On the compound Poisson distribution. .
By ANDRAS PREKOPA in Budapest.

A probabnhty distribution is called a compound Poisson d:stnbutnon if
its charactenshc functxon can be represented m the form

() (a)—-exp iyu+ f <ew=—1)dM(x)+ l (e —1)dN G

‘where y-is a constant M(x) and N(x) are defmed on the mtervals (—o0,0)
and (0, o), respectlvely, both are ‘monotone non-decreasing, M(—oo)==
-—N(oo) 0, further the mtegrals :

Jx dM(x) ﬁfx dN(x)

exist. We shall_prove that under cerfain conditions we obtain (1) as a limit -
distribution of double sequences of independent and infinitesimal random .
variables and apply this theorem to stochastic processes with mdependent :
mcrements :

.Theorem 1. Let &, &, ..., Eua (n—1'2 )be a double sequence
of random variables. Suppose that the random vartables in each row are
mdependent they are infinitesimal, i.e. for every £>0

lim max P([Em.[ >8)=

n>o 1=k=k

fmally, there exzsts a fmtte-valued non-negattve random vanable n such that

Zlﬁnk!<n (hn=1,2,..)

with probability 1. (This last condition means that the sums of the absolute
values of the sample summands are uniformly bounded.) Suppose, moreover,
that the sequence. of probability dzstnbutzons of the variables

. : , C—§n1+§n2+ * + Bk,
converges to a ltmmng dlel'lbllflOﬂ T/ten this is a compound - Po:sson

dtatnbutwn .
s S
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Proof. Let us define the functions f*(x), £ (x) as follows:

. f(x)=%x if x=0, F )= 0 if x=0,

if x<0O, x if x<O.
Clearly ft (x) f(x)=0 and

: Sn 2f(§nk)= n . (I‘l=l,2,), _

—L .='—-%‘f‘(§,:k) =7 (@=12.0),.
with probability 1. Hence it follows that for every"K >0 the relations
P(§+>K><P’(n>m C(=12..)
hold. Thxs imply that the distributions of the sequences & and §,. are compact,
sets. Let Fo(x) and F, (x) denote the distribution functions of the wvariables
. Cr and L., respectively. Let us choose a sequence of integers ny, n,, ... for .

which .

s lim F, (x)_—_F*(x),
@) ‘ 5 e ]
. lim Fp, (x)=F (x) .
. (where F*(x)and F(x) are distribution functions) at every point of 'coqtin'uity

of the latters. Let = be a positive number such that the functions F*(x) and

F~(x) are continuous at = and —, respectively. Since the random vanables
in the double sequences

L PED S G o F )
f_(gnl)’ f- (§n7) ey f (g lL,.)
are infinitesimal and independent in each row, moreover the relations (2)‘

hold, we conclude that if F, k(X)) =P (f ) < x), Fa(x) =P (f (Ew) < X), then
the sequences :

~

[ xaFh, kz | xdFix)

k=1 0<xr<¢ k=1 -t<z<0

are convergent (see [1] § 25, Theorem 4, Remark).- This iniplies that '

Y= lx<le ‘-’“’k 1-t<z<0 |

Jim. S‘(O | xdF,T,.(x)) — lim S’( | xdF,.,k(x)) —o.
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" Thus if

' sh= [aFi00,  gi)= | € dFat)

-

then from the inequality

{Jm(“’ —1)dG(x)| = |t] .‘ lx]dc(x)+2')" dG(x),

- © oz : |x|)t
valid for every dlstnbunon function G(x) and every 'r>0 it follows (using
Theorem 4 of [1] §25) that. : :

Knj

lim 3 ga()—1F = lim Vlcp.lm—uﬂ

= Xe ) Ll

Hence the conditions of Theorem 2 of [2] are fulﬁlled and thus the variables

i and Z,, are asymptotically independent, i. e.

