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Complemented modular lattices derived from 
non-associative rings 

By ICHIRO AMEMIYA i) in Tokyo (Japan) and ISRAEL HALPERIN in Kingston (Canada) 

j§ 1. Introduction 
l 

K. D. F R Y E R and the authors proved in [6] and [2]: if L is a comple-
mented modular lattice and if a normalized frame of order 3 in L satisfies the 
conditions (3.1. 7), (5.1.1), (5.1. 2) of [6] (see Remark 1 following Theorem 4 
in § 5 below) then L can be coordinatized. The; coordinatization uses a ring2) 
9t with unit satisfying: 

(Pi): 91 is idempotent-associative, i.e., (ap)y = a(Py) if any of a, p,y 
is idempotent. 

(P2): 31 is regular, i. e., for each a there exists a left partial inverse p 
(this means: pa is idempotent and a (Pa) = a) and a right partial inverse 
P' (this means: af? is idempotent and (aP')a = a).3) 

(P3): In 5W, (ap)y=a(py) if any of aP,Py is idempotent.4) 
In this paper we shall make use of the following property which is 

stronger than (P2) but which, in the presence of (P,) and (P2), is easily seen 
to be implied by (P3). 

(P2): For every a in 3t, (a)t = 9ia and (a)r = «9l; for each a there 
exists p and an idempotent e such that ae = a, Pa = e and for every 

*) Post-doctorate Fellow (of the National Research Council of Canada) at Queen's 
University. 

2) Ring means non-associative ring, i. e., an additive group 91 with a left and right distribu-
tive multiplication; e is idempotent means ee = e. A subgroup / is a left ideal of Si if 9 t / c z / ; 
by duality, a right ideal if /3d c : / (henceforth, it is understood that every definition and 
statement in this paper is to include its dual). The smallest left ideal containing A (Z 3t 
exists (obviously); it is denoted by (A)t, by (a), if A = (a). Obviously, S t « C ( a ) ( . 

3 ) VON NEUMANN called an associative ring regular if for each a, there exists fi with 
a p a = a (then afi, P a are both idempotent). 

4) The reader can verify easily that (P,), (P£, (P3) together imply the other condi-
tion on Dt proved in [6], namely: Pa idempotent with a — a(pa) implies that aft is idem-
potent. 
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y:ay = 0 implies ey = 0 ; and for each a there exists P and idempotent e' 
such that e'a = a, a/3' = e' and for every y:ya = 0 implies ye' = 0. 

Although it is not needed for the rest of this paper, we shall show below 
(see §4, Corollary to Theorem 2) that in the presence of (Pi) and (P2), the 
property (Ps) is equivalent to: 

(P3)': 9t is alternative, i.e., the associator [a, ft, y] = (ccft)y—cc(jSy) 
vanishes whenever two of a, /2, y coincide. 

In the present paper we consider an arbitrary ring 3? and we define 
9ta to be the set of associating elements5) in 91 (our 9ta is denoted as % in 
[ 1 0 ] and called there the "Kern" of 91; earlier, it was denoted as N by B R U C K 

and KLEINFELD [3] and called the "Nucleus"). As we show in Lemma 1.1, 
9ttt is an associative subring of 91. We define ¿ = ¿(91) to be the set of all 
(e)t with e idempotent, ordered by set inclusion. Obviously; ¿ has (0) for 
zero and, if 9t has a right unit,6) 9t for unit element. Ai„(9i) will denote the 
ring of all nxn matrices («#) with all in 9t and S„ = S„(9i) will denote 
the set of such (aij) with a'-> = 0 for / < j and all au associating. Then 
Si = 9t" and the reader can verity by obvious calculation that for /2 = 1,2 
or 3, Sn is an associative ring (with a right unit if 9i has a right unit). 

For /z = l ,2 or 3 we define ¿„ = ¿„(91) to be ¿(S„(9t)). If 91 is idem-
potent-associative, 91 and 9i" have the same idempotents (obviously) and then 
¿ and ¿1 = ¿(9tn) are isomorphic (obviously). 

The main results of this paper are: 
(1) If 91 is idempotent-associative and semi-regular7) then ¿ is a rela-

tively complemented lattice8) with zero, complemented if 91 has a right unit, 
modular if 9t is regular (§3, Theorem 1). 

(2) If 9t is idempotent-associative and regular then ¿2 is a relatively 
complemented, modular lattice with zero, complemented with a homogeneous 
basis of order 2 if 9t has a right unit (§ 5, Theorem 3). 

••) & is called associating if (afi)y = a(Py) whenever any of a, ft, y coincide with <5. 
") An idempotent e in 9t is a right unit for A cz 9t if ae= a for all a in A, a unit 

for A if a e = f « = o for all o in A. 
7) See § 3 for definition of "semi-regular"; every idempotent-associative regular ring 

is necessarily semi-regular. 
8) We call an arbitrary ordered set relatively complemented if: whenever a^gb^c 

there exists some d (called a relative complement of b in c over a, denoted [ c — b ] a ) such 
that a is the meet of d, b and c is the union of d, b. When a is a zero element we write 
[c—6] and call it a relative complement of b in c. In a lattice we denote union and meet 
of two elements a,b by a + b, ab respectively; if the lattice has a zero element 0 and 
ab = 0 we sometimes write a ® ¿> in place of a-\-b. 
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(3) If 91 is idempotent-associative and (P2) holds then L3 is a relatively 
complemented modular lattice with zero, complemented with a homogeneous 
basis of order 3 if 91 has a right unit (§ 5, Theorem 3). 

(4) If 9t is idempotent-associative and regular and (P3) holds (equiv-
alently, 9t is alternative) and 9t has a right unit, then every normalized 
frame of order 3 for U does satisfy (3.1. 7), (5.1.1), (5. 1. 2) of [6]; and if 
9i is the coordinatizing ring of some L', as defined in [6], then L3 is iso-
morphic to L'.9) Moreover the construction of [6], applied to a suitable nor-
malized frame for La will give a coordinatizing ring which is isomorphic to 
the original 9f10) (§ 5, Theorem 4). 

We recall that the original construction of a relatively complemented 
modular lattice with zero Ln, for every integer n is 1, made by J . VON NEUMANN, 
required 9t to be associative and regular ([9], Part II, Theorems 2. 14 and 
2.4 ; [5], §3.6). 

§ 2 contains some preliminary lemmas of general interest which are 
required in the other sections. 

§ 3 contains the proof of (1). Here Lemma 3.2 permits us to adapt 
the usual arguments for the associative, regular case. 

§ 5 contains the proofs of (2), (3), (4). Lattice character of ¿2 and L3 
is obtained without difficulty but modularity is established only with the help 
of an embedding theorem for rings by means of which we can reduce the 
discussion to rings having no idempotents other than 0, 1. The embedding 
theorem for rings is given in §4. 

