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Separation of two linear subspaces. 
By CHANDLER DAVIS') in Princeton, N. J. (U. S. A ) 

A pair of non-trivial linear subspaces of Euclidean 3-space, whose 
dimensionalities are known, forms a geometrical figure which is determined 
up to Euclidean congruence by the non-obtuse angle between them — single 
number between 0 and n/2. 

The situation is not so simple in Euclidean «-space, n > 3, but the 
proper generalization has been known since early in the history of study of 
these spaces [14, § .48]. For example, given two 2-dimensional subspaces 

and Q of 4-space, intersecting in a single point 0; then there exist per-
pendicular 2-subspaces and (S2, intersecting in 0, each intersecting ^ and 
:Q perpendicularly in a line; the angles di (0 < di ^ .-r/2) between and 
(S. n Q may have any values independently; these two numbers are determined 
uniquely by the figure Q and determine it up to congruence. 

This behavior does generalize directly, not only to complex finite-
dimensional Hilbert spaces, but also, with the natural changes, to infinite-
dimensional real and complex Hilbert spaces. Because of the decomposition 
(essentially) into orthogonal 2-spaces which do not interfere with each other, 
much of the geometry of a pair of subspaces is like that of a pair of lines. 

Why then should there be an article written about it? For three 
reasons: (1) To establish the decomposition described in full generality (§ 5). 
This result is due to DIXMIER [4, Chap. I], [3]. (2) In infinite-dimensional 
spaces the decomposition is not quite into 2-dimensional subspaces as 
above (because C below may have continuous spectrum). Therefore many 
general facts which might be provable as corollaries of the decomposition, 
together with facts about angles in 2-space, must instead be proved as 
generalizations of the trigonometric facts. Of this sort are most of §§ 3—6. 
Some of the main results are due to DIXMIER2) and others, and some simple 

') Fellow of the National Science Foundation (U. S. A.). 
2) There is enough overlap with [3] in particular that I give a partial glossary of 

terms: my C, S, and 9 ) are D I X M I E R ' S A2, B-, and V 0 . The development is rather different, 
both in methods and in subjects treated. (Cf. e. g. my Thm. 4.1 with his Thm. 1.) 
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facts have been known for years to me and doubtless to others. 1 have not 
collected all known theorems which would fit in, but I hope I have simpli-
fied the subject by basing it on the "closeness" and "separation" operators,, 
generalizing trigonometric functions (§ 2). (3) Some of the results, since they 
concern distinctions which cannot be made in 2-space, cannot be proved 
even in //-space by reducing them to 2-space problems via the decomposi-
tion. This applies in particular to §7, and to the intended sequel [2] on-
several numerical measures for the separation of two subspaces. 

The geometry is simple as long as only two subspaces — or, equiva-
lent^, two hermitian projections, or two symmetries — are involved. If there 
are more than two, it is inevitably complicated. Here are two indications: 
Every unitary operator on an infinite-dimensional Hilbert space is a product 
of four symmetries [8]; the algebra of all bounded operators on a finite- or 
denumerable-dimensional Hilbert space can be generated by three pro-
jections [1]. 

1. Notations. The Hilbert space is in much of what follows of 
arbitrary dimensionality, and either real or complex. Specializations will be 
mentioned when they are made. P, Q are hermitian projections, and other 
bounded operators also are denoted by capital letters. Subspaces are denoted 
by the same letters as the projections onto them, but in gothic type: = 
Always P=\ — P, accordingly ^ = = similarly Q, etc. PnQ and 
PuQ are the meet and join respectively of P and Q in the lattice of pro-
jections; accordingly, is not the set-union of and Q. The symbol 
"•>-+" means "commutes with". $>¿04) is the nullspace of A. 

2. Closeness and separation operators [1]. Given any two hermi-
tian projections P, Q, consider the closeness operator 

(2.11) C=C(P,Q) = PQP+PQP 

and the separation operator 

(2.12) S = S(P, Q) = PQP+ PQP 

associated with P and Q. For 1-subspaces of 2-space, C is constant = cos26r 

where 6 is (either) angle between them; similarly S==sin2#. This, with the 
introduction above, should explain the idea behind the definitions and the 
following properties, which may be verified without trouble in the order given. 

