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Bounds for the principal frequency of a membrane 
and the torsional rigidity of a beam 

By E. MAKAI in Budapest 

1 . We consider a simply connected or ring-shaped plane domain D of 
area A, its boundary C whose total length is L, its principal frequency A 
and its torsional rigidity P. 

The quantities A and P"1 may be defined as the minima of the 
expressions 

( f f W U f d o f j j ( g r a d ^ q 
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respectively, where do is the surface element of D, the integrations are 
extended over D; the function u is continuous in D, vanishes on C and has 
piecewise continuous first derivatives in D.1) 

We state that for a simply connected or ring-shaped domain 

(2a) A ^ V > (2b) P " 1 ^ 1 " ) 
A A 

It is enough to show the validity of these inequalities for polygonal domains 
no two sides of which are parallel.2) The total statement follows hence by 
an argument of continuity. 

' ) See e. g. G. P Ó L Y A — G . S Z E G Ő , Isoperimetric Inequalities in Mathematical Physics 
<Princeton, 1951), pp. 87 and 102—103. 

la) (Note added on February 25, 1959.) The constants I T and 1 on the right sides of 
<2a) and (2b), respectively, are not best possible. G. PÓLYA has shown that the precise 

n 3 
upper bounds for AAL~l and P~1ASL~2 are —and —, respectively; see his paper: Two 

2 4 
more inequalities between physical and geometrical quantities (to be published in the 
Journal of the Indian Math. Society). 

2) Cf. R. C O U R A N T — D . H U B E R T , Methods of Mathematical Physics. I (New York— 
London, 1955), pp. 419—423. 
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The inequalities (2) will be proved if one can find a particular func-
tion u for which the quantities ( la ) and ( l b ) are less than (2a) resp. (2b). 
We shall see that such a function is the point function d ( P ) which is defined 
as the distance of the point P from the boundary C. This function satisfies 
obviously the conditions imposed on the functions u. 

Let the vertices of C be Ai, A2,.. ., A„; the open line segment 
AiAi+i (i4n+i = i4i) will be denoted by ö;. We may now define subdomains 
Di and Di of D in the following way. The interior of A resp. D'i contains, 
those points of D the nearest point of the boundary to which lies on resp. 
it is the point Ai. The sum of the closures of the domains A and Di is-
D; Di is void if the inner angle at Ai is less than j i . 

The level lines of d(P) are in A line segments parallel to ait in D'i 
circular arcs, whose centre is Ai. In the interior of A or A |grad </(Z3) 1 = 1,. 
and so 

(3) If [grad d{P)f do=A. 
Now the level line rf(P) = | is identical with the boundary of an 

inner parallel point set of the domain D. The length of this level line will 
be denoted by /(£). We may transform the double integral MH = $[d(P)]nda 
into a simple one by dividing D into narrow stripes the boundaries of which 
are the level lines d(P) — £ and the width of which is d£: 

r 

(4) Mn = \\[d(P)]ndo=jZ'lQ;)d$ 

where r is the radius of the greatest circle which can be inscribed in D. 
If /1 = 0 we have from (4) that 

r 

J / © < / § = A. 
0 

Let now the quantity b be defined by Lb = A. A s 0 ^ /(§) ^ L for r , 3 ) 
r 

it follows that r^b, for A ^ J L = Lr. So we have for n= 1 , 2 , . . . 
0 . 

r b r b 

J r / (5) d$-\?Ld$ = j > / (?) dl - j y {L-im dt 
o o ¡> o 

b b r b 

¡2 b" { / ( I ) di - bn\{L-l(D) dl = bn{\ng)dl-{L di) = 0 
r 0 0 0 

3 ) A proof may be found in the paper by B . S Z . - N A G Y , Über Parallelmengen nicht-
konvexer ebener Bereiche, Acta Sei. Math., 20 (1959), 36—47. 
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by the definition of b. It follows that Mn ^ — — 7 , hence 
n -f-1 

A2 As-
2 L a n d 

and from these 

K ' \ J J [ d ( P ) f d a ) \AI(3L)J A 
resp. 

( 2 b ) p - i g J [ g r a d t f ( P ) ] V q ^ A 

4[ttd(P)dof ~ 4[A2/2Lf A3 ' 

2 . There exists another upper estimate of A and P~l for star-shaped 
domains, namely that of PÓLYA and SZEGŐ *). We consider the quantity 
Ba=^h'1ds where a is a point inside D with respect to which C is star-

shaped, h is the length of the perpendicular drawn from a to the tangent at 
a variable point of C where ds is the line element, if a varies and Ő = m i n 5 a , 
then A =2 jfBj2A with J = 2.40 . . . , and P'1 ^ BA'2. 

It seems that for convex domains the estimate of PÓLYA and SZEGŐ 
gives better results than (2). Yet e. g. for the pentagonal domain whose 
consecutive vertices are (1 ,0) , (1,1) , (0, s), ( — 1 , 1 ) (—1,0) , B tends to 
infinity as e - i - 0 ; on the other hand L and A remain bounded. 

3 . It may be noted that there does not exist a universal positive constant 
c such that for any simply connected domain A s cLjA. (Contrary to the 
case when D is convex.)5) For let us consider the domains 

A ( 0 s x s l , 0 § ) / s i ) and D a ( l ^ x s i 0 < y 

In the case of the domain D = A + A we have LfA = 2 + e - 1 and A is 
bounded, for it is less than the principal frequency of the unit square. 
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