alx; so ay;~alx; if 0=j<m by Corollary 1 to Lemma 2.1 éince @H N
Nx,1=0). But x,;~x, so, by (i), U(@y|0=j<m)~ U (aix;|0=j<m). This
forces: {a'y;|0=j<m} L by [2, Lemmas 6. 15, 4.4], in any 8,-ring. The same-
argument applies to inclusion relation

U@y |0=j<ms) = U (caly,|0=j<m; 0=k=s—1) = U (x, ;|1 =j=s)

and forces the addends on the left to be independent and the inclusion to be equality.
Thus (i), (i), (iii) imply (iv) and hence (v).

We need now only show that (i), (ii) and (iii) can be satisfied.

If m=1, choose x;; and x;; as in Lemma 4. 1. Let x;=x,,;, y;=x; ;. Then
(i) and (ii) hold obviously (2 =1). Suppose for some j with 0 =j<i and some d€y;
that a’d=0; then (c—z,)/d=0 so c/de(x;; U...Ux; )Nx;;41=0, hence d=0.
Thus (iii) holds by Corollary 1 to Lemma 2. 1.

We may therefore suppose m=>1. Let A;=c" Nci~1R. Then ad;=A;s0 ad;=A
(since a is invertible).

Now since p is pure irreducible and (1.3.4) holds, an argument of von
NEUMANN [4, Lemma 5. 1] applies here?!) and shows, by transfinite induction
that for some x;: 4, ; U(U(a/x;|0=j<m)) =4, Hence we may use U (a/x,|0 =] <m)
as the pre-assigned x, ; in Lemma 4.1 and (i) will hold. .

Let B;={d|c"'dcx}=(c")" and define y,=[B'—(ci~')]. Then ci~ly,=x,.
Also

i

(U @y, 0=j=<m)) U (c=1y ={d|c!-1d € xy,)}

s0 we may also (in the proof of Lemma 4. 1) choose U (a’y;|0=j<mi) as x, ;. Then
(i) holds,

As for (iii), since m =1, g is invertible and (a/)" =0; thus (iii) does hold.

This completes the proof of Lemma 4. 2.

Lemma 4. 3: Suppose a and b are elements in a regular ring R with unit and

suppose m is an integer =1. Suppose X, ..., %, is a basis for Ry such that ax,=
=X;41 =0x; for 1=i<m and o' =b"=x,,. Then a and b are similar.
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Proof. We may suppose m=2 (il m=1 then ¢ =5 =0 and so b =dad-1 with
d=1).

Since Xy, ..., X,, is a basis [or Ry:U (x|l =i=m) =N, in particular x,Nx;=0
if is27. But if 1=i<=m, then ax;=x;, and a"Nx;=x, Nx;=0, so by Corollary 1
to Lemma 2. 1, x;~x;,.;. Hence xy, ..., x,, is a homogeneous basis for Ry. Then
by [9, Part [I, Lemma 3. 6] therc exist matrix units s;; (5, j =1, ..., m) with (s;)), =x,
for all i. Finally, the prool of [9, Part II, Theorem 3. 3] (notc especially [9, page
99, lines 13, 14]) shows that #=8,, with &; =s,,Ns,;.

We shall call ¢=(c;)) off-diagonal if (i) ¢;;=0 except when i = j4-1 and (ii)
¢j41,; 18 invertible (in s;;MNs;,) for 1=j<m. Lel ¢, be the ofl-diagonal clement
with non-zero entries all 1(=s4).

Now the hypotheses of Lemma 4, 3 force ¢ and b 1o be ofl-diagonal; so it is
suficient to prove a and ¢, are similar. Thus we necd only find an invertible d=(d,))
such that ad=dcy,. For this purpose choose d;;=0 for i#j, and dy; =1,
d” =a“_ 14—~ l,i—Z“'all .[‘01‘ i> 1 H thell a(l=d00 .