(2.21) O ^ C ^ l . 
(2.22) C(P,Q)=\ — P—Q + PQ + QP. 
(2. 23) C(P,Q) = C (P, Q) = C(Q, P) = C(Q, P.). 
(2.24) C(P, Q) P, Q. 
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<2.25) C(P,Q)P=PQP. 
<2.31) S + C = l . 
(2.32) S (P ,Q) = C(P,Q) . 
(2.4) S (P ,Q) = ( P - Q ) 2 = ( P - Q ) l 
(2. 5) SW(C (P, Q)) = 9? (P- Q) = 9i ( P - Q) = ( ^ n Ö) U $ n Q). 

O n e may permute S and C by (2.31), (2.32), and one may permute 
P,Q,P,Q in various ways by (2. 23). The many resulting corollaries to the 
formulas above are taken for granted. 

3. Unitary applications of one subspace onto another. The 
opening remark is again trivial: 

(3.11) (PQ + PQ)(QP+QP) = (QP+QP)(PQ + PQ) = C(P,Q). 

Therefore if by definition 

(3.12) U=U(P, Q) = < T 1 / 2 ( Q P + Q P ) 

then U looks formally like a unitary operator, because U (P, Q)* = U(Q, P), 
so (3. 11) gives (by{2.2A))U*U=UU*=\. Also Q i / P = 0 so 
PWQ = 0, so i / ' Q c s p ; thus i/<p = Q, and similarly i / $ = Q. It seems U 
is unitary taking ^ onto Q and $ onto Q. 

Now pause to find when this is valid. Surely not in general, for 
•dim^i = dimD is necessary for the existence of an isometry of onto ¡Q; 
•and even this is far from sufficient in infinite-dimensional £>, see below. 
The formal proof above does not require C_1to be bounded, but does require 
it to be densely defined, that is, 9i(C) = 0. (Sufficient but not necessary is 
for C to have a positive lower bound, or equivalently (see (2. 31), (2.4)), 
| | P — Q | | < 1 ) . Can something be done even when 9i(C) =f= 0? Clearly yes. 

-Still (3. 12) gives a unitary U on 9i(C). If 

(3. 2) dim n 5 ) = dim $ n Q), 

then define U on ^ n D a s some isometry V onto define ¿7on 
as —V*.3) Extend the domain of U to all £ by linearity. 

Define subspaces $ and Q to be equivalently positioned provided (3. 2) 
holds. What has been proved is the following strengthening of a theorem of 

:SZ.-NAGY [12, § 105].4) 

3) The U constructed here is a little special, for later convenience. Namely, on 
9! (C), Ui = — 1. The reader may verify that this special property is consistent with — 
indeed is implied by — the paragraph following Theorem 4 .3 . 

4) It may be easily verified that the operator he uses agrees, on with (3.12). 
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Theorem 3.1. If ^ and О are equivalentiy positioned, there is a 
unitary W on $ taking onto Q and $ onto Ö. 

That is, (3.2) implies dim ^ = dim D and dim $ = dimQ. But all 
three of these equations are equivalent infinite-dimensional the construc-
tion of U may appear to have yielded meager results. The following theo-
rem, and especially § 7, defend its introduction more convincingly. 

T h e o r e m 3. 2. $ and D are equivalentiy positioned if and only if there 
•exists a unitary operator W on § taking ^ onto Q and onto D, such that 
W*-+C(P, Q). 

P r o o f . If C, W9? (C) = 9i (C). By (2. 5), n D) £ 91 (С) n = 
= 91 (С) n D = $ П П. Similar treatment of W* completes the proof of (3. 2). 
The converse, almost proved above, calls for one more thing: the proof that 
U defined above commutes with C. It takes 91(C) onto 91(C), so only (3.12) 
demands attention. By (2.25), QPC=QPQP=CQP, and similarly 
QP*--* C, therefore U-—C. 

The conditions of the theorem do not force W = U , even on 9i(C). 
They are satisfied by a wider class of W, which this paper could treat but 
will not. 

The relation "equivalentiy positioned" between subspaces Щ and О is 
superfluous in the finite-dimensional case, as already mentioned, because 
•equivalent to dim $ = dim Q. In the infinite-dimensional case it has a dif-
ferent drawback: it is not transitive:')' Here is a simple example where ^ 
and 9i are equivalentiy positioned, likewise ¡Q and 9i, but ^ and О are not. 
Let ф be-generated by the countable orthogonal set {.. .,.x_i, ль, Xi, X2,...}; 
in symbols, & = [ . . . , x _ i , x 0 , x i , x 2 , . . . ] . L e t ^ = [x i ,x 2 , . . . ] , Q = [x 0 ,x b *>,-], 
at = [ . . . , Х-,, X-,]. Then sßnSR, ф N SR, :Qn9i, Q n 9 i are all denumerable-
•dimensional; but dim ( $ п 0 ) = 0 ф 1 = dim ( $ n D ) . 

(This has exhibited also a pair of subspaces, $ and П, which are not 
equivalentiy positioned in spite of the existence of a unitary, U^as described 
by Theorem 3. 1 — namely, the "bilateral, shift" WXi = X;-i.) 

However, in case dim Sp and dim О are equal and finite, ^ and ¡Q 
are necessarily equivalentiy positioned, of course, and the relation is tran-
sitive in this special case. Indeed this case does not differ in any important 
•way from the still more special case where dim £ is finite. 

5) The reader is reminded that the relation between ^ and G of satisfying 
•dim n Q) = dim I"! Cl) == 0 is not transitive even in 2-space. 
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4. The angle bisector. Before finding the unitary invariants, gener-
alize some more trigonometry, for later use. Assuming for the moment 
9i(C) = 0, define 

X—X* is obvious, by (2.24). X2= 1 follows most easily from (2.4) with: 
(2.32). One calculates at once that QXP—0 = PXQ. Summing up, A" is a. 
symmetry on which exchanges with Q (hence also $ with Q). 

Accordingly, 

is the projection onto a subspace which may be named the angle bisector 
of Ĵ and D.. Even in 2-space, angle bisectors are not unique, but 5) here 
is essentially "the angle bisector of the acute angle", as appears from' 
Theorem 4. 1 below. 

If now 9!(C)=}=0, but and D equivalently positioned, then define X 
on 9i(C) as an arbitrary symmetry exchanging with $ n O (cf. §. 3). 
Keep (4. 2). If ^ and :Q not equivalently positioned, X is not defined on. 
all of 

L e m m a 4. 1. If and Q are equivalently positioned, PQP and QPQ; 
have the same spectrum. (Cf. Lemma 5.2.) 

P r o o f . QPQ = XPQPX. 

T h e o r e m 4.1. Lei 9i(C(P, Q)) = 0. Then X(P, Q) is the unique 
symmetry V which exchanges ^ with Q (hence also $ with &) and satisfies 
PVP^O. 

P r o o f . One computes PXP=C'k ( P Q P ) = (PQP)' / 2 ^ 0. 

For the converse, let Z be the projection - ^ - ( V + l ) . Decomposing ,£> 
a s 3 © , o gives matrix expressions0) 

The matrix for P is general, while that for Q is derived from Q== VPV. 
We know more about the P^: by the idempotence of P, PnPa = Pu — Pit 
and P>\P12= Pa — Pit• Substituting these into the matrix for C(P, Q) com-

The assigning of a canonical isomorphism between 3 and 3 >s avoidable in this 
proof; so, for example, P 1 2 may be regarded merely as an operator from one Hilbert 
space 3 , onto another, 3- See Theorem 6 . 2 . 

(4.1) X = X(P, Q) = C-'1'(P—Q) = C~'k(P+ Q— 1). 

(4. 2) Y = Y [P, Q) — { \ X) 
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puted from (2. 22), one gets 

<4. 32) 

What is to be proved is that V=X(P, Q), or, by (4. 1), that C» is equal to 

For this the last hypothesis of the theorem will be essential, for there are 
many symmetries exchanging $ with Q [3], and the proof so far applies to 
.any of them. 

On the subspace 3l(C(P, Z)), which is 9i(P—Z) by (2.4) with (2. 32), 
we have V = P—P, PVP = —P s 0. Therefore 3i(C(P, Z)) = 0, and Lemma 

4. 1 applies to 3- Now the hypothesis PVP^O implies PZP = which 

:implies by Lemma 4.1 Z P Z ^ — Z , or P„ Similarly P22 

Hence (4. 33) is the positive square root of (4. 32), as predicted. 
The next theorems show that the particular "rotations" singled out in 

the last section are related to the particular angle bisectors singled out in 
.this section in a way which generalizes the 2-space facts. First come lemmas 
leading to the half-angle formula. Some of the results are ambiguous in 
general; so for now, assume 91(C(P, Q)) = 0. 

