The von Neumann coordinatization theorem
for complemented modular lattices.
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1. Introduction.

1.1. In all of what follows n will denote a fixed positive integer,” V

will denote the set of all vectors u=(c!,..., ") of length n, and left modu-
les will always mean non-empty left modules of V. The coordinates &' will
‘be arbitrary elements in a ring N.
' If R is a division ring it is well known that the set of all left modules
-of V form a complemented modular lattice. If R, more generally, is a regular
ring with unit element, then, as discovered by JoHN vON NEUMANN, a com-
plemented modular lattice is formed by all left modules of finite span (a left
module is of finite span if it is spanned by a finite number of vectors). In
the case that 3 is a division ring every left module is of finite span.

A deep converse to the previous statements was discovered by VON NEU-
MANN [7, vol. 23, page 18; 8, vol. II, Theorem 14.1, page 141). Let L be a
-complemented modular lattice possessing a finite homogeneous basis a,,.. .,
a, of order n and let L; denote the set of inverses of a; with respect to
;4 a;. VON NEUMANN showed that if n =4 the following theorem "holds:

The von Neumann coordinatization theorem. For every
i=£j, addition and multiplication can be defined for the elements of L in
such a way that: '

(i) the L become regular rings with unit, isomorphic fo a common
- regular ring R,

(ii) all sub-lattices L(a;) (L(a:;) consists of all x =a;) are isomorphic
to the lattice of all left principal ideals of R,

(iii) L is isomorphic to (coordinatized by) the lattice of all left modules
of finite span in the space V of vectors (&,...,¢") with all &' in R.

1) Canadian Government Overseas-Award Fellow 1954—55.
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This generalizes the classical theorem that a projective geometry carr
be coordinatized (with coordinates in a suitable division ring) if the geometry
has dimension = 3 (that is, has order = 4). But the classical theorem also
asserts that a projective geometry of dimension 2 (i.e. a plane geometry)-
can be so coordinatized if and only if DESARGUES’s theorem holds [3, Kap..
V; 6, Theorems 10, 11, ex. 19, page 204] and this result is not covered
by von NEUMANN’s theorem as formulated hitherto.

In this paper we will give a presentation of VON NEUMANN’s coordinat-
ization theorem which further simplifies our previous treatment {I, 2] and
which includes the case of plane projective geometry. Our discussion will
apply to any complemented modular lattice L possessing a homogeneous
basis of order = 3; for the case n= 3, we postulate the additional restrictions.
(4.3.3), (4.3.4) and (4. 10. 3). When L is a plane projective geometry these
restrictions reduce to the so-called fundamental theorem on quadrangular
sets [6, p. 47), which is, in turn, equivalent to DESARGUES’s theorem.

Since detailed discussions of the von Neumann coordinatization theorem
which have appeared previously [8, vol. 1I; 4; 1, 2] are not readily acces-
sible, we find it desirable to give here a complete exposition.

1. 2. Contents of this paper. This paper does not assume previous
knowledge of either vON NEUMANN's theory or general lattice theory. Sections
~ 2, 3 and part of 4 are a simplified exposition of parts of [8, vols I, H]. '

In section 2 definitions are given for: lattice with zero element, modular
lattice, relatively complemented lattice, complemented lattice and independence
of a collection of lattice elements, together with some properties which are
required later and are easily verified.

In section 3 regular semi-groups and regular rings are defined and
some of their properties obtained. With V denoting the module of all vectors
of length n with coordinates in a regular ring it is shown that a left module
(i. e. sub-module -of V) of finite span is always spanned by n vectors
(..., /), j==1,..., n, with the properties: for each j, e¢# is idempotent,
=@, say; for all i>j, ¢i*=0; for all i<j, e¢/a/' =« and ¢ ¢ =0. Such
a set of n vectors will be called a canonical basis for the left module. It is
shown that the left modules of finite span form a relatively complemented
modular lattice; if the regular ring ) has a unit then this lattice is com-
plemented. ' '

In section 4 a ring of coordinates is constructed for a given comple-
mented modular lattice L. In § 4.1 homogeneous bases and normalized
frames for L are defined. Addition and multiplication are defined in §§ 4. 2
and 4. 9 respectively, for elements in a fixed L; (this is a lattice generali-
zation of familiar constructions in projective geometry). In §§ 4. 2 to 4. 14
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it is shown that the L; then become isomorphic regular rings with unitif L
possesses a homogeneous basis of order n=3 and satisfies the additional
restrictions (4. 3. 3), (4.3.4) and (4. 10. 3). Assuming these conditions on L,
Parts (i) and (ii) of the von Neumann coordinatization theorem are established
(Theorem (4. 14.6)).

In § 4. 15 certain collections of lattice elements (xj; i==j), (xi; i>))
with all x; in Ly, are called L-numbers and upper semi-L-numbers respec-
tively. These numbers form rings ', K, respectively, and R’ is identified in
.a natural way with a subring of 3 (actually )’ coincides with R; this is
shown directly if n =4 but for n=3 is obtained only as a consequence
of Part (iii) of the coordinatization theorem). ) is called an auxiliary ring-
for L. In (4. 15.5) N is shown to be ring-isomorphic to every L;. The proof
of Part (iii) of the coordinatization theorem (to be given in sections 5, 6) is
in terms of the space V of vectors (¢!, ..., «") with ¢’ in the auxiliary ring N. -

In section 6 we give a rule which assigns to each x in L a family of
modules of V. It is shown that ali left modules- assigned by this rule to the
same x coincide (Theorem (6. 2.5)) and that the rule sets up a (1, 1) order
preserving correspondence (i. e., lattice isomorphism) between L and the set
of all left modules of finite span (Theorems (6.2.1), (6.2.6)-and (6. 2.7)).
"This establishes Part (iii) of the coordinatization theoreim.

The rule which assigns left modules to an element x is as follows.
First we consider special elements y which satisfy: for some integer i,
y=m+...+a, y(@+...La.;)=0(such an element is called an i-element).
We show that every i-element can be expressed in terms of suitable
»projections® 2/, j<i (each @ in L;), together with a suitable ,covering®
idempotent e (see (6. 1.1)). In § 6.2 we assign to each i-element y a vector
.u(y), not necessarily unique. Then an arbitrary x is expressed as a sum
X, +...+x, with each x; (not necessarily unique) an i-element. The module
spanned by vectors u(x,),..., u(x,) is assigned by our rule to x.

Certain relations required in the proofs of section 6 are collected
together in the previous section 5. The involved identity (5. 2. 3) is required
in the proof of Theorem (6.2.3). In § 5.3 the nullity «*=(c?; i=1,...,n)
and the reach ¢"=(«/; i=1,..., n) with 0=¢, ¢/ =a;, are defined for

~each « in . If I is a division ring, each of ¢!=0, «/ =a, is equivalent
to «=E0; in the general N, these conditions are equivalent to: ¢ has a right
inverse and « has a left inverse, respectively. Theorems (5.3. 1) to (5.3.7)
_give properties of reach and nullity and are designed to- meet complications
which arise in section & due to the fact that R need not be a division ring.

Section 7 specializes the previous discussion to- the case of projective
geometry with a normalized frame consisting of points. It is shown that the
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additional restrictions (4. 3.3), (4.3.4) and (4. 10. 3) are then equivalent to
a restricted formulation (7. 4. 3) of DESARGUES’s theorem.

1. 3. Notation. Greek letters e, §,7,... (but excluding 71) without
subscripts will denote elements in a seml-group S or in a ring R; e, f,
will be reserved for ring elements which are idempotent. For fixed o', o?,.
in R, (¢, &,...) will denote the left ideal consisting of - all ﬁmte sums
,é“a‘+p"-’a9+... with arbitrary g* in R; similarly (e, %...), will denote
the right ideal of elements &'f'+e*8°+...; if @ is in a semi-group S, (a):
will denote the left coset consisting of all e with arbitrary 8 in S, (), will.
denote the right coset consisting of all @ with arbitrary # in S (if the
semi-group S is the multiplicative semi-group of a ring R, the left coset
() and the left ideal (e} coincide as do the right coset and right ideal
(«);). The letters u, v,... will denote vectors of length n with coordinates.
in  and (4, v,...) will denote the left module spanned by u, v,... which-
consists of all finite sums eu+4pgv-+... with arbitrary @, §,...in R. The.
letters aq, b, ¢, d,..., X, ¥, 2,...,p,q,W,..., A, B,... will denote elements in
a lattice L. The letters i, j, k, m, s, t, will denote positive integers. The same
symbols 0, 1 will be used to denote ring elements and lattice elements but
there will be no ambiguity. The symbols 4-, 2 will denote addition for ring
elements and lattice join (i. e. supremum) for lattice elements but there will
be no ambiguity. Similarly «f and Il;e’/ wiil denote ring multiplication
whereas xy and II; x/ will denote lattice meet (i.e. infimum). With each
ring element « there will be associated certain lattice elements to be denoted
by @ with subscripts (with or without superscripts) thus ey, «?, and a;. For:
certain lattice elements we will define in §§ 4.3, 4.10 new operations
x4y, x Xy with values which are again lattice elements; these should not-
be confused with the lattice operations x+y, xy.

2. Complemented modular lattices.

2.1. Lattices. A lattice with zero L is a collection of elements O, a,
b¢,...,x, ¥ 2,..., partially ordered by a relation a = & (also written b = a) -
such that 0 = x for every x, and for each pair a, b there are elements a4 b+
and ab (necessarily unique) satisfying: B

atb=x ifand onlyif a=xand b=x, ’
x=ab if and only if x=a and x=6.

L(a) will denote the sub-lattice with zero of all x = a.
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2. 2. Modular lattices. L is called a modular lattice if: a(b+c)=
=pb-tac for all g, b, c with b = a. This modular law implies .the absorption
law: ab+4-c=a(b+c) for all a, b,c, with c=a; the clipping. identity -
a(b+c)=alb(a+c)+c] for all a, b, c; and the superfiuous term identities -
ab=a(+c) if cla+b)=0 and b=0bd if b=d. Applications of these-
identities will be indicated by (ML), (AL), (CI) and (ST), respectively.

2. 3. Independence. In a modular lattice with zero, for each m==1,2, ...,
elements x',...,x™ are called independent if, for each i = m, x'(x*+ ---4-
+xi-tpxitt L. xm) =0, If for some ordering of the x* it is true that'
X(x1+4---+x-1)==0 for 2=j=m then the x‘ are necessarily independent..
- If the x* are independent and for each of a finite number of j, [; is a sub—

set of the integers 1,2,...,m, then ‘ -

IT(&Xxt; §in [)=(3x% i in all [);
if the x* are independent and x¥ = x‘ for each of a finite number of j, then:
' I1; 5 X% = 3, IT;xV.