) lim P(L < x, o <y)_F x)F, ().

i>®

Let F(x) denote the limiting dlstnbunon of the random vanables .. Since
;n—_;1z+Clzy we get from (3)

4) : F(x)=F (x)* F (x).
The laws F(x), F*(x), F (x) are infinitely di\}isible. In LEvY’s formula -

(e"'“’—l fux )dM(x)+Hem 1’i§)dN( X)

~ there correspond' to F(x), F*(x) and F(x) constants and functions, which we
denote by ¥/, 71, 725 0% 0}, 6f; M(x), M, (x), M, (x); N(x), Ni(x), No(x) respec-
tively. According to (4)
7 =n+ro=d+d,
M(X):MI(X)-}-M._(X), N(X)—-N,(X)—}—NQ(X)
If ¢*>0, then at least one of ¢ and o; is positive too. This ié, however,
impossible, since F*(x)=0 if x=0 and F (x)=1 if x>0.
We have therefore only fo prove that the integrals

JxdM, | xdN@

. exist. We prove the exislence of the second ‘integral, the existence of the
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first one can be proved similarly. We know that if =, is a point of contmmty '
of N(x), then

5 kn; ) >

©) [xd 3 Fu(x)
: 0 k=1
-converges ([1], § 25, Theorem 4) hence it is bounded. If
3
jx dN(x) = oo
. o
then we can choose such a number v (0 < T < 7,) that
(6) _[x-dN(x) >L,

where L is the upper bound of the terms in the sequence (5) and N(x) is.
-continuous at the point . But we know from the limiting distribution

. theorems (cf. [1] § 25, Theorem 4) that

S L ey

lim Z(F,.;,(x)—l)—N(x) - (x>0)

at every point of continuity of N(x), whence

1 kn;
) : - lim deZF,.k(x)—jde(x)
Obvnously (6) and (7) contain a contradlctlon
_ Let us separate in LEvy’s formula the terms

0 - ® .
-, x . x '
‘lllfl—_i_—;idM(X), IUJH_————x‘dN(X)
- ’ 0 .

and unite them with /y’a, then we obtain the required form of the limiting
distribution. Thus our theorem is completely proved.
In the sequel we apply our result to the theory of stochastic processes
with independent increments. We say that a stochastic process with indepen-
dent increments & is weakly continuous if for every ¢ >0

P(|&w—&|>2)—0
when h— 0, uniformly in {. We suppose that P(§=0)=1.
Theorem 2. Let us suppose that the stochastic process with independent

increments & is weakly continuous and its sample functions are of bounded
variation with probability 1 in every finite time interval. If @(u,t) is the
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 characteristic function of the random variable & then it has the form

® o t)=exp3i7(t)(1+f (e —1)dM(x, t)+_f (e —1)dN(x,8) |

where y(t) is a continuous function of bounded variation in every finite time
interval, M(x,t) and N(x,t) are continuous functlons ‘of the variable t and
the integrals
4 : . L1 .
: fx dM(x, t), fx dN(x, t)
- 0 )

exist for every L.

Proof. According to our suppositions the double sequence of inde-
‘pendent random variables

£

t
n

’ .E_u—gt 3 sy gt—gn-xt
n . n

satisfies all the conditions of Theorem 1. Moreover, for every n

&= Z (Eif;_g";‘ t) ’
. k=1 " n

hence we have only to prove the assertion regarding the functions y(¢),
M(x, t), N(x, ). The continuity in ¢ of these functions follows at once from
the weak continuity of the process & and the convergence theorems of infi-
nitely ‘divisible distributions (see e.g. [1] Chapter 3).

Now we show that for every 7> 0 y(f) is of bounded variation in the
interval 0 = ¢ = T. Let us consider the sequence of subdivisions

llin)={k2_-1 »? I: :l (k—:—_]yzr'--'r2n;n=1’2"°')

an an
T) +fxd(M (x, é‘;—‘ T) — M(x, k2—"] T)) +

of the interval [0, T] and let us denote the distribution functlon of the random
vanable i T——EH by F(x, Ii"). We know from the limiting distribution
theorems that
[k k—1
L o
lr) (i
: k k—1 W\ . : (
+de N[x, £\ —n~ x,—n—T))=hm > j x dF(x, 1) -
y A2 2 Nora IS

|z} <%
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(cf. {1} § 25, Theorem 4), hence

© E. 'y(_"_T)-—y(kz )|< ‘x dN(x, T)—-fx dM(x, T) +

+ lim S‘ x| dF(x, i™).
N-o 1T Ui
The boundedness of the sequence on the right-hand side of (9) is a conse-
quence of the fact that the non-decreasing sequence
aN

_.Ek-l

oN oN

o
k=%

converges with probability 1, and of Theorem 4 of [1] §25. Since y(¢) is
continuous, this implies that it is of bounded variation. Thus Theorem 2
is proved.
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