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Some remarks on set theory. V.
By P. ERDOS in Haifa (Israel) and G. FODOR in Szeged.

Let E be an arbitrary set of power wm and suppose that with every
-element x of E there is associated a non empty subset of E. Two distinct
elements of E, x and y, are called independent, if x¢f(y) and ygf(x). A
subset F of £ is called free if F has only one element or if F has at least
two elements and any two of their distinct elements are independent. We
say that the subset I’ of E has the property 7(a,p), where q and p are .
'two cardinal numbers such that g = m,p=m, if
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A subset C of E is called closed, if for every element x of C, f(x)&EC.

We assume that [j?_(ﬁ;)sm and one of the following conditions hold
for the sets f(x): e _

(A) There is a cardinal number n<m suuh that, for every x € E,

(x)<n

(B) There is a cardmal number w < m such that, for ‘every pair of dis-
tinct elements x and y.of E, f(x)nf(y)<n.

(C) If x,y€ E and x ==y, then f(x)czf(¥) and f(¥)czf(x).

(D) For every x¢ E, the power of the set of elements y, for which
fC)nf(@)==0, is smaller than m.

We deal in- this paper first with the following two questions.

1. Whether or not these conditions imply the existence of subsets with
the property T(a,p) of E.

2. Whether or not these conditions imply the existence of free sets of
-certain cardinalities.

If the condition (A) is satisfied, then both questions are investigated
Jin some cases by supposing the generalised continuum hypothesis) (see [1],

.G
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[2], [4]). For instance E has a free subset of power m and a subset with the
property 7 (m, m) (if m is the sum of n cardinal numbers smaller than i,
the generalised continuum hypothesis is assumed).
In the sections 1, II, Il a number of results is given with respect to
the questions 1 und 2, if one of the conditions (B), (C), (D) is satisfied.
Our most interesting unsolved problem is the following one: Let m be

any cardinal, f(x) <m, f(x)Nf(y) <n<m. Does there then exist a free subset
of power m? We can only prove (without the generalised continuum hypo-
thesis) that there always exists an infinite free subset (theorem 8). Perhaps
the most striking formulation of our unsolved problem is the case m=N,
n==N,. If m=N,,n=4~k< N, we can prove (without the continuum hypo-
thesis) the existence of a free subset of power §, (theorem 6).

Finally we deal with the following two questions:

a) If the condition (A) is satisfied, does there exist a closed proper
subset of E, of power m?

b) If the. condition (A) is satisfied, do there exist two almost disjoint
closed subsets of E, of power m? .

These questions are completely sclved in section 1V. B

Notation and definitions. Throughout this paper, the symbols F and g
denote the cardinal number of the set F and the ordmal number 3, respec-
tively. For any subset [ of E let

= Uf® and [Ir= U (f()nfO))
rel’ :r.;g;:eyr
For any x € E, let f' (x)={y:x € f(y)}. For any cardinal number r we denote
by ¢ the initial number of r, by 1” the smallest cardinal number for which
v is the sum of 1* cardinal numbers each of which is smaller than r, by v-
the immediate predecessor of v provided that such a predecessor exists. We

say that v is singular if v can be represented in the form yv= 2 L., where
rye¥

F<r,r,<rt, and regular if no such representation exists.
We say that the sets F; and F, are almost disjoint if F1 n F, < min (F‘, F)

1.

We assume in this section that the condition (B) holds on the sets
J(x) and we give some results concerning to the questions 1 and 2.

We begin by proving two lemmas.

Lemma 1. Let A be a set of power m,m = N,. There IS a sequernce
{Ac}¢ oy, Of the type @n, of subsets of A such that
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1. A== U Af;
S fu
2. Ag=m for every &<,

w

AnAu=1 for every r,u, v < ¢n, u < @ and v ==y,
. Aa— U Ag=m for every « < ¢u,

.&.

if x€ A, then there are at most two ordinal numbers v and u, suck
that x€ A, and x€ A,

6. if U (A,nA)<m, then I'<m.)
wrel

nige

Proof. Let {Bsle. 4, be a sequence of subsets of A such that Eg =,
= |J B: and B,nB.==0 forevery g, » with v < ¢, u <@, and r==p. We

