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On the functional calculus of an operator measure 

By JACOB FELDMAN in Berkeley (California, USA) 

1. Introduction 

Let T be a set, B a cr-algebra of subsets of T, and F an operator measure on B. 
That is, 

(1) For each 5 in B, F(S) is a nonnegative bounded linear operator on the 
Hilbert space H, , 

(2) If 5 is the union of disjoint sets Sl, S2, ... in B then F(S) = £ F(S„), 
where the sum converges in the strong topology, " = 1 

(3) F(T) = I (the identity operator on H). 

N A I M A R K has shown ( [1 ] , p. 2 6 6 , or [2 ] ) that F(-) can be written in the form 
PE(-)\H, where E is a projection-valued measure with values in some Hilbert space 
K containing H, and P is the orthogonal projection from K onto H. 

Let L„(F) be the class of all bounded complex-valued Borel measurable 
functions on T, identified modulo functions / which are /"-null in the sense that 
F({t\f(t) t^0}) = 0 . If H is separable, then by choosing a sequence .v,, x2, ••• of unit 

vectors which span H, and setting m{S) = 2 4 s (F(S)xn, x„), one sees that L„(F) 
n = i 2 

is just L„(m). In any case, we can put the usual algebra, norm, and * structure on 
L„(F). 

There is defined a map <p from L„(F) to bounded operators on H by <p(/) = 
= P§f(t)dE(l)\H. The map <p is characterized by the property that (<p(f)x,y) = 
= J f(t)d(F(t)x, y) for all x, y in H. Clearly (p is a linear, norm-nonincreasing, 

*-preserving, positivity-preserving map. 
Sometimes we shall write J f{t)dF(t) for q>{f). Indeed, this is a true equation 

if the operator integral is interpreted in the weak topology. 
Of special interest is the case where T is the unit circle C in the complex plane, 

B consists of the Borel sets, and F is what is called a strong operator measure: that 
is, setting A = J tdF(t), 

r ( A " i f « > 0 , 

W - . if ^ 0 . 

Clearly Mil ^ 1. Furthermore, if we are given a preassigned A of norm ^ I, then, 
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by a theorem of S Z . - N A G Y [3] , [4], there is precisely one strong operator measure F 
on the Borel sets of the unit circle related to AbyA = ¡tdF(t). Without assumption 
(4), of course, there are many F for a given A. The corresponding operator 
U= f tdE(t) on the containing Hilbert space K is called the unitary dilation of A, 
and the operator ( p ( f ) is precisely Pf(U)\H. In this case, the function <p becomes 
multiplicative on polynomials in t, and hence also on their boiinded F-a. e. limits, 
(Cf.[5], [6].) In the present paper, we do not make assumption (4). However, the 
results are new even for strong operator measures. 

Let C(r) be the circle of radius r in the complex plane, and D(r) the closed disk 
of radius r. If r= 1, we write simply C and D. For any bounded operator A on H, 
a (A) is defined as the spectrum of A, and a (A) its approximate point spectrum 
(which we interpret as including the point spectrum). Thus a(A)c:cr(A)cD(llA||). 
In the following theorems, statements are made about a(A) Pi C(ll.4||). It should be 
noticed, however, that this is the same set as a (A) D C(Mll ) , since the boundary of 
a ( A) is always contained in a(^4) (this fact was pointed out to me by G. O R L A N D ) . 

In the following theorems F is a fixed operator measure on C, and we utilize 
the notation above. 

T h e o r e m 1. For any / € Lm ( f ),C(II/11) — a (<p(f)) >s equal to the inter section of 
C(|| /11) with the union of all those open sets U of the plane for which II F(f~ 1(i/))ll 1. 

For f£L„(F), let a { f ) denote the spectrum of / as an element in the algebra 
LJJ). Thus z is in a ( f ) if and only i f f ~ 1(U) is f -nonnull for each neighborhood 
U of z. Furthermore a(f)c:D(\\/II), and a ( f ) D C(ll / | | ) is nonempty. 

Corollary, (si) If <p is norm-preserving, then II f (S)ll = 1 for all F-nonnull 
S in B. 

(b) If II F(S)\\ = 1 for all F-nonnull S in B, then not only is ip norm-preserving, 
but in fact 

oi(<p(f))nc(\\f\\) = ff(/)nC(||/||). 

T h e o r e m 2. Let F be an operator measure on the Borel sets of the complex 
unit circle, and let F be absolutely continuous with respect to Lebesgue measure. Let 
<p be norm-preserving when restricted to those functions in Lj(F) which have represen-
tatives in . Then <p is norm-preserving on all of LJ(F). 

I would like to thank Professor M . SCHREIBER for a series of discussions on this 
subject, from which I have profited considerably. 

2. Proofs of the Theorems 

P r o o f o f T h e o r e m 1. First suppose that for each open neighborhood 
U of z0 we have \\F(f~ 1(U))\\ = 1, and |z0 | = | | / | | . We wish.to show that z0 is in 
«(</>(/)). There is clearly no loss of generality in assuming | | / | | = 1 and z0 = 1, since 
the problem can be shifted to this by using Zq V instead of / . Choose e > 0 . Let U 
be an open disk about 1, of radius 2e/3. Write S f o r / " ' ( U ) , and choose x of norm 1 
in H such that (F(S)x, x) > 1 - s / 3 . T h e n ( F ( C - S ) x , x )<e /3 . We write ((p(f)x, x) as 

\d(F(t)x, .v)+ | (/(/)-\)d(F(t)x, x)+ \f(t)d(F(t)x, x). 
s S c-s 
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Thus: 

| (<K/)x, x) - 11 sS | f d(F(t)x, . v ) - l |+ f |/(0 - 11 d(F(t)x, x) + j' d{F(t)x, x) < 
s s c - s 

< |(F(S)x, x) - 11 + e/3 + (F(C - S)x, x) < a. 