L e m m a 4.2. YP+YP=^ (\ + U~). 

P r o o f . Using definitions (4.2) then (4. 1), 

2YP+2YP— 1 = XP—XP=C'll(QP+QP) = U. 

L e m m a 4.3. U+U* = 2C% 

P r o o f . Define for the moment 

F=C,/»(i/+i/*)= QP+QP+PQ + PQ. 
To prove F=2C., PFP = 2PQP = 2PCP, P F P = P ( Q + Q ) P = 0 = 
= 2 P C P , and similarly for PFP and P'FP. 

P r o o f . Use (3.11) applied to P, Y; then Lemma 4.2, then Lemma 4 .3 : 

C(P, Y) = (PY+PY)(YP+ K P ) = i - ( 2 + U+ i/*) = y + yC(P ,Q) ' /= . 

Symmetrically for C(Y, Q). 

<4. 33) V(P+ Q— 1) = ^ 

L e m m a 4.4. C(P, Y) = y (1 + C(P, Q)^) = C(Y, Q). 
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T h e o r e m 4.2. (J(P, Y) = U(Y, Q). 

P r o o f . Expressing both sides by (3. 12), and using C(P, Y) = C(Y, Q) 
(Lemma 4. 4), the problem is reduced to proving YP+YP=QY+QY. But 
by Lemma 4. 2 applied twice, 

YP+ = y (1 + U(P, Q)) = y (1 + U(Q, P)*) = (YQ+ YQ)*. 

T h e o r e m 4.3. U ( P , Y f ^ U(P,Q). 

P r o o f . First, 

U(P, Yf = U(Y, Q) U(P, Y) = C(P, F ) _ 1 ( Q K + QY)(YP+ YP) = 

— C(P, K)"1 (QYP+ QYP). 

Now Y=±-(\ + C(P, Q)''k (1— P— Q)) by (4.2), (4. 1), so QYP = 

= y (1 + C(P, Q)~'k) QP=C(P, Q)~l C(P, Y)QP. Similarly, from K = 

= y ( l —C(P, Qy''2(— \ +P+Q)) follows QYP= C(P, Q)'1 C(P, Y)QPr 

Substituting these in the above expression for U{P, Y)1 makes it exactly the 
expression (3.12) for U(P, Q). 

jt should be observed that if 9i(C(P, Q)) =)= 0 but $ and Q equivalently 
positioned, the last results remain true, provided the (hitherto not unique) 
definition of U(P,Q) on 91(C) is made to accord with the definition of 
X(P, Q) there by assuming the conclusion of Theorem 4. 3 there. 

T h e o r e m 4 .4 . X(P, Q)(P—P) = U(P, Q). 

P r o o f . By definitions, each side is equal to 

C(P, Q ) - , / ! { ( - P + Q)P— (P— Q)P}. 

Another (equally obvious) version of the theorem: X(P, Q)P= 
= U (P, Q) P. 

The theorem shows that any U(P, Q) is the product of two symmetries. 
The following theorem implies as much of a converse as is true: the 
product of the symmetries leaving fixed subspaces Q respectively is a U 

if and only if S(P, See also Theorem 6.3. 

T h e o r e m 4.5. S(P, Q) ^ is necessary and sufficient for the 

existence of 9i such that P = Y(R, Q). 
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That is, ^ and Q may not be "too far apart", cf. [2]; in particular,. 
9}(C(P, Q)) = 0. 

P r o o f . Necessity is essentially the first sentence in the proof of 
Theorem 4. 1. Sufficiency will be proved from the hard half of Theorem 4. 1 
(its uniqueness assertion). 

Define /? = ( P — P ) Q ( P — P). To show that P=Y(R, Q), that is, that: 
P—P=X(R,Q), requires no argument on 3i(C(R,Q)), because there-
X(R, Q) is simply any symmetry exchanging ^ with Q, and P — P will do. 
On 9l(C(R, Q)), it must be shown in addition that Q(P—P)Q^0; but 

this follows immediately from S(P, Q) g . 

(The definition P = U(P,Q)*PU(P, Q) would, by Theorems 4.2 and. 
4. 4, have been equivalent.) 