[N
define the sequence [A:l; o, by transfinite induction as follows: Let A,= B,.
Let now 3 be an ordinal number, 0 < 8< ¢,, and suppose that all sets A,
where 0= 37 have been already defined such that the conditions
2,3,4 hold for E<@; 4, r<3; and e<p. Let Ag= Bp Ulxe}e-3, where
X, €A, — U A;—ixg: ¢ It is easy to see. that the conditions 1—6 are

[$1]

satlsfled

Lemma 2. If A is a set of power w, m>N,, m has immediafe prede-
cessor and w: is regular, then there is a sequence {Ac}e—q,  of the type Pie o

of subsets of A such that =
1. A== |J Ag, ‘
S P

2. A;==wm" for every < ¢y, ‘
3. A, ﬂA.‘ <w~ for every distinct v, u, v < ¢y and u<¢m,
4. Aa— U A =m- for every « < gy,

()]

Lif Uy (-\,.nA,,)< m, then I’ < .
”. "E

P

Proof. Let {B:); ,, be a sequence of subsets of A, such that
B;- wm, A |J B: and B,nB,=0 for every distinct », u < ¢,,. We define

= Fm

the sequence 1Ak ,,,m by transfinite induction in the following manner: Let

sets As, where 0 == £< g, have been already defmed such that 2,3, and 4
are satisfied for < 2; o, r<3; and e < 3.

1) 1t is clear that 6 follows from 3 and 5.
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If 3=¢n-, then we define A; in the same way as in the proof of
lemma 1. If 8> @n-, then let {CP};., . be a wellordering of the set
{A¢):-p. For every »< @ there is a £ <g, such that A, =C¢. Let
Ap==BpU{X,}n.p, Wherex, € (A, — U A()—‘Lg CP. 1t is easy to see that the
conditions 1—5 are satisfied. B

We shall now prove some negative results concerning the guestion 1.

Theorem 1. If m is an arbitrary infinite cardinal number, n =2, and,
for every x€ E, f(x)=nm, then (B) does not imply tlze existence of a subset
of E with the property T (m,m).

Proof. By the lemma 1 there is a sequence {Egj¢-, of subsets of
E with the properties 1—6 in the lemma 1. Let {x¢}: o, A be any wellor-
dering of E. Let now f(x:) — E¢ for every &< ¢.

Theorem 2. If wm is a singular cardinal number and for every
X€E, f(x) <m, then (B) does not imply the existence of a subset of E with
the property T (m, m).

Proof. There exist cardinal numbers m,, m,,..., mg,... (E<@nps) such.
that mp>m, for #>¢ = >'m¢. Let {F¢}¢-p,. be a sequence of

7y
mutually disjoint subsets of E such that E= - UE: and E; = wm;. By the lemma
- P

1 there is, for every &, a sequence {E,,,, Fing with the properties 1—6 in
the lemma 1. Let {x{}, P be any wellordering of E; and f(xf)= E¢ for
every &< ¢ and v <e,,. Obviously there is no subset of E with the
property T (m, m). '

Theorem 3. If m> N, and wm has regular immediate predecessor, and
for every x € E, f(x)=w", then (B) does not imply the existence of a subset
of E with the property T(m, m).

Proof. Using the lemma 2, the proof is similar to the proof of

‘theorem 1. v
We shall now prove a positive result concerning to question 1.

Theorem 4. If f(x)<m, m=yN, and n <N, or 2% =N,,, for every
ordinal number {, m=Nar1, == Ne (cf >1) and n<r*, then there exists a

..... YN T - T Uy Al SCTCEN

.bUU.)El Uj L'. Wllll e [JIU[IEI[}/ 4 i, Hl}
Proof Suppose that the theorem is false, i. e. if M is a subset of E

of the set > 7 is smaller than m. Define the sets Mg and K,g by transfinite
induction as follows. Let M, be a subset of E, of power less than ni, and
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et K,=0. Let now 2 be an ordinal number, 1 =@8< ¢y, and suppose that
all sets M; and K, where 0<’g’<ﬂ, have been already defined such that
M:<m. Let Np— UMg Obviously N; <m. Let Kz be a subset of £ such that:

L f(x)n(E—Np)=i=0. if x € Ky,
2. [Tk,cN;  and

3. for every x € E—Kj there is an element y of Kj such that Fnf(y)
is not a subset of Nj.

Let
My=2l; —N,.
Obviously Mz==0 and Mz <m. Let M= U M. Clearly M<m and UK<m.

