Note on sums of almost orthogonal operators.

By BÉLA SZ.-NAGY in Szeged.
M. Cotlar has recently developed an interesting „unified theory" of Hilbert transforms and ergodic theorems [1]. He makes essential use of the following theorem:

Let $T_{1}+T_{2}+\cdots+T_{n}$ be a sum of permutable Hermitian operators in Hilbert space, satisfying the conditions

$$
\begin{equation*}
\left\|T_{i}\right\| \leqq 1, \quad\left\|T_{i} T_{j}\right\| \leqq \varepsilon^{|j-i|} \quad(1 \leqq i, j \leqq n) \tag{1}
\end{equation*}
$$

where $0 \leqq \varepsilon<1$. Then we have

$$
\begin{equation*}
\left\|T_{1}+T_{2}+\cdots+T_{n}\right\| \leqq c(\varepsilon) \tag{2}
\end{equation*}
$$

where $c(\varepsilon)$ is a finite constant not depending on n and the particular choice of the T_{i}.

In the case $\varepsilon=0$ we have $T_{i} T_{j}=O$ for $i \neq j$, i. e. the terms of the sum are "orthogonal". In the case $\varepsilon>0$ we may say that the terms are "almost orthogonal", the quantity ε being a measure for the discrepancy from strict orthogonality. Putting $S=T_{1}+T_{2}+\cdots+T_{n}$ we have, in the case $\varepsilon=0, S^{k}=T_{1}^{k}+T_{2}^{k}+\cdots+T_{n}^{k}$ for $k=1,2, \ldots$, thus

$$
\left\|S^{k}\right\| \leqq n, \quad \lim _{k \rightarrow \infty}\left\|S^{k}\right\|^{\frac{1}{k}} \leqq \lim _{k \rightarrow \infty} n^{\frac{1}{k}}=1
$$

Since S is hermitian, we have $\left\|S^{k}\right\|=\|\dot{S}\|^{k}$, thus $\|S\| \leqq 1$, i. e. for $\varepsilon=0$ the theorem is true with $c(0)=1$, and this is obviously the best constant.

For a proof in the case $\varepsilon>0$ reference is made to a previous paper of the same author [2], where it is based on a rather complicated combinatorial problem. We shall give here a very simple proof by reducing the problem to the one-dimensional case i.e. to a problem on scalars.

This reduction is made possible by the following well-known representation theorem for commutative operator algebras (see f. i. [3]): Any commutative algebra A, with real scalars, of bounded Hermitian operators T in Hilbert space, may be mapped isomorphically and isometrically into the
algebra of all real-valued continuous functions $u(M)$ on some compact Hausdorff space \mathfrak{M}, i.e. in such a way that if $T, T^{\prime} \in A$ and

$$
T \rightarrow u(M), \quad T^{\prime} \rightarrow u^{\prime}(M)
$$

then $c T \rightarrow c u(M)$ for any real scalar $c, T+T^{\prime} \rightarrow u(M)+u^{\prime}(M), T T^{\prime} \rightarrow u(M) u^{\prime}(M)$, and

$$
\|T\|=\sup _{M \in \mathscr{P}}|u(M)| .
$$

Choose in particular A as the (commutative) algebra with real scalars generated by the operators T_{1}, \ldots, T_{n}. If $T_{i} \rightarrow u_{i}(M)(i=1, \ldots, n)$, then the hypotheses (1) mean that

$$
\left|u_{i}(M) \leqq 1, \quad\right| u_{i}(M) u_{j}(M) \mid \leqq \varepsilon^{|j-i|}
$$

for all $M \in \mathfrak{M}$, and we have to show that these imply
for all $M \in \mathfrak{M}$.