The symbols &, 2@ will sometimes be used in place of +, 3 to-
imply independence of the elements involved. :

A detailed treatment of this theory of independence was given by vON-
NEUMANN [7, vol. 23, page 22, footnote 7; 8, vol. I}.

2.4. Complements and relative complements. If x = z in a lat--
tice L with zero then a relative complement, or inverse, of x in z is an ele-
ment y (not necessarily unique) such that x®@y=2z2; [z—x] will be used to-
denote such an inverse of x in 2. A lattice L with zero is called relatively
complemented if there exists at least one relative complement of x in z when-
ever x = z. . -

A lattice L is said to have a unit 1 (necessarily unique) if x =1 for-
all x in L. If L has zero and unit elements then a relative complement of x
in 1 is also called a complement of x; L is called complemented if each x.
has at least one complement.

" A relatively complemented lattice with unit is obviously complemented;
-on the other hand, a complemented modular lattice is also relatively comple--
mented (indeed, if- x =z and y is a complement of x then yz is a relative
- complement of x in 2). o .

The modular law implies the indivisibility of inverses, which asserts:
whenever y, and y, are both inverses of ain b and y, = y,, then y,=y, (for:
Y2=b=y,(:+a)=y,+y.a=y,). Because of this indivisibility of inver-
ses it is possible to replace ,points“ as used in certain constructions in the
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classical theory of projective geometry, by ,inverses®. We shall use the
phrase general indivisibility of inverses to refer to the more general theorem
(also a consequence of the modular law): if yw+a=y.,+a and-y,a=y.a
for some u, and y, = y,, then y,=y..

2. 5. Perspectivities. Elements x' and x* in a lattice with zero are
called perspective if they possess a common inverse in x'-x°. Any such com-
mon inverse b is called an axis of perspectivity and, if the lattice is modu-
lar, sets up a (1, 1) order preserving mapping (called a perspective mapping)
of L(x') onto L(x%):

if 22 =x', then 2'— (2'4b)x",
if 2=x then 2*— (4 b)x.

If 2 and z* correspond under this mapping then 2'++b=2"40.

3. Regular rings.

3. 1. Definition of regular semi-group and regular ring. A non-
empty system S of elements e, 3, ... is called a semi-group if an associative
multiplication is defined on S, i. e. «g is defined and is in S whenever ¢, 8
are in S and «(3y)==(«g)y. The multiplication is called a regular multipli-
cation and S is called a regular semi-group if, for each « in S, afu=c
for at least one 2 in S [7, vol. 22, page 708].

"It is easy to see that a semi-group S is regular if and only if for each
« there exists an idempotent e (that is ee==¢) such that e« =« and «f=¢
for some @ (if ¢S« ==¢, then choose e=e«g); similarly a semi-group S is
regular -if and only if for each « there exists an idempotent f such that
«f==c and Be=Ff for some g (if ¢S« =¢, then choose f= 3c).

It is also easy to see that a semi-group S is regular if and only if
each left coset («¢) contains « and is identical with (¢), for some idempotent
e and if and only if each right coset (). contains « and is identical with
(f). for some idempotent f.

A ring 9 (a unit is not assumed) is called a regular rmg if its multi-
plication is regular; that is, for each ¢, ¢fae=¢ for some g in R.

3. 2. Principal left ideals. (Throughout this paper, right and left may
obviously be interchanged). In a regular ring the principal left ideals form,
as we shall show, a relatively compiemented modular lattice with zero (com-
plemented, if R has a unit) when partially ordered by inclusion; the zero
(left principal ideal) of this lattice consists of the zero element of N only.
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This is easily verified since, if e, f are idempotents?):

(i) the smallest left ideal containing (), and (f). is precisely (e+g)
where g is any idempotent with (g) = (f—fe);

(ii) the left ideal of all ring elements common to (e} and (f). is pre-
cisely (f—gf) where g is any idempotent with (g), = (f—fe).;

(iii) (f—fe) is a relative complement of (e} in (f), whenever (e) is
contained in (f);

(iv) if 3 has a unit 1 then (1) = (e).

It is now easy to prove that: a ring 3 is regular if and only if its
principal left ideals form a relatively complemented modular lattice such that
every principal left ideal («) contains ¢ and is contained in some principal
left ideal (e} with e idempotent (possibly depending on &); and a ring R
with unit is regular if and only if its principal left ideals form a comple-
mented modular iattice.

3. 3. Ring conditions on «. If g is an idempotent in a regular ring
N and &,y (i=1,...,m) are in N, then, as we shall now prove, the con-
ditions on «: « is in (g) and «3‘ is in (%) for each i, are equivalent to:
« is in () for a suitable idempotent e=e(g, 38, ..., 7',...).

We shall prove this for the case m==1 (the general case will then fol-
low at once from § 3.2 (ii)). We write 8 for 3' and y for ' and we may clearly
suppose that y is idempotent. Then the conditions on ¢ are equivalent to:
a=cg and «¢(f—23y)=0, that is, to the conditions: ¢ =g, ¢f=0 where
f is an idempotent with (f),=(3—3y)., that is, to the condition: « is in
(g—hg) where h is any idempotent with (h),==(gf)..

3. 4. Canonical basis. If M is a left module of finite span (of vec-
tors of length n with coordinates in a ring i) then M is certainly spanned
by a finite number of vectors v/ =(e?,..., /). If N is regular, then M is
always spanned by a canonical basis (see § 1.2), as we shall now verify.

Starting from the given +/ which span M, there is an idempotent e*
with (€*)r = (e, ¢*, .. .) (this implies a/"e* =« for all j and I8/ /" =e*

Y In (i), (e, f),<(e-+g) since: f—fe=(f—fe)g, g=u(f—fe), hence ge=10,
e=(e+g)—gle+2), f=rfet (fg—Seg)(e+g) Also e+ g), < (e f), since: et g=
=e+ u(f—fe)=(e—uf)e-+t uf. This implies that (e 4 g), is the smallest left ideal con- °
taining (e), and (f),.

In (i), (f—&f)=(e),(f), since: f—gf=(f—g)f and f—fe=g(f—fe), hence
S—gf=(f—gf)e Also (&), (/) =(/—gf), since: g=(f—fe)u, hence if x=1xe=xf,
then x(f—gf)=x—x(f—fuf=x—(x—x)uf==x.

In (iii), (e, f—fe),=(f),- Also (e),(f—fe),=0 since: u=ue=u(f—fe) implies
u=y(f—fe)e=0. ’ -

. A4
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for suitable g’). Let w'=e"(2:8*v*), and for j= 1, w=yi—e*w'. This
new finite set of vectors (which we shall denote again as »7) span M and
have the additional properties: «'* =e¢" (idempotent), e*a' =¥ for all i,
and /=0 for all j> 1.

Now apply the procedure of the preceding paragraph to the vectors.
5 (f = 2) to obtain an idempotent e®-! so that the vectors which span M may be-
supposed to have the additional properties: ¢*"-t=¢""}, g*-1¢>'=¢a>’ for all
i, and «/*'=0 for j> 2. Successive repetitions of this procedure show that:
M can be spanned by vectors v/ (now necessarily 7 in number) with % "1J =
==¢"!-j (idempotent), e*t'Je#* = ea# for all i, and e#*=0 for i>n+1—j.

Now replace »* by »'—eb™ 1> obtaining the additional property:
b n-ten-1—=(. By repetition of this procedure, obtain: b ‘¢'=0 for all i<n.
Similarly, obtain: e#e¢=0 for ail i<n-+1—j.

If u/ is now defined to be +**-j, the u/ are a canonical basis for M.

3.5. Vector conditions on «. Suppose g is an idempotent in a
regular ring R and for each i=1,.. , m suppose M’ is a left module of
finite span and +* is a given vector. We shall now show that the conditions.
on e: ¢ is in (g) and ' is in M* for each i, are equivalent to: « is in
(e). for a suitable idempotent e=e(g, v',..., M’,.. ). _

We shall prove this for the case m=1 (the general case will then
follow at once from § 3.2 (ii)). We write v' =v=(e,..., «") and we may
suppose that M' has a canonical basis w==(e/,...,a/™), j=1,...,n. Then
the conditions on e are equivalent to: (i) ¢ is in (g) and (ii) «v=Zu*
for suitable 8*. But if such 3 exist then ea’/e = g7e¥ for all j. Hence con-
dition (ii) on « may be written: ¢v=S;ea’t¥ and is equivalent to the m
conditions: e(¢*—3I;e/e’*)=0, k=1,...,n. It is now sufficient to apply
the result of § 3.3. :

3.6. The lattice of left modules of finite span. If ) is a regular
ring then, as we shail prove below, the non-empty left modules of finite span
form a relatively complemented modular lattice L when partially ordered by
inclusion; if the regular ring ;R has a unit then L has a unit and hence is:
complemented (note that the vector u=(¢',..., e") is always in (u), if R is
regular, for eu —u with e any idempotent such that (e), = (e',. .., @");). This.
is now easily verified, using the following statements:

(i) L has a zero (left module of finite span) consisting of the zero
vector (0,...,0) only. '

(i) If M' is a left module spanned by vectors u',...,u' and M is
a left module spanned by vectors u,..., u*, then the smallest left module
containing M* and M2 is spanned by u',..., u', u*,..., u>.
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~ (iii) If M* and M? are left modules with canonical bases
u=(e",...,a¥), j=1,...,n, and u¥ =(%,...,a¥"), j=1,...,n,

respectively, then M, the set of all vectors common to M! and M* (clearly a
left module) is a left module of finite span. We shall prove this now by
induction on n (for n=1 this is implied by (ii) of § 3.2)..

. Consider the n-th coordinate e¢” of a vector (a',...,«") in M° For any
such «* it is clear that e¢"e!™ = e =" so that, without changing the
set of vectors in M’ u' and u** may be replaced by e*u' and e"u>" respect-
ively where e* is any idempotent with (e*),= (¢'*);(¢**),. Thus we may
suppose that ¢!™ ==qa®"==¢". Then necessary and sufficient conditions that.
e be the n-th coordinate of a vector in M° are: (i) ¢ is in (e} and (ii) for
some ¢, 8, ¥ (i==1,...,n—1),

-
(e, ..., an—l) — S’ﬂj(am’ L L ) BT O L L Co )

= ) yi(eV, ., @) g (@, . ., @),
=
The condition (n), which involves vectors of length n—1, is equivalent to
(the ¢' may be ignored): «v is in M where ¢ is the vector (e"™—e™;
i=1,...,n—1) and M is the left module spanned by 2n—2 vectors of
length n—1: (e¥é; i=1,...,n—1), (¥ i=1,...,n—1), j=1,...,n—1.

It is now sufficient to apply the result of § 3.5 to see that these coor-
dinates e form precisely a left principal ideal (e);, say.