5. Unitary invariants for a pair of subspaces. The purpose in 
this section is to give a complete set of unitary invariants for Q in terms-
of the spectral multiplicity function of the bounded self-adjoint C(P, Q)~ 
(I assume familiarity with spectral multiplicity theory [7, III].) In the 4-dimen-
sional case described in the introduction, C has two 2-dimensional eigen-
spaces with corresponding eigenvalues cos2#(-; so this section generalizes 
what was said there. 

What is required is to assign a set of objects to any pair of subspaces-
¡Q; to show :Q can be carried onto Q' by an isometry of £ if and 

only if the same set of objects was assigned to Q' as to Q; and to-
say exactly what sets of objects can arise. 

L e m m a 5. 1. The following are unitary invariants for Q : 

dim n Q), dim ( ^ n Q), dim (^ n Q), dim ( $ n O). 

This is obvious. Only 01(C) u (5))~ requires study. 

Lemma 5.2. If yi(C)--=yi(S)=--0,then PQP= PCP and PQP= PCP" 
have the same spectrum. 

P r o o f . In this case ^ and Q are equivalently positioned and so are: 
Q and A unitary operator commuting with C and exchanging ^ with 
is U(Q,P)U(P,Q). 

L e m m a 5.3. If 'Ji(C) = 31 (S) = 0, the spectrum of C is of even-
multiplicity, and is on [0, 1] with zero multiplicity at the endpoints, but is 
otherwise arbitrary. 

P r o o f . To prove the spectrum of C is of even multiplicity (that is,, 
the values of its spectral multiplicity function are even integers or infinite),. 
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I will specify two orthogonal projections commuting with C such that the 
restrictions of C to their subspaces are isomorphic; it is not hard to see 
that this is equivalent. 

Namely, the projections are P and P. The isomorphism results from 
Lemma 5. 2. 

The other statements about the spectrum of C are obvious. 
Conversely, suppose given an operator (call it A) with such a spectrum. 

iT{(i4) = 9i ( l—/l) = 0 by assumption. It must be shown that A = C(P, Q) 
for suitable P, Q. Now (to rephrase the first paragraph of the proof) the 
• even multiplicity of the spectrum of A is equivalent to the possibility of 

representing A in the matrix form ^ (with respect to some expression 

• of .£> in the form and some canonical isomorphism of £>, onto 

Xh). Here O ^ f i ^ l , 91(5)=9I(1 — B) = 0. 
Use the construction of MICHAEL [ 1 5 , § 2 ] : Define 

That P i s a projection is obvious; also Q = Q*, and one calculates 
Q2—Q. Evaluating C(P, Q) according to the definition (2. 11), one obtains A. 

For the theorem, nothing substantial is lacking but the main assertion: 
If Q have the same associated invariants as do D', then there is 
unitary equivalence. The only non-trivial part of that is the following 

L e m m a 5.4. Let 9t(C) = 9i(S) = 0, and let C{P',Q') be unitary 
equivalent to C(P, Q). Then there is some unitary V on £ taking onto 
:Q OntO 

P r o o f . It is enough to show (i) that P and Q may be represented 
in the form (5.1), by suitably choosing the complementary subspaces and 

and the canonical isomorphism, and (ii) that the isomorphism type of 
B in (5.1) depends only on the isomorphism type of C(P, Q). Because then 
P' and Q' will have isomorphic matrix expressions (5. 1), and the construc-
tion of V will be obvious. 

Let = $ and = The canonical isomorphism is 

• U(Q,P)U(P,Q)P. It has already been proved (Lemma 5.2) that then 

spectrum of B determined by that of C; and 

.the matrix form of P is as required. By (2. 25), 
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for some D. Because Q 2 = Q , DD* = B—B-. But is D ^ 0? Or equiva-
lently, is the operator (PQP) U(Q, P) U(P, Q) = (CS) m PQPQP positive? 
Clearly yes. 

The results may be summed up as follows. 

T h e o r e m 5. 1. The following is a complete set of unitary invariants 
for Q: (i) four cardinal numbers, the dimensionalities of n Q, fi n Q, 
^ n Q, $ n Q; any 4-tuple of cardinals may occur; (ii) a spectral multiplicity 
function on measures on [0, 1], that ofC(P,Q) restricted to (9i (C) u (S))~ ; 
it has even values, and is zero on the point measures at 0 and 1, but is 
otherwise arbitrary. 

R e m a r k . The essential point in the proof is the fact that an operator 
B on a Hilbert space which satisfies 0 ^ B ^ 1 is of the form PQP, 
where P and Q are projections (in some constructed Hilbert space £> — ^O-
A much more general theorem was proved in 1940 by NAIMARK; namely, 
B is replaced by an increasing family of positive operators and Q by a 
resolution of the identity [ 1 5 , § 2 ] . I used MICHAEL'S construction here because 
it is the same sort of generalized trigonometry that is used throughout the 
present paper. Actually, it can be extended, though less easily, to prove 
NAIMARK'S theorem. 

6 . Other characterization theorems. Another complete set of 
unitary invariants for :0 can be got from the spectrum of P — Q instead 
of C(P,Q) [3, §§V, VI]. To avoid repetition, I will give a slightly different 
statement of the idea. 

T h e o r e m 6. 1. The following are necessary and sufficient conditions 
on an operator A in order that it be the difference of two projections: 
— 1 ^ A ^ 1; and on ?i(l—A-) there exists a unitary Wsuch that AW= — WA. 

P r o o f . If A = P—Q, so that 1— 42 = C(P, Q), take W=X(P, Q)as 
in § 4 ; for, when restricted to 9i(C), ^ and :Q are equivalently positioned. 
The conditions are evidently satisfied. 

Conversely, let A, W satisfy the conditions. Since it is clear what to 
do about 9i(^l)and 9c(l — A2), let us for simplicity hereafter take them to be zero. 
That is, £ = where £>+ is the closure of the range of A+, and 
that of A~. Setting V= W on and I / = W* on determines V as an 
operator on which one may verify to be a symmetry satisfying AV= — VA. 
Notice that V^->l—A2. 

Define operators 

P~ Y (1 + /1 + V(l - A 2 ) ' / , ) , Q = Y (\—A+ 1 / ( 1 -A*yi>). 

A 13 
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They are hermitian (since V is — IV would not do here). Their difference 
is A. The theorem is proved if they are shown to be idempotent. This is a 
simple matter of multiplying out, remembering the properties of V and A. 

By the way, V—X(P, Q) here (as one checks most easily by noting 
again that A = P— Q implies 1—>42 = C). 

T h e o r e m 6.2. Let Q be equivalently positioned, and -Q, $ alsa 
equivalently positioned. Then with some F there exist matrix representations 

multiplicity function of F is then a complete set of unitary invariants for SJi, :Q. 

This is readily proved (independently of Theorems 5. 1 and 6. 1) by 
pursuing the study of the matrix representation (4.31), using 9) (P, Q) for 

presentation the other associated operators take simple forms too, for instance 

Slight modifications can avoid the special hypothesis about and Q, 
giving still another substitute set of invariants instead of Theorem 5. 1. 

The first part of the next theorem may be compared to known results 

T h e o r e m 6. 3. Unitary W is the product of some pair of symmetries 
if and only if (i) its spectrum is symmetric (multiplicity counted) with respect 
to the real axis. W = U (P, Q) for some Q if and only if its spectrumr 

beside having the above property (i), lies in the (closed) right half plane. 

P r o o f . In any case the spectrum of W* is the image of that of W 
with respect to the real axis; so (i) is equivalent to saying W* unitary 
equivalent to W. By much the same familiar argument as above, we may 
put ZWZ= W', Z a symmetry, without loss of generality. (Namely — if 
Z"WZ'=W\ Z' unitary, then Z ' exchanges (i(W— lV*))+£ with 
(i(W—W*))~iQ; set Z = Z ' * on the first space, Z = Z ' on the second, and 
Z= 1 on 91 (IV— IV*).) But for unitary W a n d symmetry Z, the following 
are evidently equivalent:7) Z I V Z = I V * ; {ZWf= 1; ZW=Z, is a sym-
metry; W = Z Z i with Z and Zj both symmetries. 

The condition — 5= F ^ 1 may be imposed; Fis otherwise arbitrary; the spectral 

Details may be omitted. In this re-

[3], [11]. 

7) This computation has occurred in proving different results [9, Corollaries 3, 4]. 
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The spectrum of W lies in the right half plane if and only if 
W+W*^ 0. U(P, Q) has this property (Lemma 4. 3). Conversely, let a 
product of two symmetries, W=(Q—Q)(P—P), have the property 

0^P(W+W*)P=2P(Q—Q)P, that is PQP^ | P , and similarly 

P Q P ^ - i - P ; adding, S(P,Q) ^ By Theorems 4 .5 and 4.4, there exists 

91 for which W= U(R, Q). 

7. Extremal properties of U. Not only does U (P, Q) of § 3 carry 
onto ¡Q and $ onto Q, if SU and Q are equivalently positioned, it does sô  

"as economically as possible." The theorems of this section make this vague 
assertion precise. Throughout, W will mean any unitary operator such that 

= = Then the vague assertion might mean 

(7.1) 

Such theorems are of interest both because they emphasize the suitability 
of U for applications to perturbation theory [12, § 136], and because of their 
relevance to metrics [2]. 

The norm involved in the first theorem is the usual Hilbert norm or bound: 

||i4|| = sup{| |i4x| | : ||:>c|| = 1}; for ,4 | |4 | | = sup {(Ax, x): ||x|| = l}. 

T h e o r e m 7.1 || 1 — U\\ ^ || 1 — W\\. 
P r o o f . It is enough to discuss ||(1 —W*)(l — U/)||, because it is equal 

to ||1 — W\\ - \ \ \ — W|| = ||l — W\f. Now 

l l ( l - ^ ) ( l - W ) | | ^ | | P ( l - l ^ ) ( l - W ) P | | = | | ( l - W ) P | p 
^ ' ' = sup | | x — W x | | 2 s sup inf \\x—y\P. 

WI = 1 M=1 l|y|l=i 
^ e ? ¡ / s o 

For each x, a minimizing unit vector y in the last expression is Qx/| |Qx||8); 
I give the well-known proof. Suppose a unit vector y0 £ Q such that 

2 

-yo\\ < 
Qx 

•\\Qx\ 
Expanding gives Re (x, j>0) > (Qx, x) / | |Qx| | = | |Qx| | . But the y £ Q which 
minimizes ||x—;>||2 without restriction on ||^|| is of course y—Qx; in 
particular, 

| | x - | | Q x | | j / 0 | | 2 ^ | | x - Q x | | 2 . 

Expanding this gives Re (x, j/0) = | |Qx| | , a contradiction. 
8) Unless x e D. But if such x exists the right-hand member of (7. 2) is 2, and the 

rest of the proof is simplified. The uniqueness of the minimizing y is of no concern here. 
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sup = s u p ( 2 — 2 1 | Q X | | ) = s u p ( 2 — 2 | | C ' / 2 X | 

In this derivation I mentioned that || Qx||2== (Qx, x), since Q is a pro-
jection. I mention further that since x 6 

|| Qx|j2 = (Qx, x) = (PQPx, x) = (Cx, x) = || C^x\f. 

The right-hand member of (7. 2) can now be rewritten as (x restricted 
as before) 

Qx 
\\Qx\ 

= sup (2 — 2 (C'*x, x)) = \\P(2—2 C'/»)P|| = ||2—2 0 | | = ||(I — U*)(\—U)\\. 

(The last equality is by Lemma 4. 3. The one before it is by Lemma 5. 2 
(and C+-+P).) What has been proved is 

II1 —w| | ! = II (1 — W) (1 — 11(1 — i/*)(l — i/) | | = II \ — U\\-, 
that is, the theorem. 

Beside this norm, 
(7. 31) ||A|| = ||/l| |„ = sup{||i4jc|| : | | x | | = l } , 
certain other norms will be considered, such as the Frobenius norm 
(7.32) || A\\, = ( tMM) ' ' . . 

In the infinite-dimensional case the other norms do not in general exist; but 
(7. 1) would still make sense if one or both sides was infinite. Also questions 
concerning eigenvalues may be handled in some cases. For completely con-
tinuous hermitian 5 ^ 0 , denote the eigenvalues, multiplicity counted, by 
h(B), ordered as lx(B) s ¿2(fi) ^ . . . . In particular, when dim .§ = « is 
finite, let 0 be any symmetric gauge function of n variables, and consider 
the norm 
(7.33) II4II* = && (I /i I),...,;.,, (I A D), 

where |>4| — (A* A)''' jg 0. This norm is unitary invariant: for any unitary V, 
J|Ki4||^ = | | i4 | | i .= ||i4V||g). It is known [16], [13, pp. 84—88] that every 
unitary invariant norm is of this form.") Included in (7. 33) are the norms 

( 7 . 3 4 ) | | / 1 I J , , = ( A , ( | I 4 | ) " + . . . + lH ( | A\y)u'', p^ 1 . 

(7.32) is the special case p = 2 and (7. 31) is the limiting case p—>oo. 
The eigenvalues are given, for hermitian B ^ 0, by 

(7.4) h{B)= inf sup (Bx, x). 
1 M = i 

Here denotes an arbitrary k—1-dimensional subspace [12, p. 235]. (7.4) 

'•') Normalize, as usual, by requiring one-dimensional projections to have norm 1. 
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may, and will, be used as the definition of k,c even if B is not completely 
continuous, thus h need not then be an eigenvalue. (All' AFC from some k on 
will be equal the max of the continuous spectrum.) 

Before discussing alternate interpretations of (7. 1), I give a very strong 
extremal property of U. 

T h e o r e m 7.2. h{P{\—U*) (\ — U) P) ^ k{P{\ — W*) (\ — W)P). 

P r o o f . Use the expression (7. 4), observing that the minimax certainly 
can be confined to Analogously to (7.2), 

/.,;(P(1 — W ) ( l — i n f SUP i n f II x—y\\*-
IMI=1 lltfl^1 

Reasoning parallel to that which proved the preceding theorem now proves 
the right-hand member equal to 

h (P (2 — 2 C''•) P ) = /. 2 (2—2 C'''•) = X,,,. ((1 — U9) (1 — U)) = 

= lk(P(\ — U')(l-U)P). 
This proves the theorem. 

T h e o r e m 7. 3. || 1 —1/||, g || 1 — W\\s. 

P r o o f . In case of pure point spectrum, and in case the indicated sums 
converge, 

||i — w | | ! = tr((i — u O ( i —wo) = 
= tr (P( l — U/*)(l — W)P) + t r ( P ( l — W*)(l — W)P), 

and the W which minimizes this is U, by Theorem 7. 2. In case ||1 — U||2 is 
infinite, the same reasoning shows that || 1 — W\\2 is also. The possibility 
remains that || 1 — W||2 may be infinite but not ||1 — U||2; this too is satis-
factory. 

T h e o r e m 7.4. In the finite-dimensional case, ||1 — i / | | p g | | l — W\\r> 

for p = 2. 

P r o o f . ||1 —M/||;; = 11(1—U/*)(l — U / ) | | ^ 2 , so it is more than enough 
to show that 

l l ( i - t / * ) ( i - i / ) | | ^ II ( i - i n a - w O I I 

for every unitary invariant norm. For this, it is known [5, Thm. 4] to be 
sufficient to prove that &((1 — i/*)(I — U)) ^ &( ( ! — W*)(l — W}) for 
k— 1, . . . , « ; where by definition Sk = 2j=ikj. 

This general fact will be used [6, Thm. 3], [10, § 2 ] : for hermitian B, 

Sk(B)mSk(PBP+PBP). 
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Though the following proof is written for even k = 2m, the restriction 
is not essential. 

S 2 m ( ( l - W * ) ( l - W 0 ) ^ 

^ max{S,(P(l — W*)(l — W)P) + S2,n-i(P(\ — W)< 1 — W)P)} ^ 

S„. (P( 1 - W) ( 1 - W) P) + Sm (P( 1 - IT) ( 1 - W ) P). 
But taking W= U minimizes the right-hand member (Theorem 7. 2) and 
also makes both inequalities become equalities. 

This completes the positive work of § 7, but I add remarks on some 
natural conjectures. 

1 see no reason to doubt that Theorem 7.4 is true for dim ,£> infinite.10) 
Then Theorem 7. 2 would become a special case, Theorem 7.1 a limiting 
case. 

The bound on p in Theorem 7. 4 cannot be improved. In 2-space, let 
and ¡Q be nearly orthogonal 1-subspaces; | | 1 — i s nearly 2(2',/2), and 

if p < 2 this can be greater than ||1— X\\p. 
However, it is a plausible conjecture that if and О are assumed 

to be close in the sense that S(P, Q) s -I- then (7. 1) holds for all unitary 

invariant norms. 
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