$$
\left|u_{1}(M)+\cdots+u_{n}(M)\right| \leqq c(\varepsilon)
$$

We shall show even more, namely that for any sum

$$
s=v_{1}+\cdots+v_{n}
$$

of real numbers with $\left|v_{i}\right| \leqq 1,\left|v_{i} v_{j}\right| \leqq \varepsilon^{|j-i|}$, we have $|s| \leqq c(\varepsilon)$.
For any real number $\lambda \geqq 0$ denote by $n(\lambda)$ the number of those terms v_{i} in this sum for which $\left|v_{i}\right| \geqq \lambda$. Then we have

$$
\sum_{1}^{n}\left|v_{i}\right|=-\int_{0}^{1+0} \lambda d n(\lambda)=-[\lambda n(\lambda)]_{0}^{1+0}+\int_{0}^{1} n(\lambda) d \lambda=\int_{0}^{1} n(\lambda) d(\lambda),
$$

because $n(\lambda)=0$ for $\lambda>1$. If, for a fixed $\lambda, n(\lambda)$ is $\geqq 1$, denote by i_{1} and i_{2} the first and the last indices i for which $\left|v_{i}\right| \geqq \lambda$; we have obviously

$$
n(\lambda) \leqq 1+i_{2}-i_{1} .
$$

On the other hand we have

$$
\lambda^{2} \leqq\left|v_{i_{1}} v_{i_{9}}\right| \leqq \varepsilon^{i_{2}-i_{i}},
$$

thus

$$
i_{2}-i_{1} \leqq 2 \log \lambda / \log \varepsilon, \quad \text { i. e. } i_{2}-i_{1} \leqq a(\hat{\lambda})=[2 \log \lambda / \log \varepsilon],
$$

where $[\alpha]$ denotes the greatest integer $\leqq \boldsymbol{\alpha}$.
So it results the inequality

$$
n(\lambda) \leqq 1+a(\lambda)
$$

and this is valid for $0 \leqq \lambda \leqq 1$ obviously also if $n(\lambda)=0$. Thus we have

$$
|s| \leqq \sum_{1}^{n}\left|v_{i}\right| \leqq \int_{0}^{1}(1+a(\lambda)) d \hat{\iota}=1+\sum_{1}^{\infty} m\left(\varepsilon^{\frac{n}{2}}-\varepsilon^{\frac{m+1}{2}}\right)
$$

since $a(\lambda)$ assumes the value m on the interval $\varepsilon^{\frac{m+1}{2}}<\lambda \leqq \varepsilon^{\frac{m}{2}}(m=0,1, \ldots)$.

This achieves the proof, yielding the following value of the constant :

$$
c(\varepsilon)=1+(1-\sqrt{\varepsilon}) \sum_{1}^{\infty} m(\sqrt{\varepsilon})^{m}=1+\frac{(1-\sqrt{\varepsilon}) \sqrt{\varepsilon}}{(1-\sqrt{\varepsilon})^{2}}=\frac{1}{1-\sqrt{\varepsilon}}=\frac{1+\sqrt{\varepsilon}}{1-\varepsilon}
$$

The problem of the best constant is left open. Considering the sums

$$
S_{2 n+1}=\sum_{\nu=-n}^{n} \varepsilon^{|v|}=\frac{1+\varepsilon}{1-\varepsilon}-2 \frac{\varepsilon^{n}}{1-\varepsilon} .
$$

one sees, however, that the best constant $c^{*}(\varepsilon)$ must satisfy the inequality

$$
\frac{1+\varepsilon}{1-\varepsilon} \leqq c^{*}(\varepsilon) \leqq \frac{1+\sqrt{\varepsilon}}{1-\varepsilon}
$$

in particular

$$
3 \leqq c^{*}\left(\frac{1}{2}\right) \leqq 2+\sqrt{2}<3,5
$$

(M. COTLAR shows only that $c^{*}\left(\frac{1}{2}\right) \leqq 8$.)

References.

[1] M. Cotlar, A unified theory of Hilbert transforms and ergodic theorems, Revista Mat.
Cuyana, 1 (1955), 105-167.
[2] M. Cotlar, A combinatorial lemma and its applications to L^{2}-spaces, ibidem, 1 (1955), 41-55.
[3] I. Gelfand, Normierte Ringe, Mat. Sbornik, 9 (51) (1941), 3-23.