Let u be a vector in M° with n-th component e. Then a vector is in
M if and only if it differs by a multiple of u from a vector common to (M*)"
and (M?y, where (M') and (M?) are spanned by u¥, j=1,...,n—1, and
u¥, j==1,..., n—1, respectively.

It follows, by the induction, that M° is of finite span.

(iv) Suppose M' and M* are left modules with canonical bases
uV=(e",...,a¥), j=1,...,n, and u* ==(a",. aZJ") j=1,...,n, re-
spectively and suppose Ml is contamed in M2

Then for each j, (¢'%), is contained in (e®*7),. A relative complement of
M in M* may be obtained as M, the left module spanned by ..., u* with
W= (e —a¥ie'W)u%. For clearly this M is a left module of finite span and
is contained in M2 Next, M and M have only the zero vector in commoh;
- for if ‘

S

=1 =1

then, equating the n-th coordinates, we obtain g ™" —

2am lms n lrm
) -
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muitiplying on the right with the idempotent «'** shows that both sides of
this equality are zero and hence:

n-1
= viny,

-

w=2
7.1 Jj=1

Successive reductions show that w==0, as stated. Finally M* is contained in
MEM' (and hence M*=ME M'): for the identity:

U = W 4 @ a4 (¥ ¢V g — ¥iu)

shows that 4% = vector in M --vector in M'2-+ where r is a vector in M?
with i-th coordinate zero for all i = j. Thus by induction on £, every vector
in M* with at most the, first k¥ coordinates different from zero, is contained in
ME M when k takes the value n,” we obtain: M? is contained in M$ M,
as stated. ) v ,

(v) If R has a unit 1, then L clearly has as unit (left module of finite
span) the left module spanned by u',..., u" with o/ = (¢!, ..., &™), ¢/ =0 if
J==iand ¢i=1if j=I.

4, Construction of the auxiliary ring.

4.1. Homogeneons basis and normalized frame. Let L be a
complemented modular lattice. Then a,,...,a. will be calied a homogeneous
basis of order n for L if a,2---%2a,=1 and a: is perspective to a; for all
i, j. We shall adopt the notation:

A'=0; A=a-+-Fa (i=1,...,n);
Ai=a+-t+ajata+---Fa (I=j=i=n).
. Suppose that for such a homogeneous basis, a, is perspective’to a; with axis
x; for i=1,...,n (clearly x,=0): set ‘
¢ =(xi+x;) (a: +a))
for all i, j. Then as the reader may easily verify, the ¢; (i, j=1,..., n)
have the properties: for all i, j, &,

. 1.1) ci=Cy; Ci=0; (cii+ i) (ai + ar) =ca;
a;@c;qu;@cg.
A homogeneous basis ay,...,a, together with a set of ¢; with the properties
(4. 1. 1) will be called a normalized frame for L.
If i, j, k& are all different, Py.;=Pj..;; (fo be written as P..; if j is
unambiguous) will denote the perspective mapping of L(a:+a;) onto
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L(a:+a;) determined by the axis ci. The perspective mapping P will be
called non-crossing if both i>j and k> or both i <j and k <.

The collection of all inverses of a; in a;+a; will be denoted by L
(these concepts, basic for the coordinatization theorem, are due to VON
NEUMANN {7, vol. 23, page 20; 8, vol. I, pages 30, 32, 53]).

Throughout the rest of this paper we shall assume n = 3. We shall de-
velop definitions for addition and multiplication to apply to the elements in
L;; for arbitrary, but fixed i, j with i==/, such that L, becomes a regular
ring with unit provided that the normalized frame satisfies the three condi-
tions (4. 3.3), (4.3.4) and (4.10.3) below (these conditions are equivalent:
to Desargues’s theorem in the case of projective geometry). These three
conditions need to be postulated only for the case n=-3 since, as we shall
verify, they hold necessarily whenever n = 4.

4.2. The addition construction for inverses. An important con-
struction, which for fixed /, j applies to two elements x, y in L; and yields
an element z is the -following: Choose any A, B satisfying one or more of
the properties:

4.2.1) a;+-A+B=x,
4.2.2) a(4-rB+a,)—B(a,J-a,)——
4.2.3) Aa;=0.
Then define®)
4.2.49) z =[x+ A)a:+ B) +a;}(y + B) + Al(a: + a)).

We shall verify:
(i) (4.2.1) implies z+a;=a:+a;,
(i) (4. 2.2) implies za; = Aa;,
so that (4. 2. 1), (4.2.2) and (4. 2. 3) together imply that z is in L,,
Proof of (i): -
2+ a;=[{(x+ A)a:+ B)+a;}(y+ B+a)+Alai+a) = (AL)

= [(x+- A)(a: + B) --a;+ Al(a: +a)) (ST)
=[(x+A)a:+B+A)+aj@+a) : (AL)
=(x+A+a)(a+a) using (4.2.1)
=a; + a;.

3) Suppose, in the usual (Cartesian) u, » plane, that x is (4, 0), y is (us, 0), q; is-
the origin, a; is the point at infinity on the u« axis, A is the point at infinity on the v
axis, and B IS the point at infinity on the line u=v: then (&, + us, 0) coincides with
the z of (4.2.4). ) :
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Proof of (ii): ‘
2a;=[{(x+ A)(a:+ B)+a;}(y+ B) + Al g;

=[{(x+ A)(A -+ q,)(B-+a) +a;}(y + B) + Al a; n
= [{(x+ A)(A+a;)B+a;}(y+ B)+ Ala; using(Cl)and (4. 2. 2)
=[(x+ A)(A+a;)) B+ a;(y+ B)+ Al a; (ML)
=[(x+ A)(A+a,)B + Alq; using (Cl) and (4. 2. 2)
—G+AA+Bg (AL)
=[A+x(A+ B)(a: + )] (ML)
==[A+ x(A+ B)ajla; using (CI) and (4. 2.2)
== Aa,-.

We shall now show:

(4.2.5) Thezof (4. 2.4) = someelement E in L; if (4.2.1)and (4. 2.2) hold*).
(4.2.6) The z of (4.2. 4) = some element F in L;; if (4. 2. 2) and (4. 2. 3) hold.

[ndeed, (4.2.5) holds with £=[z—zaq;] since this Eis in L; (EDa;=
=z+a;=a;+a;, assuming (4. 2.1)).

Again (4.2.6) holds with F=z+4[(a;4a;)—(z+a;)] since this F is
in L (F+a;=a:+a; and a;F =a;(z+a;) F=a;z=0, assuming (4. 2. 2) and
(4.2.3)).

Of course, if (4.2.1), (4.2.2) and (4.2.3) all hold, then E<z=F
and the indivisibility of inverses shows that E and F coincide and coincide
with z.

4. 3. Uniqueness of the addition construction. We shall now
show that for x,y fixed, the E of (4.2.5) and the F of (4.2.6) may be
chosen independent of the A, B at least to this extent. Suppose A,, B, are
fixed elements which satisfy (4.2.1), (4.2.2) and (4. 2. 3) hence determine
some fixed 2, in Li;: if we now restrict A, B by the additional condition:

(4.3. 1) (An+Bo+a;+aj)(A+B+a{+aj)=a,-+aj,

then (4.2.5) and (4.2.6) hold with this fixed zo for E and F. In particular,
if A, B satisfy (4.3.1) and all of (4. 2. 1), (4. 2. 2) and (4. 2. 3), thenthe z they
determine coincides with this fixed zo.

To prove this, we first make the following observations (i) to (iv):

() (A+Ad)aj=Ag; if A, B satisfy (4.3.1).

Indeed, (A Ao)a;=[Ac(A+ aj)(a:+ a)+ Ala; using (CI) and (43 1)
= [Ao{a:(Ao+a)) + a;}(A+a)) + Ala; (CH
=[Aoa;(A + a;) + Ala; - using (4.2.2)

= Ag; _ using (4. 2. 3).

4) (4.2.2) is used only to prove uniqueness of E in § 4.3.
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(ii) Av+ A and B+ B satisfy (4.2.1) since 4, and Bo do.

(iii) A,+ A and B,+ B satisfy (4.2.2) if A and B satisfy (4.2.2) and

{4.3.1). .
Indeed,

a:(Ay-+ A+ B, B+a)=a[(A+B)(Ay+ Bo+a:+a)+ A+ B,+a]  (Cl)

==;[(A+ B)(@:+a))+ A+ B,+a;] using (4.3.1)

=a[(A+B-+a)a+A+B.+a]  (AL), (ML)
=a;(A.+ B,-+a)) using (4.2.2)
==0 using (4.2.2);
(B.+.B)(a:--a;) = [B«(B +a; +-a;) + Bl(a: + a)) (€1
=[By(a;+a))+-BWa;+a;)  using (4.3.1)
== B(a.+a)) using (4.2.2)

=0 ' - using (4.2.2).

(iv) 4,4+ A and B,+ B satisfy (4.2.3) if A and B satisfy (4.2.3) and
(4.3.1). This follows immediately from (i) above if A and B satisfy (4.2.3).

Let 2z, be the 2 determined by A,+ A and B.,L B and let z, be the z
determined by A and B.

Now if A, B satisfy (4.3.1), (4.2.1) and (4.2.2) then 'z, =z,
zi+a;=2z,--qa;, z,a;= za;, hence by the general indivisibility of inverses,
2= Z.. Smce clearly z, = z,, it follows that z, = z, as required.

Next, if A, B satisfy (4.3.1), (4.2.2) and (4.2.3) then 2, = 2., 2, 2" 2,
and z, is in L; since A,~ A and B,--B satisfy all of (4.2.1), (4.2.2) and
(4.2.3). From the indivisibility of inverses it follows that z,==2z, = 2z, as
required. This completes the proof of the statement at the beginning of this
section.

Thus the following theorem (4.3.2) holds if n = 4 (as we show below):
(4.3.2) For all A, B =a.-a;4a. for some k and satisfying all of (4.2.1),

(4.2.2), (4.2.3), the z of (4.2.4) has the same value (necessarily in L;).

More generally, the following theorems (4.3.3), (4.3.4) hold if n = 4
{as we siiow below):

(4 3.3) There exists a fixed z, (necessarily in L;) such that: for all
A B=a;+a;+a: for some k and satzsfymg 4.2 1) and (4.2.2),
the z of (4.2.4) = z,.

(4.3.4) There exists a fixed z, (necessarily in L;) such that SJor all
A, B=a;+a;+a. for some k and satisfying (4.2. 2) and (4.2.3),
the z of (4.2.4) = z,.

If (4.3.2) holds, in particular if n = 4, we shall define x L y to be the
common z of (4.3.2) (necessarily uniquely determined by x, y).
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We note that A, B = a:+a; +a. for some k and satisfying all of (4.2. 1),
(4.2.2), (4.2.3) do exist; for example, A=c¢;;, B==a, with k=i Indeed,
with this choice for A, B,

a+A+B=a:+a;+a. = x,
a:(A+ B+aj) = ai(a+a;) =0,
B(a; - a;) == aw(a; +a;) = 0,
Ad;==cra;,=0.

Substituting A =c¢;;, B==a; in (4.2.4) we obtain:
(43.5)  x Zy= [{x=cu) (@t a) - ad v+ a)+ il (@ +a).

Hence all of (4.3.2), (4.3.3), (4.3.4) are non-vacuous; either of (4.3.3).
(4.3.4) implies (4.3.2) with 2, necessarily identical with the common z of
(4.3.2).

Easy calculation shows that a; is a zero for the addition - : that is,
a4 . x=xa=x forall xin L;.

Proof of (4.3.3) and (4.3.4).

To prove (4.3.3) and (4. 3.4) assuming n = 4, let z, be taken as the 2
determined by A,==c.;, By= a., for any m==i,j; this 2z, will be indepen-
dent of the choice of m. For any k=i j, there will be an m==1,, k since
nz=4.

Throughout the rest of this paper we shall assume without explicit sta-
tement that (4. 3.2) does hold, so that x i y is defined for x,y in L;;. Where
(4. 3. 3) or (4.3.4) is required, an explicit assumption will be made").

In section 7, we show that (4. 3. 2) is equivalent to the apparently stronger
(4.3.3) and (4.3.4) in the case that the elements of L, are atoms (this
occurs when the elements of L are the linear subspaces of a projective

geometry).

4.4. The symmetric form for the addition construction. Sup-
pose now that p,q are elements = a;+4a;+a. for some & and that A and B
are defined in terms of p,q by the relations:

A=(p+x)(g+a), B=q.
Then, as we shall show below, each of (4.2.1), (4.2.2), (4.2.3) is implied

5) (4.3.3) and (4.3.4), a fortiori (4.3.2), hold necessarily, even if n=-3, if X==d,
or y=ada;. Indeed, if x=a; and (4.2.2) holds, then the z of (4.2.4) reduces to y 4 Ag;
which shows that (4.3.3) and (4. 3. 4) hold with y for z,; if y=a; and (4.2.2) holds, then
the z of (4. 2. 4) reduces to x(A+ B+ a) -+ Aa; which shows that (4. 3.3) and (4.3.9)
hold with x for z,.



The von Neumann coprdinatization theorem. A7

by a corresponding condition *):

(4.4.1) | p-q=q-a,
4.4.2) . ¢a+a)=0, p=a-tyq,
(4.4.3) pla;+a) = x.

The conditions (4.4.1), (4.4.2) and (4.4.3), for both p,¢q and ¢, p, are
together equivalent to:

( PHai=q+a=p-g,
(.44 (e +a)=p(a+a)=0

PGS A d g
Finally p-=c¢i, ¢=-a: do satisfy (4.4.4).

That each of (4 4.1), (4.4.2), (4.4.3) implies the corresponding rela-
tion (4.2.1), (4.2.2), (4.2.3) respectively is shown as follows:

@ AL Bt g (p ) (g a)

PP Fa)==(p+x)p-g+a)  using (4.4.1)
= x(a+d;)-=-x.

a(A+B--ag)--a{@g+a)=0 using (Cl) and (4. 4.2).
Adj==(p--x)a;
= {p(a: -+ a;) + x]u: (Ch)
== X, using (4.4.3)
=0,
Now substitution for 4, B in {(4.2.4) gives:
#4.3) z=[(p+x)@g+a)—ai(y+q) +(p+x)g-+a)l(ai—u)

-—[(p @) (¥ p 0+ el + )
if (4.4.1) holds (using (ML)). '
We can now derive relations between x -~ y and p and’ q. First, (4. 3. 2)<
shows at once that:

(4.4.6) X -y=[p+a)(y+9) -+ (p+x)(g+u))a+a)
if p,q satisfy all of (4.4.1), (4.4.2), (4.4.3), in particular if, p,g satisfy
(4.4.4); in this case we shall write (x 3- ), , to denote the formal expression

on the right side of (4.4.6) (its value is, of course, x i y). In particular,
using p==cs,q =a,, we obtain

(4.4.7)  xLy=[(x+ca)(a+a)-+(y+a) e+ a))(a:+a).
Next, as we shall prove below:

%) To derive (4.2.2) we use only g(a, + a;)=0 but fo: a subsequent calculation it
is advantageous to restrict (4.4.2) by the condmon p=a;,—q.
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{(4.4.8) If (4.3.3) holds, then:
x+y=[p+x)g+a)+@+y)(p+a)l(a+ay),
provided that (4.4.1), (4. 4.2) hold.
(4.4.9) If (4.3.4) holds, then:
x+yz[(p+x)(@+a)+ @+ (p+a)l(a:+ay),
provided that (4.4.2), (4.4.3) hold.
To prove (4.4.8) it need only be noted that if (4.4.1) and (4.4.2)
hold, then (4. 4.5) gives: '
z=[p+ap(y-+)+{r+x3(@+a)(a+a)
zZxliy '
since (4.2.1) and (4. 2.2) hold.
To prove (4.4.9) we note that if (4.4.2) and (4.4.3) hold, then
P =4q-+a and (4.2.2), (4.2.3) hold; hence from (4. 4.5):
xiyzzz{ptlyt+a)tai v+ +p+0(@+e)a+a) (ML)
= [(p+a)(y+ 9+ (P+x)@g+a)i(a+a)
4. 5. Commutativity of the addition construction. Since (x--y), .

is identical with (y - x),,, it follows, using any p,g which statisfy (4. 4. 4),
that X-{—y:y.{_x.

4. 6. Associativity of the addition construction. For fixed y in
Ly and p, g satisfying (4. 4.4) we define:
=@g+»n+a), q=@+p)q+a). -
Then p’,q" also satisfy (4.4.4). To prove this we note the identities:
a+p=a+p, 6+¢=a+q,
y+p=y+q,  pq=pg.

Now
ai+q=@+p)g+a+a)=a+p,
P+q=@+p)g+a+p)=a+p.
Hence
Ptai=q+a=p+q.
Also

p'(a:+a)=a;(g+y)=ya;=0,

q(ai+a)=a;(ai+p)=0,

PF+9=pt+qtag=a+ta+a.
Now if x,y,w are all in L,;;, then, as we shall now prove:

4.6. 1) [((x =)o o+ Wo, o =[x L (V£ W, 0)p. o
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Indeed, .
_ left side of (4.6.1)
=@ +a)@+)+P+H{P+ P+ +a)(a+a)ig + aJ)l (a:i+a)
=[(p+a)(w+¢)+{(p+x)(9+a)+p}(g+a)l(a:+a)
=[(p+a)(w+q)+(p+x)(g+a)l(a+a);
right side of (4.6.1)
=[(p+&)((y +W)o,» +9)+(P+x)(q+2)](a: +a))
=[P+ a)[{(p+a)Ww+q)+q}(a:+a)+q)+(p+x) (g +a)] (@i +a))
=[(p+a)(w+q)+(p+x)(g+a)](a:+a)
— left side of (4. 6.1).
4.7. Subtraction as the inverse of the addition construction.
‘We shall now verify that for given x and y in L;; the equation w{ y==x

has a solution w (the uniqueness of this w, to be denoted x—y, necessarily
follows from the associativity and commutativity of --): for this purpose we set

@11 w=[{x++a)(cata)(@+a)+ca] (@ +a).
First we verify that this w is in L;:
wa; = [{x+(y+ a:) (ca + a))} (@ + a;) + car]g;

=[x+ (y+a) (ca+ @)]a; (CD, (ST)
=[x+ (y+a)(a:+a) (e +a)]a (CH
=[x+tyale; (ML)
==xa;=0;
wt g = [{x+(y +a;+a) (c + a)} (a *01)*64 (a:i+a)) (AL)
=[(x+ca+a) @+ a)+ca] (@ +a) (ST)
== ((1/; +a;+ca)(a + aj) (ST)
—aita;, ~ (ST).

Next we verify that w { y = x; indeed from (4. 4.7) we obtain:
Wiy =[(w-cu) (@ +a) + (¥ +a) (ca+a)] (a +a)

= [{x+(y+a) (ca+a))} (@ + @) + (¥ + @) (e 4+ a)) ] (@i +a))
(AL), (ST), (ML)

— [+ (y+ @) a+ @) a+ a5+ (7 + a) s +a) ] @+ a) (AL)
=[x+ (y+a) (ca + )] (ai +a)) o (AL), (ST)
=x+(y+a)(a+a)(co+a) : . (ML)
- =x+ya (ML)
= x’

as required.
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Thus the elements of L; form an abelian group under the addition x { );.

4. 8. Invariance of - under the perspectivities P. Suppose x, y
are in L;. We shall show:
(4.8.1) P(x L yp)=(Px)+(Py) with P=Py.; (see § 4.1);
4. 8. 2) P(x L y)=(Px)i-(Py) with P=Py.;.

Proof of (4.8.1). From (4.3.5), using the commutativity of i :

Pyij(x 4 ¥)= [y + ) (@i + @)+ aj} (x + a) +cp) (@it a).

We obtain an expression for (Px) i (Py) using (4.3.5) with &k and ; inter—
changed:
(Pil.': ijx) ‘:- (Pil::ijy)
— ([ + ) @+ @)+ ch @+ @)+ ad [0+ ) @+ a) + @+ o} (@ +-as)
= [(x+a)i(y+ c,,) (a: + @) + a;} + vl (a: + ar) : (AL), (ST), (ML) .
== P.;i(x + ¥)- )

Proof of (4.8.2). From (4.4.7)

x4 y=[(x+cu)(@+a)+(y+a) (ca +ap)})(a: + a).

We may use A=xLy, B=y in (4.2.4) to calculate right side of

(4.8.2) for, as we now show, these A, B satisfy the relevant conditions

(4.2.1), (4.2.2) and (4.2.3) (with { and k interchanged). Indeed A, B are
both in L;, and

A+B—[(x+c)@+a)+y+al@+a),  (AL), (ST).
Hence: -
a.+A+B = (x+ca)a+a); a(A+B+a)=0; B(a:+a))=0; Aa;=0.
With these A, B, (4.2.4) (with i and & interchanged) gives:
right side of (4.8.2) ’
= {[{(x+cn) (@ + a)) + A} (@ +y) +a] [(y +ca) (@ + @) + Y]+ A] (a: + a).

Since :
(yt+ex)(a+a)+y = (y+ca)(@+a+ a) = car, (AL)
and .
: (x+c)(a+a)+A=(y+a)(ca+ a;), (AL), (ST),
therefore ) :
right side of (4. 8. 2) = [{(y -+ av) (ca +a;) + a;}ca + A} (a: + a))
= (ca: + A) (ax+aj) (AL), (ST)

== left side of (4. 8.2).

Since both sides of (4.8.2) are in Lj, the indivisibility of inverses shows
that = in (4. 8. 2) implies = in (4. 8.2).
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(4.8. 1) and (4.8.2) show that the abelian group L; (under i) is
- mapped group-isomorphically on the group L; by Pa..; and is mapped
group-isomorphically on the group Li; by P..; (in particular, x—y, the
subtraction of inverses, is invariant under the mappings Pi..;, Pij:5). .

4.9. The multiplication construction for inverses. A second
construction which, for fixed i, j, applies to two elements x, y-in L;; and yields
.an element z is the following: Choose any A, B satisfying- one or more of
the properties *):

4.9.1) x+A+Bz=a.
4.9.2) a(A+ B+ a;)=B(a;+a;))=0.
(4.9.3) ' Aa;=0.

Then define: :

4.9.49) z=[(x+A)(a:+B)+{(ci +A)(a:+ B)+y} (a;+ B)(a: +a)).

We shall verify: :
(1) (4.9.1) implies z 4 a=a;+aq;,
(i) (4.9.2) implies z a;=={(c;+ A a))a:+y]a;,

so that (4.9.1), (4.9.2), and (4. 9. 3) together imply that z is in L.
Proof of (i):

z2+a;=[(x+ A)(a; - B) -+ {(cy +A)(m+B)+y +a;j(a;+B)l(a:+a) (AL
=[(x+ A)(a: + B) + (a: +a;+ A)(a:+a;+ B)(a;+ B)l(a:+a;))  (AL)

- =[(x+ A)(a; + B) + (a: +a;+ A)(a;+ B) | (a: + @) (ST)
=(a:+a;+ A)la;+- B+ (x+ A)(a; + B)J(e;: + a) (AL)
—a;+(x+ A+ B)(a; + B)(a: +a) (ST), (ML), (AL)
=a;+a; from (4.9.1), (ST), (ML) and (4. 9. 2).
Proof of (ii): ‘

2 aj=[(x+ A)(a:+ B)(a;+ B) + {(c; + A)(a: + B) +y}(a; + B)]a; (CDH

=[(x+A)B+{(c; + A)(a:+ B)+y(a;+ B)]a; (ML) and (4.9.2)

=[AB+{(c; + A)a:+ B) +yj(a;+ B)la; (CD), (ST) and (4.9.2)

=[(c;+ A)(a:+ B) +ylq; _ (ST)

={(cs+ A)(a: + B)(a: +a) +y]a; (CDH

=[{c;+ Ala:+a)) }a; +yla; (ML) and (4.9.2)

=[(c;;+ Aa))a; +yla; (CD) and (4.9.2).

) (4.9.2) is identical with (4. 2. 2), (4.9.3) with (4. 2. 3); in the presence of (4.9.2),
{4.9.1) and (4.2. 1) are equivalent and equivalent to a, — A -+ B ==X+ A + B (this follows
from the general indivisibility of inverses since g; —A B+ a;=x-+ A—}—B—’— a; and
{a; + A+ B)a ——(A+B)a—~(x+A—r-B)aJ) .
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It now follows, as in the broof of (4.2.5), (4.2.6) that:

(4.9.5) The z of (4.9.4) = some element E in Li; if (4.9.1) and (4. 9. 2) hold®).
(4.9.6) The z of (4.9.4) = some element F in L; if (4.9.2) and (4. 9. 3) hold.

Of course, if (4.9. 1), (4.9.2) and (4. 9. 3) all hold, then E = z = F and
the indivisibility of inverses shows that E and F coincide and coincide with z.

4.10. Uniqueness of the multiplication construction. The argu-
ment of § 4. 3 shows: for x, y fixed, the E of (4.9.5) and the F of (4.9. 6)
may be chosen independent of the A, B at least to this extent. Suppose Ao,
B, are fixed elements which satisfy all of (4. 9 1), (4.9.2) and (4.9.3) and
hence determine some fixed z in L;; if we now restrict A, B by the addi-
tional condition:

(4 10. 1) (Ao+Bo+a,+a,)(A+B+a‘+a,)=a,+a,,

then (4.9.5) and (4.9.6) hold with this fixed zo for E and F. In particular,
if A, B satisfy (4.10.1) and all of (4.9.1), (4.9.2) and (4. 9. 3) then the z
they determine coincides with this fixed zo.

Thus, with proofs as in § 4.3, if n=4:

(4.10.2) For all A, B = a;+a;+a. for some k and satisfying all of (4.9. 1),
(4.9.2), (4.9.3), the z of (4.9.4) has the same value (necessarily
<in L.'j). N

More generally, the following theorems (4. 10. 3), (4. 10. 4) hold if n = 4:

(4.10.3) There exists a fixed zo (necessarily .in Ly) such that: for all
A, B = a;+a;+ai. for some k and satisfying (4.9.1) and (4.9. 2),

A the z of (4.9.4) = 2.

(4,10.4) There exists a fixed zo (necessarily in L) such that: for all

- A,B=a;+a;j+ax for some k and satisfying (4.9.2) and (4. 9. 3),

the z of (4.9.4) = 2.

If (4.10.2) holds, in particular if n =4, we shall define x Xy to be

the common z of (4.3.2) (necessarily uniquely determined by x, y).

8) We actually use only (4.9.1) here but the uniqueness of E as established in the
next section applies only if the additional condition (4.9.2) holds. We note here that in
the presence of condition (4.2.2), that is, (4.9.2), the discussions of both §§ 4.2, 4.3
for 5 and §§ 4.9, 4.10 for X, could be included (as special cases) in a single discus--
sion of a general construction, for x, y, w in L,-j:

Z={{(x+ A)(@; + B) + a}}(y + B) + {(A + ¢,)(a;+ B) +w} (a; + B (a; + a)).

This 2’ reduces to (4.2.4) if ¢;; i is chosen for w; on the other hand, if a; is chosen for y-
. and then w replaced by y, 2’ reduces to (4.9.4). This Z’ actually expresses (x x w) iy
(see (5 2.2)).
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We note that A, B= a;+a,-+&k for some k and satisfying all of
(4.9.1), (4.9.2), (4.9.3) do exist, for example A=q¢,j, B=a; with k==, j.
Substituting A =c¢;, B=ax in (4.9.4) we obtain:

(4.10.5)  xXy=[(x+cu)(@+a)+(y+ca)(@+a)) (@:+a)
' = (Pi:ijx + Pij:5y) (@: + aj).

Hence if any of (4.10.2), (4.10.3), (4.10.4) hold, they are non-vacuous and
either of (4.10.3), (4.10.4) implies (4.10.2) with z, necessarily identical
with the common z of (4.3.2).

Throughout the rest of this paper we shall assume without explicit sta-
tement that (4.10.2) does hold, so that x Xy is defined for x,y in L;.
Where (4. 10.3) is required, an explicit assumption will be made®™).

We shall show in section 7 that (4.10.2) is .equivalent to the appa-
rently stronger (4.10.3) and (4.10.4) in the case that the elements of L
are atoms. '

Easy calculation shows that a; is a two-sided zero and ¢; is a two-
sided unit for this multiplication; that is,

A X X=X XQi==0q;, C5XX=XX(j=2X,
for all x in L.

4.11. Associativity of multiplication. We will now verify that if
w, X, y are in L;, then:

WwXx)Xy=wX(xXy)

We note that if 7 == v X x where v is an arbitrary inverse, then A = (x+ ca)(ar +a;),
B—a; may be used in (4.9.4) to obtain u X y. For as we shall show,
these A, B, satisfy the relevant conditions (4.9.1), (4.9.2) and (4.9.3):

9) (4. 10.4) has been given for _com;}leteness but is never actually assumed in our
present deduction of the coordinatization theorem (see footnote 12) so that, as foilows
from this theorem, (4.3.3), (4.3.4) and (4. 10. 3) together imply (4. 10. 4). The existence of’
non-Desarguesian harmonic-point projective plane geometries shows that (4.3.3) and
(4. 3.4) do not necessarily imply (4. 10.2) (see footnote 19, p. 245).

10) (4.10.3) and (4.10.4), a fortiori (4.10.2), hold necessarily, even in the case
n=3, if x==a;, or x=c¢;;, or y=a; or y=c,,. Indeed if x=a; and (4.9.2) holds, then
the z of (4.9.4) reduces to a,+[y+ ;+ Aaj) a] a; which shows that (4. 10. 3) and (4. 10. 4)-
hold with a; for z;; if x=c; and (4.9.2) holds, then the z of (4.9.4) reduces to
(Ag; + cpa; + ylg;+(A+ B ¢;)a,] which shows that (4. 10.3) and (4. 10. 4) hold with y
for z,. If y=a; and (4.9.2) holds, then the z of (4. 9. 4) reduces to (x + A 4 B)a; which
shows that (4.10.3) and (4.10.4) hold with g, for z,; if y==c; and (4.9.2) hoids, then.
the z of (4.9.4) reduces to Aaj—}— x(a,+ A+ B) which, with the help of footnote 7,
shows that (4. 10.3) and (4. 10.4) hold with x for 2,.
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indeed, using (4. 10.5) to express v X x, yields:
(4. 11.1) (XxXx)+A=[(r+ )@+ a)+ Al(@:+a) + A

=(@+cp)@ta)+ A, (AL), (ST);

(rxx)+A+B=a+a+A=uaq, (AL), (ST);
a,(A4-B+a;) =ai(a:+a;)=0; B(a:+a;)=ai(a;+a;)=0;

Aaj=(x+ci)a;=xa;=0 ' (Ch.

Now use these A4, B in (4.9.4) to obtain x Xy and also (w X x)Xy.
“Then:
X3y =l(x-+ AYaita+ s + A @+ a) Y} @+ al@i+a)
= [ex 4+ xa;4 ey + A)@ +a) + ¥} @+ adl@+a)  (AL), (ST), (ML)
= [ea + ey —{-A)(a +a)+y}(a+ a)](a: + a;);

this last expression is in L; along with x>y, and hence= x Xy by the
indivisibility of inverses. Hence:

[(x X y)+eal(a;+ar) = [(c; + A)(ai +ar) + ¥l (a: +a:) (AL), (ST), (ML),
and so, using (4. 10.5),
w X (x X y) = [(W+ ca)(ai+ ar) -+ ((x X p) + cii)(a; + an))(ai +a))
= [(W +cp)(@i+ @) + {(cs + AYai + ai) + y}(a; + a)l(a: +-ay).
.Again,
(wxxyxy
= [(w X x)+ A)(a: + @) +{(c; + A)(ai + a) + v} (a; + an)l(ai + @),
and, using (4.11.1) to express w X x,
= [{(w+cp)(aita) + A} (a4 a) + (e + A)(ai+ ar) + y}(a; 4 a)) (@i + a)
=[w+e)(a+a)+ Aac+{(c;+ A)a+ @) +yHa + a)l(ai+a;) (ML)
= [(w + )@ +an) +{(c; + A)a+a) +yi (e + a»)](a- +a)) (ST)
X (xXy),
which establishes the associativity of multiplication. .
4.12. The regularity of multiplication for inverses. From §§
4.9, 4.10, 4. 11 it follows that the elements of L; under the multiplication
x Xy form a semi-group with unit.
We shall now show that the multiplication is regular (see § 3.1 for

definition of regularity). For this purpose we associate with each x in Ly a
lattice element x" which we shall call the reach of x, defined as

x"=(x-+a))a;. -
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We shall prove below: » ,

(4.12.1) For every b =a; and d=[a,—0b] there is an e in L;; with e x e =,
e =b (c;—e)y=d.

(4.12.2) For x,y in L; there isa w withw xx=y iIf and only if x" = y".

From (4.12.1).it will follow that there is an idempotent e with ¢"=x" a'nd

hence from (4.12.2), for suitable y and w in L;, yXe=x and wxx=e.
From the associativity of multiplication for inverses, this implies

XXWHX=XXe=(yxe)xe=pXe=Xx,

which shows that the multiplication is regular.
We note that this will also show:

(4. 12. 3) The correspondence (x);—»x'l sets up a (1, 1) order preserving map-
ping between the set of all left cosets of L.; and the lattice L(a;).

{4.12.3) implies that the cosets (x) form a complemented modular lattice
under the relation of inclusion.

Proof of (4.12.1): Set e=(b+a;)(d+cy). Then e can be expressed
as e==¢qa:+ec;. This e is in L; since: '
ea; = (b4 a)(d+c)a;= (0 +wa)(d+csa), usingb, d = a;, (ML)

== bd =0,
e--a;=(b+a)d-+c)+b-+d
=(b+a-+d)(b+d+cy) (AL)

== (a; + a;)(a: + a;) =a; + a;.
This ¢ satisfies the requirements of (4. 12. 1), for using (4. 10.5) and (ML),
e > e==ea:+ [(ec; + i) (a:+ a) + (e + caXar + )l a: + a)

== ea; -+ [(ec; +ci)ca+ (e + ca)(@: -+ apl(a: +a)) (ST)
=ea;+ (e +c)l(ec; +ci)en+ an+a)(a +a)) (AL)
== ea; +el(ec;+ i) (@ + ) + ax +- aj) : (ML)
= ea;+elec;+ ci +a) (@ + a;+ax) (AL)
=eq;tec;=e¢e + (ST), (ML).

Next, .

& =[(b+a)(d+c:)+ala = (b-+a)(@+a)a—b.

Finally, since (4.7.1) implies that {(x—»)) ={x+y)a; for ali x, y in Ly,
(ci—e) = (c;+e)a;=[c;+(b+a)(d+cyla=d.

This completes the proof of (4.12.1).
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Proof of (4.12.2): Because of the indivisibility of inverses, w X x =y
is equivalent to w>(x gy, and this in turn is equivalent to:

(4.12.4) WwXx)+(x+ca) (@ita) =y+(x+ca) (@+ar)
(clip to both sides of (4. 12. 4) by (a: + a;) to derive w X x = y). Now (4. 12. 4)
is equivalent (use (4.10.5) to express w X x) to:

C(wto) (@t a)+H(x+ew) (@ita) =y+x+ca) (@+a)  (AL), (ST)
hence to:

Ww-tcip) (@+a) = y+(x+ca) (g +a);

hence to:
(4.12.5) W-tcip) (i+a) =y+(x+ex) (@+ad)] (ai+ar);
hence to
(4.12.6) (W-+ci) (@+a)tep =[y+(x+cx) (@+a))] (@ta)+ci
(clip both sides of (4.12.6) by a:4-a. to recover (4.12.5)); hence to:

(4.12.7) w=[y+(xtea) (@+a)] (@+as) +cin.
Now the right side of (4.12.7) = some w in L; if and only if:
(4.12.8) (right side of (4.12.7))+a; = a;+q;

(if (4.12.8) holds, w may be chosen as
w=[(right side of (4.12.7)) (a:+a;) — right side of (4. 12.7))a]]).
Thus wX x=1y for some w in L; if and only if:
(y+(x+ca) (@+a)] (@:+a)+cp+a = ai+a;

This last condition is equivalent to each of the following:

(4.12.9) y+(x+a+ta)(g+a) =a;,
(4.12.10) y+Ex+ata)a = a;,
4.12.11) yt+x+a)gzy+a,
4.12.12) (x+a)a; = (y+a)a;,

(clip both sides of (4.12.11) by a; to obtain (4.12.12); add y to both sides
of (4.12.12) to recover (4.12.11)). This completes the proof of (4. 12.2) and
establishes the regularity of multiplication.

We note that (@) = (a;+ a;)@;=0 and hence using (4.12.2), x*=0 1f
and only if x=a;.

We shall now prove that the idempotent e of (4.12.1) is uniquely
determined by b and 4. First we prove:
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(4 12.13) If bBd =aj, then (b+a;)(d-+ci) is an idempotent e in Li; such
that e =0b, (c;—e)Y==d; conversely, if e is an idempotent, and if
b=e,, d=(c;—e), then bD@d=ua; and e=(b+a)(d-+c;)=
=ea;+ eCij.“)

Proof of (4.12.13). The "if* part was shown in the proof of (4. 12. 1).

To establish the “only if part we assume e to be idempotent; that is, using
(4.10.5):

e=[(e+ca) (a:+a)+ (e +c) (@ +a)] (@ +ay).

Now
(4.12.16) e = cy(e+a).
For
e=e-te (lattice union, not to be confused with ¢ i¢)
= [e+ca+(e+c) (@i +a)) (a:+ay) (AL), (STy

= [ca+cile+ait a))(a: +a)= c;(e + a).

Since (x—y) = (x-+y)a;, therefore b= (e+a))a; and d= (ci+e)a.
Hence:

b+d=(e+a)a;+(ci+e)a,=[e+a: + (ci+eala=(e4-a:+c;)a=a;;

bd=(e+a) (c;+e)aj=[e+ci;(e+a)la;=0, using (4.12. 16);

(b+a) (d+c)=(e+a)(e+cy)) =e+ci(e+a)=e, using (4.12.16).
This completes the proof of (4.12.13). The uniqueness of the idempotent e

in (4.12.1) follows since (4.12.13) shows that an idempotent e is determined
by e and (c;—e).

4.13. Invariance of X under the perspectivities P. Siuppose
x,y are in L;. We shall show, assuming (4. 10.3)%):

4.13.1) P(x X y)=(Px) X (Py) with P= Py; (see § 4.1);
(4.13.2) P(x X y) == (Px) X (Py) with P==Py;.

1) If a; is an atom, clearly the only idempotents in L;; are the zero g, and the unit ¢;;,

12) Note that the abelian group character of the L under 1 and their group-
isomorphism under the perspectivities P follow from the assumption (4. 3. 2) alone
(in this connection see footnote 19); the semi-group character of the L; undér X, the
regularity of x, and (4.13.2) follow from the assumption (4.10.2) alone. However our
proof of (4.13.1) requires the. additional assumption (4. 10.3) and our proofs of distribu-~
tivity (4. 14. 1) and (4. 14.2) require the additional assumptions (4.3.4) and (4. 3. 3) respec-
tively; whether some or all of these additional conditions (4.3.3), (4.3 4) and (4.10.3}
are actually implied by (4.3.2) and (4. 10.2) is not known but it is not difficult to verify,
assuming only (4.3.2) and (4. 10.2), that: the distributivity (4. 14.1) holds in the case that

w is an idempotent or wa;=0, and the distributivity (4. 14.2) holds in the case that wis
an idempotent or w4 q,=aq; +a;.
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Proof of (4.13.1). We may obtain an element = x Xy from (4. 10.3)
with A == (P.;y+¢;;) (@ +a;) and B==a, for these A, B satisfy the conditions
(4.9.1) and (4.9.2) (this follows from the fact that A is in Ly and A4 B=
a;+a;). We obtain: '

x Xy = [(x+ A) (@ +a)+ i+ A) (ai+an) + v} (0, +an)) (ai +ay)

=[(x+ A) (@ + ar) +(Pu;y -+ y) (@ +a)) (@i + @) (AL), ST)
=[(x+A) @+ a)+(y+c)(y-+a+a)(a+a)f(@+a) (ALY
=[(x+A) (@: + a) + iy +a; +a) (a;+a)) (@i 4 a)) (ML)

= [(x+ A) (@ -+ a) +cin] (@i +a)).
Then
Pii(x>y) = (x+ A) (a4 ar)
== [x L (Piyy +ci) (@ +a) 1 (a: +an)
== P (35 xXP I.':jy
using (4.10.5) with j and & interchanged to express P..;x X P.;y. The indi-
visibility of inverses now shows that equality hoids in (4.13.1).
Proof of (4.13.2). We may express x Xy by (4.9.4) with A= Pi..;x
and B==a, for these A, B satisfy the conditions (4.9.1), (4.9.2), (4.9.3)
{this follows from the fact that A and B are both in L,; and
X+A+B=x+4co+a,=x+a+a; = a).
We obtain:
x X y=={(x+ca) (@ +a) + {(c;; + PuiX) (@i + @) + ¥} (@4 @) (a: 4 a)
Z [ca+{(ci + Prix) (@ +a) 4y} (a; + a)) (a:+-a)).
Pi(x X y) = [(c;; + Piix) (a.+a)+yl(a+a)=P.x X Py
using (4.10.5) with i and k interchanged to express P..x > P.;y. The indi-
visibility of inverses now shows that equality holds in (4.13.2).

4.14. The distributivity of X with respect to i-. Suppose w, X,
y are in L;. We shall show, assuming (4.3.3) and (4.3.4)"):

(4.14. 1) w X (x4 p) = (wXx)4(w X y);
4.14.2) (x L PXw=(xXw)i(yw).

Proof of (4.14.1). We may obtain an element = P.;x- P.,y from
(4.4.9) (which in turn is derived from (4.3.4)) with { and & interchanged,
using g=w Xy and p=(¢+a.)(P.;w-+a;), for these p,q satisfy the rele-
vant conditions (4.4.2) and (4.4.3) with i and & interchanged; this follows
from the fact that ¢ is in L;; and

p(ata)=a(Pyw+a)=Ww+cip)a, =0 = Ppix.
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We obtain:
(4.14.13) Pux L Puy=[(p+P .X)(at +a))+(q + Peay) PA,W+0,)] (ax+a))-
Now, usmg (4.10.5) with w in place of x,
g+ Py =W X )+ Pi;y = (Pijw + Puiy) (@i + @) + Priy = Piyjw+ Piy..
Now from (4. 14. 3), since P(x i y)=Px { Py (from (4.8.2)),
P;.-:,-(x 4 y) = [(p + Py.ix) (a; —+ [lj) + PI::j W] (al.' + 0/)
Hence, using (4.10.5) with w in place of x and x - y in place of y,
w X (X "‘ }") = [PI.':jW ’%"Pl.r:i(x — y)] (0; 'T'a/)
= [Puyw -+ (P + Puix) (@i + a;) + Pi;w} (a.+a)}(a: +aj)
=[(p+ Puix) (a: + ;) + Pijw] (a: +a)) (AL), (STy
= (p+ Puix)(a:+a)) '
= [((W s }’) + a!.')P/.‘:j“" + Q,‘) -+ P,.»;;x] (d/ - (Ij).

Now we may calculate (w X x)-L(w X y) from (4.4.6) with (w> X) in
place of x and (wxp) in place of y, using p==P.;w and g =a,, for these
p, g satisfy the relevant conditions (4.4.1), (4.4.2), and (4.4.3); indeed, p
is in Ly and

pla+a) = (Puw+ Pux)(@Gi+a;)=wXx
We obtain:
(W3 x) + (w4 ) |
= [(PaW + @) (W 7 ) @)+ (P + (W % %)) (@ + a))] (@: + ).
Now, using (4.10.5) with w in place of x, x in place of y, '
Pijw + (W X X) = Piiw + PraX;
(Prjw +(w x X)) (0. +a)) = Piix - Piw(a: +a;) = Pix.
Then 4
(W X x) + (WX y) = [(Piyw+a)) (W X y) +ai) + Prix] (a: 1 a))
=wX(x+)
Now the indivisibility of inverses shows that equality holds in (4. 14.1).

Proof of (4.14.2). We may obtain an element = Py;x -- P.;y from
(4.3.3) with j and k interchanged, using A = P.;w and B= ga;; for these 4,
B satisfy the relevant conditions (4.2.1) and (4.2.2) with j and k& inter-
changed (A is in L;j). We obtain:

(4.14.4) Pu(xLy)=Px+ Py
= [(Prjx + Peaw) (a: 4 a)) + ar] (ijy+aJ)+PI:|
=((xx WH-G') (Pijy -+ @) + Piw
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Hence, using (4.10.5) with x -y in place of x and w in place of y,
(X L) X w=[Pej(x - y) + Pisw] (a: + )
= [((x <X W)+ ) (Pryy +a)) + Piiw] (a: 4 a)).

The inequality implies equality because of the indivisibility of inverses (the
last member is easily shown to be in L;). Therefore

(4.14.5) (x L) xw=[((x < w)+a) (Piy +a;)) + P..w] (a: +a)).

Now we may calculate (y X w)--(xxXw) from (4.4.6) with y X w in
place of x and x X w in place of y, using p= P.;y and ¢==ax; for these
P, q satisfy the relevant conditions (4.4.1), (4.4.2) and (4. 4. 3); indeed, pis
in L;;_- and :

pai+a) = (Pyjy -+ Puw) (@i+a)) =y X w.
We obtain:

(P xw)d-(x xw)
=[Py +ai) ((x X W)+ a) + Py + (¥ X W) (@ +a))} (@ +a))-
Nov\_r using (4. 10.5) with y in place of x and w in place of y,
Py + @ > w) = Peejy - Piaw;

Pijy+x<w)ai+a) = Piw+ P jy(a:+-a)) = P w.
Then
O X w) L (x K w) = [(Pesy+a)((x x wy+a) -+ P iwl(a + a)).

Now (4. 14.5), the indivisibility of inverses and the commutativity of -~ show
that equality holds in (4. 14. 2).

This completes the proof that x is distributive with respect to --.

Thus, under the operations & and X the L;, become regular rings
with unit if the two conditions (4. 3. 3), (4. 3. 4) hold for all pairs i, j. If in
addition (4.10.3) holds, §§ 4.8, 4.13 show that the mappings Py;.i;
P;y.;; yield ring isomorphisms of L; onto Li;, La respectively,so that as
regular rings, the L, are all isomorphic.

This, together with (4.12. 3), establishes:

(4. 14.6) Parts (i) and (ii) of the von Neumann coordinatization theorem
hold if n>3 or if n=23 and L possesses a normalized frame satis-
Sfying (4.3.3), (4.3.4) and (4.10. 3).

4. 15. Fraternal systems, L-numbers, upper semi-fraternal sys-
tems and upper semi-L-numbers. A frafernal system is defined to be a
set of lattice elements (b>=<{b;>==by; i,j=1,...,n, id=j) satisfying
(l) b,‘jé a;—}—q,-, (ll) P;,-_,';;J'b,'_,'=b1;j and (lll) P,'k;;jb,‘j=b,‘k for all i,j, k. A
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lattice element x is called an (i, j) fraternal element if there is a fraternal
system (&> with b;=x (if such a & exists it is clearly uniquely. deter-
mined by x).

An upper semz-fraternal system is defined to be a set of lattice elements
{b>={by>={by; i, j=1,...,ni>j> satisfying (i) b; =a:+a;, (ii)
P];j:ij bij= bkj with both i>j, k >j, (lll) P,';.-;;j b;j: by with both i>j, i>k
(the mappings P in (ii) and (iii) are non-crossing according to the definition
in § 4.1).

Suppose (b is a fraternal system or an upper semi-fraternal system;
then: if b; < a; for some i, j it follows from the definition of Py.; that
this holds for all. i, j and b; is independent of j; similarly if b; = a, for
some I, j then it follows from the definition of P,;;; that this holds for all
i, j and b; is independent of i; finally, if &; is in L; for some i, j it is
clear that this holds for all 4, j. '

Fraternal systems <6> with b; in L; will be called L- numbers; upper
semi-fraternal systems {b> with b; in L; will be called upper semi-L-num-
bers. If 3 denotes an L-number or an upper semi-L-number <b> we shall
sometimes write §; to mean b;. ; _

If ¢ and $ are both L-numbers we define -3 to be the system <b)
with &;;==«; 4 8; for all i==j and «g to be the system (&> with b, = «;; X 5
for all i==j. It is clear from §§ 4.8, 4.13 that ¢4 is an L-num-
ber and if (4.10.3) holds, then «@ is also an L-number. Subtrac-
tion is defined for L-numbers with «—3=J{ey;—3y; i, j=1,...,n, i==/>
(the last paragraph of § 4.8 shows that this system is an L-number since
subtraction of inverses is invariant under the perspectivities P). Finally the
L-numbers form a ring N" with two-sided unit 1=<b; b,,—c,, for all i==/)>
if (4.3.3), (4.3.4) and (4. 10. 3) hoid.

" Similarly if (4.3.3), (4.3.4) and (4.10.3) hold the upper semi-L-
numbers form a ring R with two-sided unit; that M is regular and ring-iso-
morphic to every L; will be shown in (4. 15. 5) below.

The regular ring X=%N(a;, c;;i,j==1,...,n, i==j) will be called an
auxiliary ring for the lattice L').

13) It follows easily from the definitions of i and " that 3t (the absiract ring) is
completely determined by any three elements of the homoaeneOus basis, thus R =:M(a,, a,, ay)-
To what extent % is completely determined by L (of order n) is not yet known. However
it was shown by von Neumann [7, vol. 23, page 20, line 38; 8, vol. 1I, Theorem 4.2] that
R, the regular ring of all n < n matrices with elements in X, is uniquely determined by L,
It is not difficult to show that if L, of order n, has an auxiliary ring which is a field
(footnote 11 implies that this occurs if L is a projective geometry and the a, are points)
then the'auxiliary ring (corresponding to this order n) is uniquely determined. -
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If <bu; k== m) is a fraternal system and {d..; k>m)> is an: upper_"
semi-fraternal system and if b;;=d;; for some i > j, then clearly b;; T—d., for
all i>j. Also every fraternal system <b;)> when restricted to { > j clearly
gives a semi-fraternal system and we shall identify these when there is no
possibility of confusion. Then R’ becomes a subring of R. Actually it will
follow as a consequence of the coordinatization theorem (§ 1. 1) that H'= 9
(in the case n =4 the. equality "= 3 follows directly from the lemma of

" VON NEUMANN, (4.15.2) below).

We shall show below:

(4.15.1) Let ¢(x1,...,x,) be a lattice polynomial in xi,...,x. and let
PV iy e Yo i)y =Vis. If the {yum ij;1>J> are all upper semi-frater-
nal systems, then so is yy; i>j); if the {yun i, i==]> are all
fraternal systems, then so is {yi;i=F,>.

(4.15.2) Lemma of von Neumann [1,vol. ll, lemma 6. 1]: If n=4, then for each
=a;+}a; for some i=&j, there is one and only one fraternal sys-
tem {b> with b;==x (that is x is an (i, j) fraternal element).

(4.15.3) If x=a.+a; for some i>j then there is one and only one upper
semi-fraternal system {b> with b;=x.

(4.15.4) Every x = some a; or some c;; is an (i, j) fraternal element.

(4. 15.2) was used by VON NEUMANN as a technical aid for proving the
coordinatization theorem for the case n=4. For this case vVON NEUMANN
showed that the L-numbers form a regular ring with unit and he proved
the coordinatization theorem using coordinates from this ring.

In the present paper we shall establish the coordinatization theorem
for the generai complemented modular lattice with n =3 (assuming the
Desarguesian-type conditions (4. 3. 3), (4. 3. 4), (4. 10. 3) for the case n=3)
by using as a technical aid the apparently weaker lemma (4.15. 3) and using
coordinates from the regular ring of all upper semi-L-numbers. :

Proof of (4.15.1). This holds since lattice union and lattice inter-
section are preserved under the perspective mappings P.

Proof of (4.15.2). We need only prove, assuming n=4: if
T="Tm.; (i==j, k==m) is the product of an ordered sequence of s per-
spective mappings P such that 7 maps L(a:+a;) onto L(a.+a.) and
T(a)=a, (such T exist) then Tis uniquely determined by, j, k, m ((4. 15. 2)
then follows by setting by = Tim:5x for all k==m).

To verify the general uniqueness of such T it is clearly sufficient to
confirm that, in the case i=#k and j=m, T cannot fail to be the identity
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mapping. If it could, we would choose s to have its least possible value to
give such a T different from the identity and derive a contradiction as
follows. ) _

Easy calculations, using the modular law, establish the identities:
L (i) Pjaj Prjij == Pijuij if all of i, h, k=,
:-'"" equivalently, Pii P =Py Jif all j, by k==
(i) Piuij Pijiij == Pimsin Py if 1, J, k, m ‘are all different.
It may therefore be supposed (since s has its least value) that the
sequence of mappings which defines T begins:
: . Pnn':mk ml;:hl.'Phl.':thhj:fj
(necessarily: h==i; k= h, ).
If k=i so that , j, h, k are all different, we can, w1thout changing 7, replace

Phk:lll/Ph./.u by Phl..tl.. l.l-.l‘]’ then we can replace Pml.,lql.PhI.,,l. by Pml_,,[, ThlS WOuld
. express T as a product of fewer than s mappings. Therefore we must havé

v k=1,

The ‘same argument shows that m =, and that T is defined by map-
ings beginnin

p g g g Pjr:jiPj(:l:iplzi:lszl:j:{i-
Since n = 4, there is an integer f such that i, j, &, ¢ are all different. Then we-
may replace Prin; bY Puiine Preny; then Pugy Puji; BY PuiePiijy then P Prane
by P_,'[;jlpjf,;m; then we may replace Pjr:um;u by Pjt:,';,; then P,’r:j[F)ji:jt by R‘f"iﬂ‘
7" will now be expressed by fewer than s mappings; this contradiction
establishes (4. 15. 2). o

Proof of (4.15.3). We need only prove: if T= Tpu:; (l>j,k>m) is
the product of an ordered sequence of s non-crossing perspective mappings -
P such that 7 maps L(a;+a;) onto L{ar+a.) and T(a)=a,, then T is
uniquely determined by i, Ik, m ((4. 15. 3) then follows by setting bL,,, == Tm:ij X
for.all k> m).

To verify the general uniqueness of -such T it is clearly sufficient to
confirm that, in the case k==1/, m=/j, T cannot fail fo be the identity map-
ping. If it could, we would choose s to have its least possible value to give
such a T different from the identity and derive a contradiction as follows.

When n = 4, (4.15.3) is implied by (4..15.2), hence we may assume.
that n=23, so that there are 3 different indices i, j, k. The sequence of non-
crossing mappings which defines 7 must begin:

P’JIIPIII/P’[U

But Piju: Py is the identity and can be omitted, contradicting the mxmmum
character of s. This completes the proof of (4. 15.3).
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Proof of (4.15.4). Because of (4.15.2), we may assume n=23. Now
if x = a;, we need only note that P.;x =< a. and hence:
Pjiki Prin Pajusi X = Pjizi(x + ca) (ar + @) = (x +¢i5)a;;
Pji:jk ij:.'kpik:ijx = ij:ikx = Pjiui Pki:kjplrj:ij X.
If x = c;j=1c¢;, we need only note that:
Pjiki Pring Pijiij X == Pjiski Prisg (X + Cix) €
== Pjuni{ (X + i) erj+ 65 + x] (@i + @) = Pjiji P *Pﬂ- 2 X,
From (4.15.3) and the definitions of addition and multiplication for
upper semi-L-numbers, it follows at once that:
(4.15.4) N is a regular ring with unit, isomorphic to every Li.

5. Properties of the auxiliary ring.

S5.1. Addition and multiplication formulae for elements in .

For future reference we list the following formulae:
G.LY) (¢+3);=[Pyye;+@i+a) (ea+a))(a+a), ifi>jiFk=/;
. “‘[("-."{"(ﬂv'{'—aﬁ) (C,;,+(1J)] (a.+a,) ifi>j,ikk>]J
(5.1.2)  (a+8)=[(Puyes+a) Gy +a) -+ e (@+a), i i>j,i+k=Ej;
= [(@n+a) (3 + a) + cp) (@i +-a5), if i>j,i>k=).

(5. 1. 3) ((4—_—‘2’)).-1' == [(t;_,' ~+ (a,; + /?,'j) (G_,' + C,‘k)] (a;; -+ aj), if i>j, k >j, l:‘bk.
(5. 1. 4) . (({ ;f);',' = (P;k;ij“ij-{— Bif:ii-“?"j) (a,' + aj), ' if i > j, l# k :i—_'],
= (ca:+ B) (a: +a)), if i>k>j.

Such formulae were first given by VON NEUMANN [8, vol. 1I] and follow
immediately from (4.4.7), (4.3.5), (4.7.1), (4. 10.5).

S5.2. An important identity. Suppose that 1 <j<i=n and let

0" and 6", m=1,...,j—1 and g be arbitrary elements in X. We shall now
prove that the followmg ldentlty holds'*):

(.2.1) ]7 (0" + 36" )i + AL ]

m=

. ~l( 34 A" ‘)I[ (35 + AL +1_g'(6;::.+A{;‘ ](Af“+a,~).

=1

M) (5.2.1) was established in [2, § 5] for the case n==4. The present proof holds
for n =3 assuming (4.3.3), (4.3.4) and (4. 10.3). The identity (53.2.1) makes possible a
simple proof that the module which we shall assign to an x in L (see § 6.2) is uniquely
determined by x (Theorem (6. 2.5)). This is a critical step in the proof of the coordinati-
zation theorem as given in the present paper.

15) As defined in § 4. 1,

Yo-0; A =a,+ - +qa; Aj’-——:a,—j—-u—{—a-

J‘l..:_.a_ 4 ... L q..

JEL Y D't



The von Neumann coordinatization theorem. ‘ 235

To prove this identity - we shall first establish that for arbitrary indices
1=m<j<i=n and arbitrary d,4,6 in %,
(5.2.2) (0 +86)in = [0+ (Gs + a;) (Bii +an} (@ +a.).-.
We may calculate (804 0)im == (0 + 26): from (4.2.4) with 56 in place of
X, with J in place of y, with j replaced by m and using A==¢,, B==a;
(indeed, these A, B satisfy the relevant formulae (4.2.1), (+.2.2), (4.2.3)
with j replaced by m, since A is in L;, and

a; + A _{" B =a; +aj + 6jm é (f;)r:/' + 6_{1:1) (ai 'i" am) e (,36),',,,

from (5.1.4) with @ in place of ¢, # in place of 7). We obtain:

30+ 0) v == L{((80)in + bim) (@i + a)) + @i} (@; + Oin) + G5} (@: +a.)
= {[(By+ Oju) (@:+ ;) + 0] (@ + Oin) + Gjn} (@i + @)
== [(By + Oinj + @) (@ 4 Gin) + O} (@ @)
= [(ﬁ:; e am) (a/ BN dw}) T 0.1'/"01 _f" 6J'"] ((I; B un')
= [(3 -+ a.) (@;+ J:; ) + Ojn] (4 + an).

‘This proves (3.2.2). It follows that {in the rest of § 3.2 we shall write //

in place of [])

=1
left side of (5.2.1) == L[ {6}, +(0'm —a)) (35+ )} (a:+a,) + AL
~(a +AT) DG+ A+ (00 AL) (3, + A7)
== right side of (5.2.1).
But each side of (5.2.1) is an inverse of A" in a;+ A" since, for:
! (right side of (5.2.1)) = A”'(left side of (3.2.1)) =
a; —,—A’ "= (left side of (5.2.1))+ A"
= (right side of (5.2.1))-~A""
= (a;+ A7) [T~ A+ (3~ A YIS}, + A)]
=d; 4+ A,
Now the indivisibility of inverses shows that.equality holds in (5.2. 1).

As a corollary to (5.2.1) we shall derive the following identity which
holds for arbitrary 2" and 6", m=1,..., j, j<i=n, and arbitrary y:
(G.2.3) [ =)+ AT B+ 760+ A+ 1 (B + AL =

= (3L AN (30 + ALY+ [ (B + ALY,
The right side of (5.2.3) is precisely the left side of (5.2.3) with O in’
place of . Thus we need only show that the left side of (5.2.3) has the
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same value for all ;, equal to its value when.y =g, say. It is therefore-
sufficient to prove:

(5.2.4) left, side of (5.2.3) = L[(8" + 80" Yo+ AL+ LI (B0 + A).

Now (5. 2. 4) can be obtained by substituting in (5.2.1): #—y for &
and " -++6" for 6", m=1,..., j—1 and adding the term II(6j -+ A%')
to both sides.

5. 3. Reach and nullity. We shall define below, for each « in N,
two fraternal systems which we shall call the nuallity of ¢ and reach of «.

Suppose « is an upper semi-L-number and i, j fixed, i >j. Lemmas
(4.15.1) and (4. 15.4) show that there exists a unique fraternal system {b)-
with b;;-= «;;a; ; since ( b) is a fraternal system it follows from the defi-
nition of upper semi-fraternal systems that, for all k >m, b..=¢..a: and
does not depend on m. Note: by, is defined for all k== although e, is-
defined only for kx> m. We shall call this fraternal system, to be denoted
as «', the nullity of «; so that, if i>1, o =e; a; for all j<i and if e is.
an L-number, then ¢ -= «; a; for all i==j.

Similarly, lemmas (4.15.1) and (4. 15.4) show that for each « in R,
the system b;:= (e;--a)a,, i >j is an upper semi-fraternal system, which
is part of a fraternal system. We shall call this fraternal system, to be
denoted as ", the reach of ; so that, if j<n, ¢; = (a;+a)a; for all i>j
and if «is an L-number, then ¢; = («;;+a:) a; for all i==j.")

We shall prove the following relations:

(5.3.1) Every idempotent e in N is an L-number and for every decompositiont
a==b%d, for some fixed j, there is a unique idempotent e in N
with e¢; =0b and (1—e); =d.

(3.3.2) For «, 3 in X there is a y satisfying ye =2 if and only if ¢, = ;.
(5.3.3) «2==0 if and only if ¢ = 3.

(5.3.4) e/ = (1—e) ! for every idempotent e.

(5.3.5) ¢/ = (1—e); = ¢ B e =u; for every idempotent e.

(3. 3.6) (¢— )i = («;; By +a)a; if i>].

(5.3.7) e i (e—Rwi+85 if k>].

Proof of (5.3.1). If e is an idempotent element in N, then for any
fixed i > j, lemma (4.12. 13) shows that e; is of the form e; a;+e; ¢; and

%) The reach of «, a;, is identical with the (a); of von Neumann [8, vol. 1I, Defini-
tion 9.1]; (5.3.1) and (5.3.2) were established in {8, vol. I, Theorem 9.3, Lemma 9. I}
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lemmas (4. 15.1) and (4.15.4) show that e; is an (i, j) fraternal element
.and hence ¢ is an L-number. The rest of (5.3.1) need only be verified for
-some particular j which can be taken < n and this follows from (4.12.1).

Proof of (5.3.2). The proof of (5.3.2) follows easily from (4. 12. 2).

Proof of (5.3.3). We need only prove this assuming some i > j > k.

“Then «¢3==0 means

a; = (e ) (@i - a).
‘Because of the indivisibility of inverses, this is equivalent to each of:

ai = (e + 38 (a +an)

a: = a3

(5.3.8) @~ = iy S
(3.3.9) (e @+ ) = 2
(add «; to both sides of (5.3.9) to derive (5.3.8)). Thus ