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A remark on the theorem of Simmons.

By A. RENYI in Budapest.

The theorem of SIMMONS in question [1] can be formulated as folldws: '
If n and h are positive integers, and if we put for 0=p =1, ¢g=1—p
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An ingenious and simple proof of this theorem has been given
by E. FELDHEIM ([2] and [3]; the proof is reproduced also in the text book
[4], p. 1T1—172).

The generalization of the inequality of SIMMONSs, for the case when ap
is not an integer, has been considered in this journal by CH. JORDAN') [5] .
and recently by 1. B. HAAz [6].

, HaAz tried to generalize the inequality of Simmons in that he has
shown that for fixed values of n and A
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The aim of this note is to show that the apparent generalization given

by HaAz is really a consequence of the original inequality of SiMMONS if
h 1

n <2

@) fur(P>0 if 1=h= and ﬁ%_—]—§p<'min(—l-, %)

and for the -remaining cases n==2h resp. n=2h—1 it follows

1) One of Jorpan’s results expressed by.the notations of the present paper runs as

follows : ’
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AT z=ps—and p< 3 the revepsed inequality is valid.

further~for
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from the evident relations

@ fw(l) 0 and f,,.”(‘);o

To prove our assertions we need nothing else than the well known’
formuia

(5) 3 )p = (1—9) (’s’)ft’u—t)"'“dt

r=

P

(see e.g. {2] p. 110 or {4] p. 133). It follows from (1) and (5) that
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It can be seen from (6) without any calculatlons that f,, h(p) is a decreasing
function of p (0 = p = 1). Thus it follows from (2) that

(M . Jun(p) >0 for p<—h— if £<;,
further it follows from (4) resp. (5) that
®) f’hh(P)>0 and fz“;.(p)>0 for p<—

Evidently (7) and (8) contain (3) which is thus shown to be a consequence
of (2) resp. (4). '
' We have at the same time shown that for i <— (3) can be replaced
by the stronger inequality :
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