Sl §<lpy
Let F be the set of all sets which have one and only one common element:

with every M¢ Ex< o ). If x¢ E—U K¢, then for every § there exists an
<o,

element y € K; such that f(x)nf(yg)-‘—O i. . Mcnf(x)==0. Thus for every
x€E—U K, there exists a set g(x)€F such that g(x)Sjf(x). Since

£19n R
F <21 < m, there exists a g€ F and two distinct elements x and y of E—U K
___€<on

such that g & f(x) and g<f(y), which is 1mpossnble since f(x) nf@®) <n.
) We prove now some results concerning to the question 2..

-~ Theorem 5: If there is an element xoéEfor which f(xo)wm, then -
there exists a free subset of E, of power m.

Proof. By the condition (B), for every element ye€ f(x), f(y) nf (xo) <
Let g(x)=f(x)nf(x,) for x € f(x;). By the theorem V of [2] (with f(x))==8 -
and f(x)=g(x) (x € S)) there exists a free subset of power m of E with
respect to g(x). This subset is a free subset of £ with respect to f(x).

Lemma 3. If the condition (B) on the sets f(x) implies the existence
of a subset of E with the property T (m,m), then the same condition implies-
the existence of a free subset of E, of power m.

Proof. Let g(x)={x}uf(x) for every xcE. Clearly the sets g(x)
satisfy the condition (B) for every x¢€ E. By the hypothesis there exists a.
subset F of E, of power m, for which

§§=m and ﬁz""<m. _

Put G=I'—II%. Obviously G=m. G is a free set. Indeed let x and y be-

two distinct elements of G. Then x¢f(y), since in the opposite case:

x €g(x)ng(y)< I}, which is impossible. Similarly y ¢ f(x). ' '
From lemma 3, and theorem 4 we deduce
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Theorem 6. 1ff(x)<m m——g, and n<xo or 2 /’—gp . for every-
ordinal number 3, m=¥ .., r=R, and n < t*, then there exists a free subset
of G, of power m.

a+l

a+l-
for every ordinal number «, then there exists a free subset of E, of power wm.

The proof of this theorem is analogous to the proof of the second part
of the theorem V of [2], if we use theorem 6 of this paper instead of the
first part of theorem V of [2]. '

Now we prove the following

Lemma 4. Lét F be an arbitrary subset of E, of power m. The con--

that F—f- 1(x)—m, where f1(x)={y: x€f(»}.

Proof. Suppose that the lemma is false. Then there is a subset L of E,
of power m, such that for every xéL

There is no loss of generahty in assuming that L==FE. We consider- two
cases. First suppose that m is regular. Let N be an arbitrary subset of E,.
of power greater than n. Since m is regular by the hypothesrs we have :

U(E—f —F1 () <m.

Suppose now that m' is smgular. There exist regular cardinal numbers.
Mo, Mye. ., Mg, ... (§ < @ns) such that wg > e > max (w®, n) for @ >¢ and
' ' ' N!—Z'llle '
~ Pms
Consider an arbitrary sul subset Mof E, of power m,. Let M be the set of all.
elements of M for which E —f“(x) < mg. Obviously

M= M.

§lpns
Since m, is regular and m, >m”, there exists an ordmal number &, such..
that M, = mo. Obviously the power of the set

B (E 1)

is not greater than o the, (< m) Let now H= N if m is regular and H= Mfo,_
if m is singular. Put K= U (E —f-4(x)). Clearly E—(KUH)=m and by"
the definition

E—-(HUK)-C—:f"(x)
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for every x € H. It follows that -

HSf(y)

for every ye E—(HUK) which is impossible, because f(x)nf(y) <n for
every distinct x, y € E and H = n. This contradiction proves the lemma. '
Without using the generalised continuum hypothesis we now prove

Theorem 8. If m is an arbitrary infinite cardinal number and f(x) < m
Jor every x € E, then there exists a free subset of E, of power .

Proof. Let x, be an element of E for which E—f-(x,)=m and k a
natural number, £>0, and suppose that all elements x;, where 0 = j<k,
have been already defined such that the power of the set

= E—UJ(x)—Uf"(x)

is equal to m. By the lemma 4 there is an element y of E;, such that
E—f l(y)—~m Let x.=y. The set {x;};<o is obviously free.

We assume in this section that the sets f(x) satisfy condition (C).

Theorem 9. (C) does not imply the existence of a subset of E with
_the property T (2, m) and it does not imply the existence of an independent
pair. :

Proof. lt is sufficient to consider the case where f(x)=E—{x}.

The theorems 2 and 3 show that the additional assumption that f(x) < m
for every x € E does not imply the existence of a subset of E with the
property T (m, m).

We prove now the followmg

Lemma 5. If w is regular, m =N, and f(;j< m for every x€E, then

(C) implies the existence of an element x € E such that E—f ' (x)=m.

~_Proof. Suppose that the lemma is false. Then for every x€E,
—f '(x)<m. Let A = U (E—F7'()). Obviously A < m, because f(x) < m

yefin
and m is regular. If zeE—A then f(z)> f(x), which contradicts the condi-

tion (C).

Theorem 10. If m is regular, m = N,, and f(x)<m for every er
then (C) implies the existence of an independent pair.
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Proof By the lemma 5, there is an ‘element x of E such that
E—f'x)=m. Let yc E—f'(x)—f(x). Obviously the set {x,y) is free.

Theorem 11. If m is.-‘(eg.lzla(,-t11 =N, and 7(3?) = for every x¢€E
then (C) does not imply the existence of a free subset of power greater than 2.

Proof. Let E, and E. two mutually disjoint subsets of E, of power m,
such that £ = E, U E,. Let {x}};. ‘¢, and (X3} -9, Dbe wellorderings of E, and
.E.,, respectively. If t~x,7€E,, then let

a

f(x)= {an -y U

i

and if x=x’¢ E,, then let

Fx)={xE}e.,U{xy) :
1t is easy to see that the sets f(x) satisfy the condition (C) and there does
not exist a free -subset of power greater than 2.

Theorem 12. [f wm is singular and f&j< m for every x € E ,then
() does not imply the. existence of an independent pair.

Proof. Let E={r: n<¢m} and for every ordinal number r < ¢y,
By =458 a subset of type gue such that lim §f = qu and hunh;=0

¢SS Ty
- P

for w==1;. Let pow f(y)—E"’uE” where Ei =h, and E"={v:v = r}.
Obviously the sets f(x) satisfy the condition (C) and does ndt exist an in-
dependent pair.

1L

We assume in this section that on the sets f(x) the condition (D) holds.

Theorem 1 3 (D) implies: the existence of a subset with the p[operty
T(wm% 1) i e there is a subset M of power w*® such that (W) if x, yEM “and
x==y, then f(x)nf(y)=0. :

Proof. Suppose the contrary. Then the power of aset with the property
(W) is less than m®. Let N be a maximal set with respect to the property
{W), i.e.if x& N, then there exists an element y € N such that f(x)n f(y) =0
We define the sets N, (a€N) as follows: Let the element y of E—N be an
element of N, if f(y)nf(a)==0. Since N <m" there is an element bEN for
which N,==m, which contradicts (D). -

Theorem 14. [f m is singular and n=23 then (D) does not imply
the existence of a -subset with the property T(m, 1). _
’ AT
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Proof. Let {Eg}e., . Dea sequence of type gqe, of mutually disjoint.
subsets of E such that :
E= U E,
Elppe

E:=m;<m and m, <m, for n<v. Let {x,,},,<,,,m be - any wellorderma of
the type ¢u,, of E;. We define the sets f(x) as follows: if erEg, then
let f(x)=——{x§', x:). Obviously the sets f(x) satisfy the condition (D), and
does not exist a subset of E with the property 7(m,1).

Theorem 15. (D) implies the existence of a free subset of E of
power m*. ' .

Proof. We consider two cases: a) E has a subset F of power m-
such that, if x ¢ E,, then j(.k)—-—m b) there is no such a subset of power m.

In the case a) we prove the followmg

Proof. Suppose the contrary, i.e. E has a. subset M such that
M<w® and EZZ U j(x)<m Then there is an element y of M such that

F@)=mw and f(y) has a subset F(y) of power m such that, if z€ F(y), then

f@ =mw. Since M <, it follows from (D) that the set F(y) has an element
2, for which f(z,)n f(z)=0 for every z€ M. Thus f(zo)cE— U f(x) which

is impossible because f(zo)——m

Let E,={y f(y)<m} Further let V=FE in the case a), V E, in the
case b) and {x,}, ., any wellordering of the type ¢, of V. We define the
sequence {y.},..p.« as follows: Put y,=x,. Let now 8 be an ordinal number,
1 = 3 < ¢+, and suppose that all elements y;, where 0 =& < 8, have been
already defined. Let Fg={xy},,.;;,gm—'—({yy}KpU(*L<Jﬂf(}’v))-