This completes the proof of Lemma 4. 3.

Theorem 4. 1. Suppose that a, b are in an ¥,-ring, R such that N, is an
No-ring, and (a*), ~ V%), for s=1 and N((@),ls=1)=0. Then a and b are similar.

Proof. Sincé N((%*),ls=1) = (a), for all m=1 it follows by [2, Lemma 6. 11]
that N((3*),ls=1)=0.

Let x§; and x}; be determined for a,b respectively as in Lemma 4. 1.
First we shall show that x§;~x?;. We have: (a°),~ (0%, for s=1, hence
[~ 1), — (@)~ [, — ()] for s=1. Then by Lemma 4.1, U (xf|i=s)~
~ U sli=s). ) ) _

Since x§ 5~ x§ | foreachiz=s, U (xf ;|i=s)~ U (x{ 1 |i=s). Hence U (x§ , |i=s) ~
~U (x},]i=s), and so by subtraction, x{,;~x}, for all i=1. Then x§ ;~ x§  ~
~xp g~ XY 80 x§ y~xh g for all 1=j=i<eo, as stated.

Now let {e;;}, {f;;} be families of orthogonal idempotents such thai
(e;,),=x¢; and (f; )),=x} ;. Then by Theorem 3.1, df, ;d-'=e,; for some in-
vertible d.

The element ¢=dbd-! has the property: (c¢*),=(db%),~ ("), for s=1 (use
Corollary 1 to Lemma 2. 1), so (¢*), ~(a*),. Hence N((c*),ls=1)=0 (the argument
used above for b applies to ¢ also). Finally (df;,;d~'), may be used as x{ ; since
the mapping: (), —(dud-1),=(du), is a lattice automorphism of Ry.

So we may suppose x§;=(e; ;),=x{; and clearly, we need only prove a
and c are similar., In other words, we may assume x¢ ;=x? ;=x;; (say).

Let {e;} be orthogonal idempotents with (e;),= U(x, ;|1 =j=1), >, ®e;=1.
Then ae;=e;a, be;=epb for all i and the hypotheses of Lemma 4. 3 are satisfied
in the ring eNe; by ae;, be; and x; je; (1 =j=i).

Thus for some d;, d; in eNe;, did;=e;=d;d; and eb=d;aed;.

Now d=D;®d;, d=2;®d; exist by Lemma 3.11; and by Lemma 3. 12,
dd=dd=1, b=dad. Thus Theorem 4.1 is established.??)

22) Theorem 4.1 together with Lemma 4.3, yields a ,,canonical’ representation for any a in
R for which N((a*).|s=1)=0.
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Lemma 4. 4. Suppose a and b are invertible elements in a regular ring R with
unit. Suppose m=1 and p(t)=1"+z,,_ "+ +...+z, is in P and p(a)=p(b)=0..
Suppose x, ax, ..., a"~1x is a basis for Ry and a'x =bix for 1 =i<m, Then a and b
are similar,

Proof. We may suppose m=2 (if m=1 then a =—z,=b and b=dad-!
with d=1).

Then ¢ is invertible and Corollary 1 to Lemma 2, 1 shows that x, ax, ..., ¢"~1x
is a homogeneous basis for Ry. Hence 9t possesses matrix units sy 4, 7=1, ..., m)
with (s;), =at~1x for 1=i=m.

Call ¢=(c;;) p-off-diagonal if:

(@) ¢4y, is invertible (in 54, Rsy,) for 1=i<m,

(11) CoomCmym—1Cm—1,m—2++-Ci+1,;1 = —Zj—1 for léléma and

(iii) ¢;;=0 for all other 7, ;.

Let c, be the p-off-diagonal element with ¢;4q,,=1 for 1=i<m.

The hypotheses of Lemma 4. 4 force a and b to be p-off-diagonal. Hence, we
need only show that ad=dc, for some invertible d. For this purpose take d;; =1,
dy=a;;-1...a5; for 1<i=m and d;;=0 for i#j. This completes the proof of
Lemma 4, 4,

Theorem 4. 2. Suppose that a and b are elements in a von Neumann ring RN
and that (1.3.4), (1.3.5) ‘hold, and m=1 and p(t) = "+ z,_ " 1 +...+z is
in P and pure irreducible. Suppose (p%(a)),~(p*)b)), for all s=1 and
N((p*@),ls=1)=0. Then a and b are similar.

Proof. Theorem 4. 1 applies to p(a) and p(b) and shows that p(a) =dp(b)d—* =
=p(dbd~1) for some invertible d. If m=1, then b+z, = d(a+2z,)d=' so b=dad !
for some invertible d, as required. Thus we may assume m =2, Since we need only
show that g and dbd—! are similar, we may now assume that p(b) =p(a).

Now Lemma 4. 2 can be applied to yield elements 3§, 3% for a, b respectively,
as described in Lemma 4. 2. The corresponding values of x; ; (as described in Lemma
4. 1) x¢ 4, x§,1 may not be the same but they are of the form [x—X] for the same
x, X; hence they are perspective. So, by (i) of Lemma 4.2: U(a/y}0=j<m)~
~ U(@%?|0=j<m). Moreover, by (v) of Lemma 4. 2, the elements in each of these
unions form an independent family, and by (iii) of Lemma 4.2, the elements in
the same family are mutually perspective.

Now y§ ~ % follows from the theorem that u, ~v, in a von Neumann geometry
whenever U(@u|l=i=m)~ U(v;|l =i=m) with {1} mutually perspective and {v;}
mutually perspective (in the terminology of [9, Part III, page 272]: if mAd=mB
with m=1 then 4=B). To prove this theorem assume if possible that u; ~v; is
false, Then for some w in the centre of the geometry:

wNuy ~v9 where v =v; but v9s4v; (here we use [9, Part III, Theorem 2. 7]
and interchange u,, v, if necessary). Then there exist elements v9 such that

m m m

wi Ulu,-: 00w~ Uwnop=wn U=
= i i= i=1

=1

m m m

=wNUv but with wNUvdzwn ).
i=1 i=1 i=1
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‘On the other hand, (wﬁ U u,) ~<wﬂ U1 v,> by [9, Part III, Theorem 1. 4, (a),
i=1 i=
m m
'with w=d, Uwu;=a, v,=0]. So by the transitivity of perspectivity the lattice
i=1 i=1

m

element ¢=wN |Jv; satisfies: c~c; with ¢;=e¢, ¢; #c¢. Bul this is impossible.
i=1

Hence u, ~v; must hold, and so y§~3%.

Then a/y} ~ bly} for all j. Now by Theorem 3, 1 there exists a similarity mapping
which maps 'y} onto aly? for all 0=j<mi. Hence, in proving Theorem 4.2, we
may supposc byt =aly; for all 0=j<mi.

Now set ¥; = U(a,|0 = j < mi). Then U, ¥;=R and a¥,=>bY, for all
iz1. By Lemma 3. 4 there exist orthogonal idempotents F, with (I),=Y,, al,=
= Fa, bF,=F.

The hypotheses of Lemma 4. 4 are satisfied in the ring I\®F, by aF, and bF,
.and {a/y F||0=j<mi}. Hence aF; and bF, are similar in the ring FRF, and, as
Ain the proof of Theorem 4. 1, Lemmas 3. 11 and 3. 12 can be used to derive: a and b
.are similar in 9t.23)

5. Proof of the Main Theorem

We suppose Jt is a von Neumann ring satisfying (1.3.4), (1.3.5) and need
only prove Theorem 1.1 (ii). It will be sufficient to prove the following ,,aug-
‘mentation” lemma,

Lemma 5.1. Suppose Py, a, b satisfy the hypotheses (1.3.2) and (1. 3. 3).
Suppose S*={e2, pa€I} and S®={e,p,la€I} have the properties:2%)

(5.1.1) e, et are non-zero idempotents with &¢=ét=gé, (say) for each acl,
Dy EPy and é,p, is pure irreducible in &R, .

(5.1.2)  g(N(Pi(a),|s=1))=(E,—e,,
e(N(p(@)ls=1))=(e,—ed);; similarly for b in place of a.

'(5. 1. 3) éae',,pa;ﬁe'“e'l,p,, if é“ép¢0.

‘Then:

(5.1.4) (%), ~(eb), for each acl, (Z,® e, ~(Z,De),;

(5.1.5) {et|a€l}, {el|a€l} are sets of orthogonal idempotents,
ae,=e,a, e,b =be,;

(5.1.6) If 3, ®e, # 1 it is possible to augment S° S® by pairs (% p), (eb, p)
preserving (5.1.1), (5.1.2) and (5. 1. 3).

23) Theorem 4.2 together with Lemma 4.4 yields a ,,canonical” representation for any a in
R for which N (p*(a).|s=1)=0 for some pure irreducible p in P.

24) For any idempotent e in a von Neumann ring 3, we write ¢ to denote the central cover
of e, that is, the central idempotent & with the properties: ¢ = e and for any central idempotent

ffe=e implies fe=eé.
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Remark. Theorem 1.1 (ii) can be deduced from Lemma 5.1. To see
this, note that by transfinite induction (or ZorN’s Lemma) it is possible to choose
59, S? to be maximal with the properties (5.1.1), (5.1.2), (5.1.3). Then from
(5. 1. 6) it will follow that >, ®e? = 1 and hence >, el = 1.

Then by Theorem 3.2 there will exist d,d” in § such that di’ =d'd=1
(so d'=d~*) and debd =e, d'etd=et for each o. The mapping u—dud-! is a
ring isomorphism of e2%fel onto efNRel.

Let c¢=dbd-'. Then debbd-!=dbebld'=elc=ced and (5.1.1), (5.1.2),
(5.1.3) hold if b is replaced by ¢ and each el is replaced by e?=e, (say).

In each ring e,Ne,, the elements e,c, e,a satisfy the hypothesis of Theorem
4,2, Hence g,, g, exist in e,Re, such that g,g, =gi8,=e, and g,e,cg.=e,a

If now R, is also a von Neumann ring then, by Corollary 1 to Theorem 3.2,
the elements g= > ®g,, g = . Dg. exist and satisfy: gg’=g'g=1 (so g'=g~1).
Then by the Corollary to Lemma 3.10, ¢=2,®e,c and by Lemma 3,12,

gt = 2, (g (e, )8 ") = 2. D(e,a)=a.

Thus if' N, is a von Neumann ring, ¢ and a are similar, hence b and « are similar,
which establishes Theorem 1,1 (ii).

Thus we need only prove Lemma 5. 1 to complete the proof of Theorem 1. 1.

Proof of Lemma 5. 1. The hypotheses of Theorem 1.1 (ii) imply that (re-
call the definition of &, given in footnote 24):

&,(N @), 1s=1))~e,(N (B s=1)).
Hence (5. 1.2) implies (ef),~ (el),. Now (5.1.5) follows from [4,§7.1]. Then
U (€9), ~ U (eb),, by the additivity of perspectivity in von Neumann geometries [3].
So (5.1.5) and (5.1.4) both hold.

Finally, we establish (5. 1.6). Suppose E=1— D @®e% # 0. Then Eel=
=e¢E=0 and the Corollary to Lemma 3. 10 shows that ¢E=Ea so p(a) E=Ep (a)

for “all peP.
Now a is assumed to be P;-almost algebraic, so p(p(a)),zo when p varies
over all products of factors from P . Hence N,(Ep(@).= N, (p@E), = 0. Thus

for some such p, (Ep(a)), #(E),.

Since P, is fully factorizable there is a set of orthogonal non-zero central idem-
potents {¢} such that U (), =R and each ép is a product ép;...p,, with all p; in P,
and ép, pure irreducible in éR,

Now for at least one of these ¢ we have (¢E), #(eEp (a)) since for every ¢ in
R: (c),= U(&c), (use the Corollary to Lemma 3. 10). Hence with this &: (eEp (a)) =
—(eEpl(a) D (@), #(€E), where the p, are all in P; and each epL is pure irre-
ducible in &, If eEp,(a)b;=¢EE were to hold for some b, for i=1, ..., m we would

have

éEpl(a)-"pm(a)bm"'bi = éEpl(a)"'pm——1(a)e_Ebm—1"'b1 =

= CE¢Ep;(a)...py-1(@)by—1...by =...=EECE...2E = @E,
a contradiction. Thus, if p is replaced by a suitable p;, we can assert: p is in Py, ép
is pure irreducible in R and (¢Ep (@), #(EE),. For the rest of this proof we keep
p fixed with this value.

Now we apply the well known method of ,,exhaustlon” Let {f} be a set of
orthogonal non-zero central idempotents maximal with the property: fé=f and

A2
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ngp @), =(E),. Let fo= 3 d(]). Then foé =f, and, using the Corollary to Lemma
.10, we deduce (folip(@), =(fok),.

Thus, if ¢ is replaced by é—f, we can assert: (gLip(a)), 5 (ZE), whencver g
is a non-zero central idempotent with g=¢&g. FFor the rest of this proof we keep
¢ fixed with this valuc (clearly, é30).

Applying [4, § 7. 1] to the ring &9, we choose ¢* to be the unique idempotent

with e?=¢ée® and
@—em, = N(E@), sz 1),
and @—eD = N((e@)|s=1);

similarly, with p%(b) in place of p*(a), we choose e?.
Since we assume (1. 3. 2) and (1. 3. 3) it follows that for each s=1, (ép%(a)), ~

~(&p*(b)),, hence
N(E*@).ls=1)~ N((@*®).ls=1)

(use [2] or [3]). Hence, by subtraction: (&%), ~ (€"),, and so e*=e® (use [9, Part III,
Theorem 1.4 (d)]).

We now prove that if S% SPare augmented by the pairs (e, p), (e?, p) then
(5.1.1), (5.1.2), (5 1.3) are preserved.

First, we shall show that e®=¢é. If this were false then, since e*¢ = e it follows
that ge®*=0 (and hence ge"=0) for some g =gé=0. But our choice of ¢ implies,
by [49 § 1. 1]7 tllat ((e-_—' e“)p(a)),. = (e-_ ea)r SO (g')r = (g(e'——e“)),. = (gge-_ e“)p(a)), =
= (gr(@)),; (2).=(gr(@)),. But also, by our choice of é: (gE), #(gEp(a)),. This
is a contradiction, for if gp(a)c=g, then gEp(a)c = Egp(a)c=Eg =gkE. This con-
tradiction shows that & =¢é. Since &30, it follows that "0 and so (5.1.1) and
(5. 1. 2) continue to hold.

Next we show that (5. 1. 3) also continues to hold. We suppose for some o«
that g=¢,6#0 and we need only show that gp,#gp. It is sufficient to show that

gra) #gp(@).
Since e2E=0 it follows from (5. 1.2) that

@E), = (@, —e)E), = N((@i@), |5 = 1) = (2(a)s,

so Ee,=p,(a)c for some c in R. Then gEp,(a)c =gEé,=gE so (gEp,(a)),=(gE),.
But by our choice of ¢, since g#0 and g=2ég: (gkp(a)), #(gE),. Hence gp,(a) #
#gp(a), as required to show that (5. 1.3) continues to hold.

This completes the proof of Lemma 5. 1 and so Theorem 1. 1 is established.

i
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