That is, (cp(f)x,x) can be made arbitrarily close to 1 by appropriate choice of x. 
But since both <p ( / ) x and x are vectors of length ^ 1, this implies that q>(f)x can be 
made arbitrarily close to x by appropriate choice of x, i. e. 1 €a(<p(/)). 

Conversely, suppose that z0 is in a(<p(/)) f l C( | | / | | ) . We wish to show that 
II F(f~ '(£0)11 = 1 f ° r e a c h ° P e n neighborhood U of z0. Again there is no loss of 
generality in assuming that II/11 and z0 are 1. Choose s > 0 , and x of norm 1 in H such 
that 

| l - « K ( / ) x , x ) | < e 2 , 
that is 

11 ~\f(t)d(F(i)x,x)\^B2. 
Then 

e2 > Re (l --\f{t)d(F(t)x, x)[ = J ( 1 - Ref(t))d(F(l)x, x), 

where "Re" means "real part". Let Ue = {z\ R e z S 1 - e } . Let S£ = / " '(t/£). Then 
we have (F(C — SE)x, x) < e, so that II /'(S'(.)ll > 1 — e. Since SE decreases as e decreases, 
i t follows that II ^ ( ^ 1 1 = 1. If now U is any open neighborhood of 1 in the complex 
plane, then if s is chosen sufficiently small we will have UF/z U. Thus, MFC/"" '(i/))ll = 1 
for any neighborhood U of 1. 

P r o o f o f t h e C o r o l l a r y , (a) Suppose 0 < | | F ( 5 ) | | < 1 for some S 
in B. Let / b e the characteristic function of S. Then | | / | | = 1 , while llip('/")ll = 
= II F ( S ) | | < 1, 

(b) This follows directly from Theorem 1. 

P r o o f o f T h e o r e m 2. Let F be as described in our assumptions, and 
0< | |F(S)I1 =c«= 1. Let w(z) be the harmonic function which has the boundary 
value 0 on S and log( l — c/2) on C—S. Let u* be its harmonic conjugate. Then 
eu+iu» js a n fj^ function whose values on C have absolute value 1 a. e. on S and 
1 — c/2 a. e. on C—S, with respect to Lebesgue measure. Le t /=e u + i "* |C . Let g be 
the function on C which is equal t o / o n S and to 0 oh C—S, while h is equal to 0 
on S and t o / o n C—S. Thus i p ( f ) = y(g) + (p{h), so 

\\(p(f)\\ \\<p(g)\\+\\(p(h)\\. 

Now, II (p(h)\\ == IIh\\' = 1 — c/2. We shall show that ll<p(g)ll S c , which will show 
that II <p{f)II < 1 , giving the desired contradiction. 

For each Borel subset R of C, set 

G(R) = c'1 F(RC\S) + m(R — S)m(C — S)"1 (l — c~l F(C — S)). 

Then G is an operator measure on Borel sets of the unit circle, and is absolutely 
continuous with respect to Lebesgue measure. Let ip be the map from L„(G) to 
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•operators obtained from G, i .e . ( i¡ / (k )x ,y ) = j k(t)d(G(t)x, y). Then ^ is norm-
nonincreasing. Applying this to the function g above, we get 

10Kg)x , y)\ = I \ g ( t ) d { G ( t ) x , y)\ = Ic-1 I 'g( t )d (F( t ) x , y)|. 

.'But l l < K g - ) l l S 1 , so | ( < p ( g ) x , y)\ = ¿ M l H>'H> a n d therefore l l p > ( g ) l l ^ c. 

3. Some remarks and a question 

We have seen via the corollary to Theorem 1 that if the map <p arising from an 
•operator measure F is norm-preserving, then a(99(/})f lC( | | / [ | ) equals a(\\f\\)C\ 
OC(ll /11). The opposite direction is obvious, of course. However, there are situa-
tions in which assumptions on the spectrum of <p(f) for only a single function / 
lead to (p being an isometry. 

Consider the case where F is an operator measure on the Borel sets of C. Let 

( 1 ) M . SCHREIBER has shown in [7] , and it also follows without difficulty from 
our Theorem 1, that if a(A) contains the support of F, then II q>{f)II = IIf\\ whenever 
f has a continuous representative. 

(2) In the same paper, SCHREIBER, shows that if F i s a strong operator measure, 
F being absolutely continuous with respect to Lebesgue measure, and a (A) contains 
some neighborhood of C in D, then cp is isometric on / / „ , and so by our Theorem 2 on 
all of (where ¿ „ refers to Lebesgue measure). SCHREIBER'S theorem actually assumes 
that a ( A ) =D, but his proof can be seen to give the stronger form we have stated. 

So one question which naturally arises is this: let F be a strong operator measure 
on C. Does the condition a(A)^> C suffice to make rp isometric on LX(F)1 
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