We now prove ﬁ—m In case b) this is clear and in case a) it follows
from lemma. 6 (M =— Yrlv<p)

Let Dg be the set of elements y € F3 for which there is a » < # such that
¥» € f(¥): Since 3< i, by (D), Dp <. It follows that Fs— Dp=m. Let Ve
be the first element of Fzg—D;s. Thus the set {y,}<p_, is defined. Put
E'=1{y,}»< .. Clearly the set E’ is free and E’==m", : :

Theorem 16. If m is singular, then the condition (D) on the sets
J(x) does not imply the existence of a free subset of E, of power m.



_ ‘Some remarks on set theory v. ' - B9 -
Proof Let {E¢}¢<y,. be a sequence of type Pue, Of mutuaﬂy dns-
joint subsets of E such that
E= U E,

< pys
E¢—=m¢<m and m,<m, for n<» Let {x,},,<(,,‘uﬁ be any wellordenng of
the type ‘Pme of E;. We define the séts f(x) as follows: if x=x}, ¢ E, then
let f(x)-{xg}K,, It is obvious that the sets f(x) satisfy (D) and there does

not exist a free subset of E of power n.

IV.

We assume in this section that the sets f(x) satisfy (A), and we give
the solutions of questions a) and b).

Lemma 7. If m>N, and there is a regular cardinal number v for
which N <n =t <m, then to every element x of E there corresponds a closed
subset g(x) of E such that x € g(x) and g(x) <.

Proof. Let x be a given element of £ and
XIUF()=E,, (E)=F,,..., f(Ec-)=E, ...

It is easy to see that Ex<r (k=1,2,...). Put g(x)=leEk-

Theorem 17. If there exists a regular cardinal number v such thaf
No<n =t <m, then (A) implies the existence of a closed proper subset of E,
of power m.

Proof. By lemma 7 to every x¢€ E there corresponds a closed subset
g(x) of E such that g(x)< r. By a lemma of [3] (see.p. 55) there is a
subset F of E for which F=m and

E~Ug®#&
Since U g(x) is obviously closed, the theorem is proved.

Theorem 18. If m> Ny, m~ is singular and n=m", then (A) does
not imply the existence of a closed proper subset of E, of power m.

Proof. Let {Ep}s<y, be a sequence of the type ¢u, of mutually
disjoint subsets of E such that E= | Es; and Es=m~ (8 < @u). Further let

B<om
{xP), .4, be a wellordering of the type @n.- of Ez. We define the sets

f(x) as follows: Let {@}y<p(m-y» be a set of type @u-» of ordinal numbers

such that im e, =q@g-. if ﬂ>0 then let Hg be a one to one mappmg of
<P(m)*
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the set {x}a -4 - onto the set {x7}iZf .. Since the powers of both sets are

equal to m- there is such a mapping. If x=x% € E;, then let
fx)=ESUES U ED

where EV? = {x{"}y..a, EY =1{x )y .y further EfY =0, if #=0 and

E = {Hp(x)} if ﬂ> 0.

Obviously f(x) <n for every x € E. If g(x)= U E,, where E =f(x)

and E, = f(Ei-1) for k> 1, then by the definition of f(x) for x =x®,

g(xf)y= U {x0%..

o=

1t follows that E does not have a closed proper subset of power m.

~Pm-.

Theorem 19. If there exists a regular cardinal number v such that
No<n=rv<m, then (A) implies the existence of two almost disjoint closed
subsets of E, of power m. If m (== Nasw) IS the sum of w cardinal numbers,
each of which is smaller than w, we assume the generalised continuum
hypothesis.

Proof. By the lemma 7 to every x€ E there corresponds a closed

subset g(x) of E such that g(x)<r.” By the theorems 1, 6, and 8 of [4),
there is a subset I" of -power m of E, for which

ﬂ[‘< m and 21= n.
Let I'— /1, ul, such that I'nI,=0and [, —[o=m. Let E,= |J g(x) and
. r& :

E,= |J g(x). Obviously E, and E, are almost disjoint closed sets of power m.
r€l,
Theorem 20. If m>N., m" is singular and n=wm-, then (A) does
not imply the existence of two almost disjoint closed subsets of E, of power m.

This follows from the proof of Theorem 18.
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