§ 2. Preliminaries 

By easy calculation the reader can verify the identity:") 
(2. 1) «[/?, y, d] + [a, fiy, d] + [a, P, y]d = [«/?, d] + [a, P, yd] 

and hence 
(2.2) «[/?, y, d] = [aP, y, d] if a is associating, 
(2. 3) [a, Py, d] = [a, p, yd] if y is associating. 

9) We actually show that la is isomorphic to the lattice L3 of Ai-sets of vectors 
used in [2] and shown there to be isomorphic to the given L'. (Ai-sets and are defined 
in § 5 below.) 

10) Whether all normalized frames of order 3 for a fixed L3 give isomorphic coor-
dinatizing rings is not known, even if 9i is associative. However this isomorphism does 
hold if 91 has "no associative part", i.e., if B=(0) in Theorem 2 (from the embedding 
construction used in Theorem 3 and the Remark following the proof of Lemma 5 . 3 (i)). 

" ) Given as (2) on page 125 of [12]. 
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We let A = A(ft) denote the set of a in 9t° for which aiH, dtacziR" 
and we let B denote the set of P such that pa = ap=0 for all a in A. 

L e m m a 2 . 1 . A and B are ideals of 91¡B is an associative ring, 
31° is an associative sabring of 91 and if 91 is idempotent-associative and 
regular then 9f is regular. 

Proof . To show that A is an ideal we need only prove that a in A 
implies Pay is associating for all P, y. But (2.2) implies for all d,p: 

[pay, d, (>] = (pa) [ / , d, q] = P[ay, 6, p] = 0, 
and by duality, [d, p, Pay] = 0. Also, (2.3) implies: 

[d, Pay, p] = [d, P, «/(>] = [6, pa, yp] = 0. 
Thus Pay is associating, so A is an ideal. 

Next, B is a right ideal; for if p is in B, and a is in A and / is 
arbitrary, 

a(py) = (ap)y = 0, (py)a = p(ya) = 0. 
By duality, B is also a left ideal, hence an ideal. 

Next, (2. 2) and its dual show that for a in A and arbitrary P,y,d: 
a[p,y,d]-0^[p,y,d]a, 

so [P,y, d] is in B. Thus all associators in 1R/B are zero, which means "Si/B 
is an associative ring. 

Next, a and p both associating clearly implies: a—p is associating 
and, from (2.2), the dual of (2. 2) and (2. 3), aP is also associating. Thus 
91" is a subring, obviously associative. 

Finally, suppose 9t is idempotent-associative and regular. If Pa = e 
(idempotent) and a = ae and a is associating, then aP is idempotent, for 
(ap) (ap) = (apa)p=ap. Now (eP)a = e and eP is associating, for (2.2) 
and (2.3) show: 

[ep, y, d] = e[p, y, d] = p[ap, y, 6] = 0, 

[ / , ep, d] = [ / , p(a p), d] = [ / , /?, apy] = [ / , Pa, pd] = 0, 
[ / , d, eP] = [ / , dpa, P] = [ / , dp, ap] = 0, 

since aP, Pa are idempotent. Thus 91° is regular. 
Lemma 2. 2. Suppose 9i is idempotent-associative. Then if e is idem-

potent, (e)i = 9te (obviously). If h,e,f are idempotents with 9 tAc:9iec9l / 
then there exist orthogonal idempotents12) et (i= 1,2,3) with 9tyi = 9fte1, 
3te^m(e, + e2), dlf=3i(e1 + e2 + e3). 

12) a,/s orthogonal means: aft = ft a —Q. 
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Proof. 9t/ic:9ieci9î/ implies e = e f , h = he = hf. The lemma holds 
with e1=feh, e 2 = / e — e l t e3=f—e1—ei. 

Corol lary . If SR is idempotent-associative then L is relatively comple-
mented. 

Proof. In Lemma 2. 2, 9t(ei + e3) is a relative complement of SRfo + ç.) 
in + + over We,. 

Lemma 2.3. Suppose 9t is idempotent-associative. Then a—af is an 
idempotent whenever f is an idem potent such that (a1—a)f=a1—a and 
faf—fa-

Proof. ( a 2 — a ) / = a 2 — a implies a 2 — a 2 / = a—af. Now 
( a — « / ) ( « — a / ) = a 2 — a f a — a i f + a f a f = ( a l — a t f ) + a ( f a f — f a ) = a — a f . 

C o r o l l a r y . Suppose 9i is an idempotent-associative regular ring 
and suppose I is an ideal of 9t. If either 

(i) every idempotent in 9Î is in the centré3) of DÏ or 
(ii) I=A, 

then 9i/1 is also idempotent-associative and every idempotent in "OR/1 is of the 
form e +1 with e idempotent. 

Proof . Suppose a + I is idempotent in $ / / . Then (a +1)(a + /) = 
= a-\-I, hence a1—a is in I. Since 91 is regular there is an idempotent / 
such that: ( a 2 — a ) f = a 2 — a and / = } ' ( a 2 — a ) for some y. 

Now / is in the ideal / (since a2—a is in this ideal), then also /? / , / / ? 
are in I for all /?. 

In case (i) faf—fa. In case (ii) all //?, ¡Sf are associating (by the 
definition of A) so in this case also 

/ « / = / / « / = ( f y ) (a2-«) ( a f ) = ( f y ) a(a(af))~(fy) a ( a f ) = 

= ( / 7 ) «((«2 - « ) / ) = ifr) «(«2- «) = (((//)«)«) «-((//M« = 
= ( / 7 ) ( « 2 - « ) « = / / « = / « . 

Thus, in both cases, Lemma 2.3 shows that e = a—af is idempotent.' 
Since af is in /, a + I = e + I. This means: every idempotent in 91// is of 
the form e + I with e idempotent. This implies that 9t// is idempotent-asso-
ciative. 

Lemma 2.4. Suppose 9î is idempotent-associative. Then ea—ae is in 
A for every a and every idempotent e. 

13) e is in the centre of 91 means : eft = fie for all ft in St. 

A 13 
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Proof. For any d in 91, e + ed—ede and e + de—ede are idempo-
tents and their difference ed—de is associating. Now suppose d = ed and 
de — O; then d = ed—de is associating, and also for arbitrary ¡3, 

dp=d(pe—ep) + e(dp)—(dp)e 
and 

/3d = (fie—efi) d+e(pd)—(pd)e 
are associating; so d is in A. This applies in particular to d = ea—eae so 
ea—eae is in A. By duality, ae—eae is in A. Hence their difference 
ea—ae is in A. 

Corollary . If 9t is idempotent-associative and regular, "ft/A is idem-
potent-associative and has all its idempotents in its centre. 

Proof. By the Corollary to Lemma2.3 every idempotent in ^/A is of 
the form e + A. Now (e + A)(a + A)—(a + A)(e + A) = (ea—ae) + A = A. 

L e m m a 2 . 5 . Suppose 91 is a ring with unit. Then 
(i) 9t is a division ring without zero divisors") if and only if (P2) holds 

and 9i has no idempotents other than 0, 1, and 
(ii) 91 is an alternative division ring if and only if it is regular and 

(Ps) holds and 9i has no idempotents other than 0, 1. 
Proof. The reader can verify easily that (i) follows from the definitions. 
(ii) is easily transformed into the now well known statement that a ring 

is a Moufang division ring if and only if it is an alternative division ring 
([12]; [8], §11; [10], p. 161, Theorem 4). (ii) is required by us only to prove 
the Corollary to Theorem 2, which is itself not required for the rest of this 
paper. 

§ 3. Semi-regular rings 

A right unit e for Aczdt is called a left idempotent for A if ef=e for 
every right unit / for A (if 9? is idempotent-associative, this is equivalent to: 
die is the smallest element in L which contains A). 

91 is called left semi-regular if every a in 91 possesses a left idempo-
tent, semi-regular if it is also right semi-regular. If 91 is idempotent-associa-

14) A ring is a division ring means: every equation <*£ = y can be solved for fi if 
o # 0 and for a if ,8 0 ; without zero divisors means: aft = Q implies a or p is 0. An 
alternative division ring means: an alternative division ring without zero divisors (then it 
must have a unit, see [10], page 161). A ring is a Moufang ring if it has a unit and for 
each a t h e r e exist such that: /?,« = « / S 2 = 1 and y (ay)=(ya)pi for every y 
(then necessarily, /? 1 =(? s =/S is unique). 
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tive, 91 and 91" have the same idempotents (obviously) and 91 left semi-
regular implies 9ttt is left semi-regular (obviously). 

If 91 is idempotent-associative and regular then each (a)j is. of the form 
9le which implies 9t is left semi-regular; by duality, 9t is also right semi-
regular, hence semi-regular. 

Lemma 3.1. Suppose 9t is idempotent-associative and that every finite 
subset of 91 has a right unit. If some a—ae has a left idempotent with e 
idempotent then a also has a left idempotent provided that: 

(3.1) a £ yig implies e£9 Ig for every idempotent g. 

P r o o f . Let / be a left idempotent for a—ae. We shall show that 
f e = 0. 

In fact, if g is a right unit for {a, e), then f g = f , g—ge is idem-
potent and (a—ae) (g—ge) = a—ae (i. e., g—ge is a right unit for a—ae), 
so f(g—Se)=f> hence fe = 0. 

We now show that h = e+f—ef is a left idempotent for a. In fact, 
hh = h and ah = ae + (a—ae)f— ae + a—ae — a; if g is any idempotent 
with ag = a then, by hypothesis, eg = e, (a—ae)g = a—ae, hence f g = g 
and finally hg = h. 

Remark. (3..1) is certainly satisfied if e has the form e = fia. 

Lemma 3.2. Suppose 91 is idempotent-associative and left semi-regular. 
If e is a left idempotent for a then for every idempotent f , a f = 0 implies 
ef=0. 

Proof . Letg be a left idempotent for e+f—fe. Then a=a(e+f—fe)£ 
£ 9 l ( e + f — f e ) a dig. Hence a = ag,e = eg (since e is a left idempotent 
for a), and ' 

fg = (e+f-fe)g-(e-fe)g = (e + f - f e ) - { e - f e ) =/. 

Then g—gf is a right unit for a (g—gf is idempotent and a(g—gf) = 
~ a <tf=a) so e(g—gf) = e, i.e., e / = 0. 

Remark. If (P2) also held, then in Lemma 3. 2, a / S = 0 would imply 
e / ? = 0 for all ft. 

Theorem 1. Suppose 9t is idempotent-associative and semi-regular.' 
Then L is a relatively complemented lattice with zero (complemented if 91 has a 
right unit) and the lattice meet of die, dif in L coincides with their set inter-
section. 

If 9i is also regular, then L is modular. 
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Proof . This theorem is easily verified since Lemma 2.2 holds and 
for arbitrary idempotents e, f : 

(i) the least element in L containing 9ie and 31/ is precisely Slie+g"—eg) 
where g is any left idempotent for / — f e ; 

(ii) the greatest element in L contained in both 9te and 91/ is precisely 
9 t ( / — g f ) where g is any right idempotent for / — f e and this greatest ele-
ment coincides with the set intersection 9len9i/ ; 

(iii) if 9t is regular, the least element in (i) coincides with 9te + 9l/ 
and L is a sublattice of the modular lattice £ of all left ideals of 9i. 

Indeed, in (i) f—fe = (f—fe)g implies / = f e J r ( f — f e ) g and, by 
Lemma 3.2, ( / — f e ) e = 0 implies ge=0. Hence, e+g—eg is idempotent. Then 
e = e(e+g—eg), f=(fe+fg—feg)(e+g—eg), so 9 i ( e+g—eg)=>me, 
91/. On the other hand, any element of L which contains fRe, 91/ must also 
contain / — f e , hence g (g is a left idempotent for / — f e so if h is idem-
potent and (f—fe)h=f—fe then g=gh £ dih), and so it must contain 
e+g—eg, hence "Si(e-\-g—eg) too. 

In (ii), / ( / — f e ) = / — f e , hence fg=g since g is a right idempotent 
for f—fe. This implies that / — g f is an idempotent. But g(f—fe) = /—fe 
implies that f—gf=(f—gf)e so 9t( /—gf)<=die n 31/. But if a is any 
element in die n 31/, « possesses a left idempotent h and h is in 3te n 31/. 
Then h(f—fe) = h—h = 0. This implies hg — 0 by the dual of Lemma 
3.2, so ag = (ah)g — a (hg) = 0 and a(f—gf) = ccf—0 = a, i.e., a is 
in 9 t ( / — g f ) . 

(iii) If 31 is regular then in (i) above, g can be chosen to be of the 
form « ( / — f e ) for some a. Then 3i(e H-^-—eg), which is the union of 3ie 
and 31/ in L, is contained in 3te + 3t / On the other hand, this union ob-
viously contains 3te-J-3t/, so they coincide. Since 3te + 3l/ is the union of 

and 31/ in £, 3te and 3i/ have the same union in L and in £. By (ii) 
above, die and 91/ have the same lattice meet in L and in £. This proves (iii). 

C o r o l l a r y 1. Suppose 9ti is a subring of an idempotent-associative 
semi-regular ring 9i and suppose that for each a in 9ti there exist idempo-
tents in 9*! which are right and left idempotents respectively, for a in 9t. 
Then L(%) is isomorphic to a sublattice of L(9l) under the mapping: 9liC—>9ie 

for idempotents e in 91,. 

Proof . Clearly, 9li is idempotent-associative and semi-regular. If e,f 
are in 9ti then (i) and (ii) of the proof of Theorem 1 show that there are 
idempotents g, h in 9ti such that the union and meet of 9ie and 9If are 
iRg^h respectively; at the same time, those of %e and %f are 9tig,%h 
respectively. It follows that the given mapping is a lattice isomorphism. 
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C o r o l l a r y 2. If 91 is idempotent-associative and left semi-regular, 
then every finite subset of 9? has a right unit, and every finite subset of 
S„(91) has a right unit. ' 

Proof . The proof of (i) in Theorem 1 holds for this 91. Now suppose 
each at has right unit e, ( / = ] , . . . , m) and let 3?e be the union of the 91e,. Then 
clearly, «!, ...,am has e as right unit in 91. If alt..., am are all the elements of 
a set of matrices in S„(9t) then these matrices have for right unit the dia-
gonal matrix with all diagonal elements equal to e, all other matrix elements 
equal to zero. 

§ 4. Decomposition theorems for rings 

Lemma 4.1. Suppose 91 is left semi-regular. Then A, B have only 0 
in common and hence a-*(a +A, a +B) is an isomorphic mapping of 91 
onto a subring of the direct sum 9i/fl® 9iM-

Proof. If a is in both A and B then so is a left idempotent e of a 
since A and B are ideals, by Lemma 2. 1. Then ee = 0 so e — 0, and 
a = ae = 0. 

Lemma 4.2. Suppose 91 is idempotent-associative and regular and 
every idempotent of 91 is in its centre. Then 9t contains a family of ideals 
Nx such that each 91*. = 91/M. is idempotent-associative, regular and has a 
unit but no other non-zero idempotents and a-+(a + Nx) is an isomorphic 
mapping of 91 onto a subring of the direct sum of the Nx. 

* 
Proof. Let E denote the set of idempotents in 91, ordered by: e ̂  / 

if ef=e. Then £ is a Boolean ring. For each maximal ideal I of E let Nx 
denote the set of a in 91 for which ea = a for some e in k. Then Nx is an 
ideal of 91, since 

(i) if a is in Nx then ea = a for some e in A; then e(aft) =«/?, 
e(Pa) = /S(ea) = i3a for this e\ thus aft, pa are in Nx for all 0 in 91; 

(ii) if a, p are in Nx then ea = a, / /? = /? for some e,f in A; then, 
e+f—ef is also in I and, since e,f are commuting idempotents, 

(e + f - e f ) (« + /?) = (e + f - e f ) (ea +//?) = « + /?, 

thus a-\-(j is also in Nx. Moreover, by the Corollary to Lemma 2.3, every 
idempotent in 9lx = St/Afr is of the form e + Nx with e idempotent in 91. 

Now let / be any idempotent not in L Then for every a in 91, 
/? = «—af satisfies / ¿ = 0 . Let el be a left unit for Then e = ex—exf is 
also a left unit for /?, i.e., = But e f = 0, hence the set A consisting of 
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all eh+g—ehg (h£E,g£l) excludes / (and includes e). But k is an ideal 
of E and 12 L Hence k = k since A is a maximal ideal of E. Thus I con-
tains e, hence (by definition) Nx contains /?. Now 

(« + Nx) ( f + Nx) = ( / + N,) («x + Nx) = f a + Nx = 

= / « + (P+Nx) = ( f a + /S)+Nx = a + Nx 

showing that f+Nx is a unit of 9U. 
The mapping a—>-(a + Nx) is an isomorphism. For, if a=£0, then 

there exists an idempotent e with fia = e, ae = «(since 31 is regular) and, 
obviously, e=/=0\ hence there exists a maximal ideal k in E for which 
is false (as is well known, such I can be constructed with the help of 
ZORN'S Lemma or by the usual transfinite induction); hence a£Nx is false. 
Thus a-*.(Nx) only if a = 0. 

Theorem 2. Suppose 31 is idempotent-associative and regular. Then 31 
is isomorphic to a subring of a direct sum 31 = © 291/N>. \where iR/B is 
associative and regular and each di/Nx is a_ regular ring with unit but no 
idempotents other_ than 0 and 1. 31 satisfies (P2) or (P3) if and only if each 
fR/Nx satisfies (P2), (P3) respectively, and if only if each di/Nx is a division 
ring without zero divisors or an alternative division ring, respectively.15) 

Proof . This follows from Lemma 4. 1, Lemma 2. 1, the Corollary to 
Lemma 2.4, Lemma 4. 2 and Lemma 2.5, since 3t satisfies (P2; or (P3) if 
and only if each homomorphic map 9t/7Vx satisfies (P2) or (Ps) respectively. 

C o r o l l a r y . An idempotent-associative regular ring has property (P3) if 
and only if it is alternative. 

§ 5. M-sets and S,-matrices 

9t will denote a fixed ring, n a fixed integer ^ 1 . 
A vector v = (a{;/== 1 , . . . , n) with all a* in 9t, will be called an 

r-vector (and we sometimes write (a 1 , . . . , ar) for v) if a* = 0 for all i>r, 
a controlled r-vector if also a r is idempotent (=e(v) = e, say) with ea> = aj 

for all j < r. 
A set of vectors vlt ...,vn will be called a basis if each vT is a con-

trolled r-vector, canonical if also arei = 0 for all i < r where e, denotes e(vt). 
An Afn-set (or simply Ai-set), written M(vu ..., vn), shall be defined 

whenever vu...,vn is a basis and shall consist of all controlled vectors of 

15) Related decomposition theorems were given by FORSYTHE and M C C O Y [ 4 ] and 
M . F . SMILEY [ 1 1 ] . 
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the form / ^ H \-ynv \vi,...,vn is called then a basis for M(vi,...,vn). 
The set of all Af-sets, ordered by inclusion, will be denoted LM= = 
We shall sometimes denote M(vu ..., vn) by [«i,. . . , vm] omitting some or 
all of those vt which happen to be 0. 

An Sn-matrix (or simply S-matrix) shall mean a matrix X = ( d i ] 
r,i=\,...,n) in S = S„(9t), i.e., the r-th row is an r-vector vr with ar 

associating. We sometimes write H ,̂ ...,vn\\ for X. The matrix X is called 
canonical if . . . , vn is a canonical basis. If 9t is idempotent-associative 
then a canonical X is necessarily idempotent. 

Lemma 5. 1. Suppose 91 is idempotent-associative. If n = 1 , 2 or 3 then 
(i) M(u1,...,un)c:M(v1,...,vn) if and only if all ult ...,«„ are in 

M(vu. ..,vn), 
(ii) every M-set has a canonical basis, 
(iii) for every idempotent X in S there exists a canonical E in S with 

XE= X and EX= E, (so that SE = SX, since S is an associative ring), 
(iv) LM and L(S) are order-isomorphic under the correspondence M*->-SE 

if M consists of all controlled vectors occurring as rows in matrices of SE, 
where E is an idempotent in S. 

Proof. We consider n — 3 only (the argument given will cover the 
cases n = 1,2 also). 

(i) can be verified easily by the reader. 
(ii) If (e,), (a, e2), (¡3, y, e3) is a basis for the Af-set then (e^, (a—ae l t e 2 ) , 

(P—fiei—y(a—aej), y—ye2,es)) is a canonical basis for the Ai-set. 
(iii) An idempotent X must have the form ||(e), (a , / ) , (P,y,g)\\ with 

e, f,g idempotent and ae-\-fa = a, /Se-\-ya+giS=ft, yf+gy = y. Now 
£ = ll(e)> ( / « , / ) , (gP—gPe, gy—gyf,g)\\ satisfies the requirements. This 
implies SE=SEX^SX and SX=SXE^SE, i.e., SE = SX. 

(iv) From (i), (ii) and (iii), Lu and L(S) are order-isomorphic under 
the correspondence M(u-i, u2, tf3)*-<- ||«i, u2, us|| for canonical bases ultu2,u3. 
Indeed, if ultu2, u3 and vu v2, v3 are each a canonical basis, then by (i) above, 
M(uu u2, u3)aM(vi,v2,v3) if and only if 

Ui = Vi, «2 = «21^1 + ^2^2, u3 = a31v1 + a32v2 + e3v3 

for suitable a<j and idempotents elte2,e3 in Dt. But this condition is equiv-
alent to 

II «1, «2, Wall = lite). («21, e2), (a3 u«ii,e3)\\\\vuv2,v3\\ 
that is, to: ||«i, u2, z/3|| £ Sjk,, v2, vs||. From (ii) and (iii) it now follows that the 
correspondence given above is an order-isomorphism of all LM and all L(S). 
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Finally, suppose E is an idempotent in S, so that, by (iii), SE = 
= 511«!, u2> i/3|| where ux,u2,u3 is a canonical basis. If now w is a control-
led vector in a matrix of SE, then w is a controlled vector of the form 
« ! « ! - [ - a 2 « 3 + « s « 3 and thus it is in M(ux, u2, u3). On the other hand, if w is 
a vector in M(ultuz,u3) it must be a controlled vector of one of the forms 

eiU, ttziui + e2u2, ^Uj + a ^ + esUs 

and hence does occur as a row in a matrix obtained from ¡|u,,u2,u3|| by 
multiplying on the left by a matrix of one of the forms 

IKeO. ( 0 ) , (0)||, ||(0), ( « 2 1 , e 2 ) , (0)||, ||(0), ( 0 ) , ( a 3 u a 3 2 , e 3 ) \ \ . 

This proves all parts of (iv). 

Lemma 5.2. Suppose 3t is idempotent-associative. 
(i) If 9ft is regular and e is a left idempotent for a, then X=j|(0), (a), (0)|| 

has E = U(e), (0), (0)|| for left idempotent in S3, and ||(0), (a)|| has ||(e), (0)|| 
for left idempotent in Si, and every X1 = ¡1(0), (a, ft), (0)|| with IS associating 
has a left idempotent H ,̂ v2, (0)|| in S3 such that ||(0), («, /?)|| has 11 ,̂̂ 11 os 
left idempotent in S2. 

(ii) If (P2) holds in 3?, then every X= ||(0), (0), (a, /S)|| has a left idem-
potent of the form E= \\(e), (y,f), (0)|| in S3, and every X1 = ||(0), (0), (a, ft, y)\\ 
with y associating has a left idempotent in S3. 

P r o o f of (i). Clearly XE=X. If F= \\ult.. .|| is idempotent (neces-
sarily Ui = (h) with h idempotent) and XF=X then ah = a. Hence eh = e 
since e is a left idempotent for a. This implies EE— E so E is a left idem-
potent for X. 

Now, since ft is associating, by Lemma 2.1 there is a left partial in-
verse for p. Then Ex = ||(0), (0, ft'ft ft'), (0)|| Xx is canonical. By 
Lemma 3. 1 and Corollary 2 to Theorem 1, Xj has a left idempotent if 
Xi—X1E1 has a left idempotent, and this is so since Xj—X1E1 has the form 
11(0), ( « 0 , ( 0 ) 1 1 . 

Proof of (ii). By (P2) there exist idempotents e, f,g and an element 6 
such that ftf=ft and for every r],ftr] = 0 implies /?j = 0; gft=ft and 
/jgf{ = gg(t; $(a—ga} — e anc[ («—ga)e = a—ga. 

Then a—ae=ga—gae^g3t(=ftift), hence a—ae = fty for some y. 
Since fty = ( /? / ) / = ft(fy), we may use fy as a new y. After this change, 
we have fy — y. Since ftye = (a—ae)e = 0 it follows that fye = 0, hence 
ye = 0. 

Now E=\\(e), (y,f), (0)|| is canonical, and XE = X. If XF=X for 
any F= ||(0), (<?, <p), u3\\ then ad + ftQ=a, ftcp=fi and 6, y are associating. 
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To show £ is a left idempotent for X we need only prove that £ F = E, 
i.e., ed = e, yd+fg = y, f<p=f. But, since ad = a—Pg and gP= P, 

ed = d(a—ga)6 = d(a—Pg — g(a — fig)) = d(a—ga) = e; 

since a — ae + Py=ad-\-Pg and Pf=P, 

Kr 0 + fQ~ r) = («~ 6 •+- P g—Py = a 6—a e + pg—p y = 
= (ad + pg)—(ae + py) = 0, 

hence, 
0 =f(yd+fg—Y) = yd+fg—Y (since fy = y); 

so yB-\-fg = y. Finally, since p=pf=p<p, therefore P(<p— / ) = 0, hence 
f(<p—f) = 0 so f<p=f. This completes the proof that E is a left idempotent 
for X. 

Now if y is associating, there is a left partial inverse /'691° for y. As in the 
proof of (i), Xl has a left partial inverse since Ex = ||(0), (0), (0, 0, y'yy'JWXj, 
is canonical and X1—X1E1 is of the form ||(0), (0), (a!,/?,)]!. 

T h e o r e m 3. Suppose Dt is idempotent-associative. 

(i) If 9t is regular then S2 is semi-regular and U is a relatively com-
plemented modular lattice with zero, complemented with a homogeneous basis 
of order 2 if 9t has a right unit. 

(ii) If (P2) holds then S3 is semi-regular and L3 is a relatively comple-
mented modular lattice with zero, complemented with a homogeneous basis of 
order 3 if lit has a right unit. 

Proof . We consider (ii) (the argument given will cover (i) also). 

P r o o f of (ii): lattice character. We first show that every X = 
= ||(a), (P, y), (I, n, r)|| in S3 has a left idempotent. 

Let e be a left unit for a, p, y,k,n,v (existing by Corollary 2 to Theo-
rem 1; the Corollary applies since (P2) implies 9i is regular, a fortiori, semi-
regular). Let Xi = ||(e), (0,e), (0)||X. Now if X, has a left idempotent E, 
then Lemma 3.1 shows that X also has a left idempotent. Indeed, Lemma 3.1 
applies with S3 in place of 9t, X in place of a, and E in place of e; (3. 1) 
holds because for every idempotent G in S3, X^S3G implies X=XG, 
hence A1G = AT1 and so EG = E, that is, E£S3G; further, X—XE = 
= ||(0), (0), (l',fi', »0|| has a left idempotent by Lemma 5.2 (ii). Thus we 
need consider only Xx, i.e., we can suppose Z = /w = r = 0. Similarly we 
can suppose P = y — 0. 
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Now if a' is a left partial inverse of a then ||(a), (0), (0)||-||(a), (0), (0)|| 
is clearly a left idempotent for ||(a), (0), (0)|| in S3 so that S3 is left semi-
regular. 

By the dual argument,16) S3 is also right semi-regular, hence semi-
regular. Then, by Theorem 1, L3 is a relatively complemented lattice with zero. 

P r o o f of (ii): modularity. By Theorem 2, can be imbedded in a 
direct sun 3i = and this induces a natural imbedding of S3(9t) 
in the direct sum S3 = S3(3i/B).® 2S3(R/Nx). We have already shown that 
every X in S3(9l) has a left idempotent E in S3(9t) (for example, if 
X—\\ (a), (0), (0)|| then \\(a'a), (0), (0)|| where a £31" is a left partial 
inverse of a\ but then this E is also a left idempotent for this X, conside-
red in S3). Examination of Lemma 3.1 and Lemma 5. 2 and their application 
to construct a left idempotent E in <S3(9l) for arbitrary X in S3(9i) shows that 
E is also a left idempotent for X considered in S3. A dual statement holds 
for right idempotents. So by Corollary 1 to Theorem 1, Z.3(9i) = L(S3(ift)) is 
lattice isomorphic to a sublattice of L(S3) = L(S3(dt/B))®2L(S3(dt/N{)). 
Thus, to prove L3 modular we need only show that L(S3(dt/B)) is modular 
and that each ¿(53(3i/M)) is modular. 

Since 3i/B is associative and regular, the work of VON NEUMANN [9], 
Part II, Proof of. Theorem 2. 13, shows17) that M3(1R/B) is associative and 
regular and that. L(M3($i/B)) is isomorphic to Z.(S3(9t/5)), so the latter is 
modular (for the definition of A/„(9i) see § 1). 

Thus, by Theorem 2, we need only show: ¿3(9i) is modular when 
is a division ring with unit, and without zero divisors. 

It is sufficient to show that Lf (3i) is a projective plane geometry18), 
hence modular. Clearly M(ult u2, u3) is an atom if and only if exactly one 

10) The dual ring Dt' consists of the elements of 9t with addition unchanged but 
with multiplication a oft in 91' coinciding with ft a in 3i. Then S3(9i) is anti-isomorphic to 
53(9i') under the correspondence 

II (a), OS, y), V) || ^ II („), (f, >•), (/2, A «) ||. 
Now the proof of left semi-regularity of S3(31) is also a proof of left semi-regularity of 
S3(9t') which is equivalent to right semi-regularity of S3(91). 

17) J. VON NEUMANN showed that if 9t is regular and associative then MnQK) is as-
sociative and regular for all « = 1 , 2 , . . . so that for every A in Ain(9t) there exists an 
idempotent E in Ain(9t) with Mn(3i)A = MJ9t)E. Now, although this is not stated expli-
citly, the argument given by VON NEUMANN actually shows that there exists such an E in 
S„(3t) ; hence, if 91 is associative and regular there is an obvious order-isomorphism be-
tween ¿(Ai„(9{)) and L(S„ (3t)) for each n = 1 , 2 , . . . . 

1S) We do not require Si to be alternative, hence this plane projective geometry is 
more general than the geometry constructed by R. MOUFANG [8]. 
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of the Ui is and M(uuu2,u3) is the unit of L? if all are =£0; we 
shall call M(uuu2,u3) a line if exactly two of the Ui=f= 0. 

It is easily verified that if one line is contained in another, they are 
identical, it is obvious that every line contains at least two distinct points, 
and we know already (Lemma 5.1, (iv)) that I f is a relatively complemented 
lattice. Therefore, to show that L" is a projective plane we need only show: 

(i) two atoms are always contained in some line, 
(ii) two lines have at least one atom in common. 
(i) is obvious except when the atoms are of the form [(a, /?, 1)] and 

[(A, ft, 1)]. In this case, either /3=fi and then both atoms are contained in 
the line [(1), (a, /3, 1)]; or and then both atoms are contained in the 
line [(y, 1) 0, 1)] where d is a solution for (fi—j3)d = l—a and y is the 
common value of A—¡¿<5 = a—/3d. 

(ii) is obvious except when the lines are of the form [(a, 1), (¡3,0,1)] 
and [(A, 1), (ji, 0, 1)] with a=f=L Then ya + /3 = /A + fi for some y; with 
this y, [(ya + /3,y, 1)] is common to both lines. . 

This completes the proof of modularity of L3. 

P r o o f of (ii): homogeneous basis. Finally, if 9i has a right unit e0, 
the following is readily verified to be a normalized frame for : = [(e0)], 
a2 = [(0, £>„)], a3 = [(0,0, <?«)], c,2 = cai = [(— e0, e0)], cls = cn = [(—e0,0, e0)], c23 = 
= c32 = [ (0 , —e 0 , e0)]. 

T h e o r e m 4. Suppose 9i is an idempotent-associative, regular ring 
with unit for which (P3) holds. Then 

(i) every normalized frame of order 3 for L3 satisfies the conditions (3. 1.7), 
(5. 1. 1), (5. 1. 2) of [6], 

(ii) the construction of [6], applied to the particular normalized frame 
given at the end of the proof of Theorem 3, yields a coordinatizing ring 
isomorphic to the original under the mapping [ ( — a, 0 , 1)] ( a € 9 t , 

[ ( - « , 0 , 1 ) ] € U). 

(iii) if 3t is the coordinatizing ring of some L' constructed as in [6], 
then L3 is isomorphic to L'. 

R e m a r k 1. We recall that if a-,, a2, a3, ci2 = c21, cn = c3i, c23 = c32 is a 
normalized frame for any complemented modular lattice L then ¿¿, denotes 
the set of x with x®aj = ai^aj. If i,j,k are 1 ,2 ,3 in some order, then 
Pk:ix denotes (x + cik)(fli + a}). In each Lih multiplication is defined by: 

X x y = (Ph, JX + Pk: i y) (a, + a,). 

The conditions (5. 1.1), (5. 1.2) of [6] are equivalent to 
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(M)ij: For all x,y in ¿¡,: 

P*.AxXy) = (Pk.jx)x(Pk:jy), 

Pk:i(X X y ) = (P , : I X) X (Pk:iy). 

The condition (3 .1 .7) of [6] asserts 
(A)ij: For all in U,, the value of Z(x, y, p,q) = {(x-\-p) (q + a}) + 

+ (y + q) (P + aj)} + Oj) is independent of p, q provided that p -f q = ai + q, 
q(ai + aj) = 0, pa{ tk x and we write x + y for the comnjon value of 
Z(x,y, p,q). Then a = (Xij; i > j) is called an upper semi-Z,-number if for 
i > j, Xij £ L^ and P2:] JC3, = x32, P2:3 xn — x21. As shown in [6], the set of such 
a, under the operations a + /?=(Xy + Jv), cc/2=(Xij x }>»;) for all a = (Xij), 
ft=(yij) forms a ring 31 with unit having properties (Pi), (P2), (P3) provided 
04>n, (A)®, (A)^ and (M)n all hold. 

R e m a r k 2. In an arbitrary ordered set 
a + b = c means: the union of a, b does exist and it is c, 

ab = c means: the meet of a, b does exist and it is c. 

Now consider ¿¡¡(Si) where 31 is merely an idempotent-associative ring with 
unit (do not assume 91 to be regular). Then easy calculations show that 
fli=[(l)],fl.=[(0,l)],a»=[(0>0, 1)], c i 2 = c 2 ] = [ ( - 1 , 1 , 0 ) ] , a b = c m = [ ( 0 , - 1 , 1 ) ] , 
Ci3=c3i—[(— 1,0,1)] is a normalized frame, i.e., ai-fa2 + a 3 = 1 and 
= Cij © Oj, fli(Oj + ak) = 0, Cij = fy, (Cij+c jk) (a,- + ak) = cik for i, j, k all dif-
ferent. Moreover with respect to this frame, L3l consists precisely of all 
[(—«,0,1)] with arbitrary « in and P2:3[(—«, 0,1)] == [{—a, 1,0)], 
A ; i [ ( — 0 , 1 ) ] = [(0, —a, 1)]. Finally if * = [ ( - « , 0,1)] and y = = [ ( - £ 0, 1)], 
then 

Z(x, y, Ci3, a2) = { [ ( - « , 1, 0)] + ([(- /? , 0, 1)] + [(0,1]) ([(!)] + 
+ [ ( 0 , - 1 , l)])}([(l)] + [(0, 0,1)]) = 

= { [ ( - a , 1 , 0 ) ] + [ ( - A - 1 , 1)] } ( [ ( 1 ) ] + [(0, 0 , 1 ) ] ) = 

= [ ( - ( « + « ,0 ,1 ) ] , 
*XJ> = ( [ ( 0 , - « , 1)1 + [ ( - A l,0)])([(l)] + [(0,0,1)]) = 

= [ ( - « / ? , 0,1)]. 
Thus (ii) certainly holds if the construction of [6] is possible, i. e., if 

(i) holds (the above calculation: are important in the problem of coordina-
tizing ordered sets much more general than those discussed in this paper, 
which are complemented modular lattices satisfying the special conditions 
enumerated in Remark 1 above). 

R e m a r k 3. If 3t is the coordinatizing ring of some L' as constructed 
in [6] then Lf is isomorphic to L' (as shown in [2], where L$ was called Ls). 
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Lemma 5.1 shows that the La of the present paper is isomorphic to L3 so 
that (iii) is proved. 

P r o o f of T h e o r e m 4. We need only show (i), in view of Remarks 
2, 3 above. Moreover, as in the proof of modularity in Theorem 3, we need 
prove (i) only for the two special cases: 91 is associative and regular or 91 
is a division ring without zero divisors, with unit, in which (P3) holds. Since 
the first case was settled by the work of VON NEUMANN [6 ] , § § 4 . 3 , 4 . 8 we 
need only consider the second special case (L3 is then a plane projective 
geometry).19) 

As shown in [6], the conditions (3.1.7), (5. 1. 1), (5. 1.2) of [6], i. e., 
(A)ij and (M)ij for all i=f=j, for an arbitrary normalized frame of order 3 in 
any projective plane geometry, follow from the following quadrangle condi-
tion (Q6), given in [6], §62°). 

(Q6): Suppose two quadrangles Pi and Pi ( / = 1, 2, 3, 4) and a line W 
are such that: 

(i) no three of the vertices of the same quadrangle lie on a common line; 
(ii) W contains none of the vertices of either quadrangle. For /,/ ' = 

= 1,2,3,4, i=f=j, let pij = (pi + pj)w and P^ = (Pi + P;)W (Py, P - are 
necessarily points). 

Suppose also that: 
(iii) Pu=P'2Si, PU = Pvs> 
(iv) PtJ = P'ij except possibly for the pair (/,_/) = (3,4). Then (iv) holds 

also for the pair ( / , / ) = (3,4). 
Thus the proof of Theorem 4 is completed by (ii) of the following lemma. 

L E M M A 5 . 3 . Let ¿ 3 ( 9 1 ) be the plane projective geometry defined by a 
fixed division ring 91 with unit without zero divisors and satisfying (P3). 

19) Under our present assumptions on 9t, it is easy to show that this geometry coin-
cides with the plane geometry constructed by R. MOUFANO starting from an arbitrary alter-
native division ring 9t [8]. It was shown by MOUFANO that in this geometry her condition ( D 9 ) 

holds, which implies the "uniqueness of harmonic conjugate point" condition; as shown"in [6], 
§ 6, this in turn implies the conditions (3 .1 .7) , (5 .1 .1) , ( 5 . 1 . 2 ) of [6] if the diagonal points 
of a complete quadrangle are non-collinear. Here we do not suppose such non-collinearity 
of diagonal points and we give a complete proof. 

20) To prove (A){j choose P,=p, P2 = q, P3 = ( p + x ) (q + a}), Pi={q+y){p+aj)> 

W = ai-\- aj (we may suppose x¥= a, , to prove (M)ijt first choose Px=xxy, 
P2 = Pk:jx, P 8 = x, P 4 = Pk:j(x xy),P; = y, = cik, P'% = cijt P'i = Pk:jy, W=aj + ak 

(we may suppose x# a0 y # ait y # c i } ) then choose P^=xxy, P2 = Pk:iy, P3 = y, 
Pi = p k : i ( x * y ) ' p i = x ' p ! t — c k j > p i = = c i j ' p ' i = p k : i x > w = a i + ak (we may suppose 
x * at, y # a{, x* cf). 
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(i) If Pi and Pi ( /==1,2 ,3) are points such that the three Pi do not lie 
on a line and the three PI do not lie on a line then there is a lattice auto-
morphism of L3(9t) which maps each Pi on Pi21). 

(ii) (Q6) holds in L3(Vi). 
Proof of (i). Since the product of automorphisms is an automorph-

ism, we may suppose P, = ai ( / = 1 , 2 , 3 ) where ait c<j are as in Theorem 3 
and the Remark 2 following Theorem 4. It is clearly sufficient to show for 
each / = 1 , 2 , 3 : if Pi = Pi for all / < j then there is an automorphism of 
¿3 which leaves Pi fixed for i < j and maps Pj onto Pj. 

Consider the following functions22) which map point onto point: 

1) For arbitrary fixed y,d: 
V K « > A ! ) ] = [ ( « + 7 , £ + < U ) ] 
y[(a, I )] = [(«, 1)] 
V [ ( l ) ] = [ ( l ) l 

2 ) V « K « . A 0 ] = [ ( A « . 0 ] 
< M ( « > i ) ] = [ ( « - M ) ] if « ^ O 2 3 ) 
*>[(<0. 1)1 = 1 0 ) ] 
v.2[0)]=[(o,i)] 

3 ) ^ 3 [ ( « , A I ) ] = [ ( R 1 « , / ? " 1 , I ) J IF 
Y f a [ ( « , 0 , ! ) ] = [ (« , 1)] 

* M ( « , i ) ] = [ ( « > a i ) ] 

v * [ ( i ) ] = [ 0 ) ] -

The reader can verify easily that if u,,u2, u3 is a canonical basis, then each 
of 1), 2), 3) maps Af(ui,u2,«3) onto M(vltv2,v3) where [vj is the map of 
[ut], and hence each of 1), 2), 3) determines an automorphism. The reader 
can also verify that a suitable product of automorphisms of types 1), 2), 3) 
satisfies the requirements of (i). 

Remark. From the work of BRUCK and KLEINFELD ( [3 ] and [ 7 ] ) it fol-
lows that for each fixed d=f=0, there exists a function tp(a) which maps 3t 
onto itself and has the properties (see [10], page 196): for all a, /3 in 91, 

<jD(a + /?) = 9>(«) + 9p(/?) 

cp(a{i) = <p{a)(e<p((i)) 

21) If use is made of the work of BRUCK and KLEINFELD [ 3 ] and [ 7 ] it can be shown that 
four points no three on a line, can be mapped onto four points P „ no three on a line 
(see the Remark following the proof of (i)). 

23) See [8], p. 215. 
23) if ^ ^ o , A' 1 denotes the unique solution of ¿ " V = 0/T"1 = 1. 
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(necessarily, 9(1) = d - 1 , «¡P(—1) = —d -1). Then a lattice automorphism is 
determined by the point function: 

4) ?[(«, A O ] = [(?(«), 9>(*),0] 
? [ ( « , 0 1 = K < M « ) . 0 ] 
9[ (0 ] = [(0]-

With the use of 4), (i) can be sharpened as described in footnote 21. 
However, we do not make use of 4) and our proof of (ii) below can be 
read without knowledge of the Bruck—Kleinfeld structure theory. 

P r o o f of (ii). Because of (i) we may now suppose that P12 = P/2 = 
= o3 = [(0,0, 1)] and />2, = P 1 4 = / ^ 3 = P^ = o1 = [(l ,0,0)] ; then P13 = Pi8 = 
= [(a,0,1)] for some a and P24 = = [(/i, 0,1)] for some /?. We shall 
calculate P34 and P 

Clearly not both of P,, P2 are on a i+a 2 since P3 is on Pa+Oj. We 
may therefore suppose P2 is not on ax+a2 since we can always interchange 
the pairs P lf P4 and P2, P3. Hence P2 has the form [(/ , d, 1)] with d=j= 0. 

The possibilities for Px are: 

[(d" l r , 0 ] or [(0(d"V), 6,1)] with 0 ; 
we consider these two cases separately. 

If Pi = [(d_1/> 0 ] then P3 must be [(« + r,d, 1)], Pt=,[(d-\r-[i), 1)], 
and P34 = [(« + /?,0,1)]. 

If Pi = [(0(d~V)> 6,1)], P3 must be [(a + ^ - d ^ " 1 « ) , d, 1)], P4 = 
= [ ( / * + d i ^ y — d 'ft), 6, 1)] and P34 = [(s,0,1)] where 

e^p+Qtf-^-d-'ft-diid-ey^-p-did^Y-d-'fi+a+Y-die-'a))}. 

To calculate s we note that for all g: 

{d^e)-\dQ)=(d-9r{de-(d-d)9)=(d-d)-\dQ)-Q. 

If p = —d~l ft, the above expression is equal to (d—d)'1 ( / — / f ) — 
—(d"V—d_I/S). Hence 

* = / ? + 0 ( d - 1 r - d " 1 /i).+ 0 ( ( d - e y 1 ( / - / ? ) ) -
_ ( < j - Y - d - 1 / y ) ) - 0 ( ( d - 0 ) - 1 ( a 4 - } ' - / ? - d ( 0 - 1 « ) ) ) = 

= fi+0 {(d—efl{d{d-la)-a)} = 

= 0 + 6 { ( d - 0)"1 ( ( ( d - 0 ) + 6) ( 0 - 1 « ) - « ) } = 
= <*+ 6 {O-'a + ( d — 6 y \ a — a)} = 
= / ? + 0 ( i T 1 a ) = « + /?. 
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Thus in all cases P34 = [(a + ft, 0, 1)] so that, by the same calculation P£4=P34, 
as required to establish (ii). This completes the proof of (ii) and so Theo-
rem 4 is completely proved. 

Remark. Let Pu P2, P8, P4 be.four points, no three of which lie on 
a line. Let 

A = ( P . + Pi) (Pi + A ) , A = (Pi+A) ( P i + P 8 ) , A = ( P 4 + P 3 ) ( A + P 2 ) . 

Then the diagonal points A , A , A always lie on a line or never lie on a 
line according as 1 + 1 = 0 or 1 + 1 ^=0 in 31. 

For, by Lemma 5.3 (i), we may suppose Pl = au P2 = A2, P3 = fl3. Then 
A = [(a,0,1)] for some a=f= 0, and 

[(« + «, 0,1)] = ((A + A ) ( P i + P j + P 4 ) ( P i + Ps) . 

Thus a + a = 0 if and only-if this last point is P3, i.e., if and only if 
Pt + (A + A ) (Pi + P2) contains P3; since P* + A contains P3, this means, 
if and only if (A + A ) (Pi + Pa) coincides with A , or equivalently A + A 
contains A - Thus A , A , A lie on a line if and only if a + a = 0. But 
a + a = a(l + l); since a=f=0,a + a = 0 is equivalent to 1 + 1 = 0 . 

Note (added in proof, August 14, 1959). P. JORDAN and H. FREUDEN-
THAL (see the references listed in our [10] as 103, 75 and 76) have con-
structed a lattice which is isomorphic to our ¿3 (31) for the case that 3i is the 
alternative division ring of Cayley numbers (octaves); they made use of the 
available conjugation a —a in 9t and used Hermitian symmetric 3 x 3 matrices 
over 91 This Inethod of construction has been recently generalized to a general 
alternative division ring by T. SPRINGER (announced at the Freudenthal sympo-
sium, Utrecht, August, 1959). 
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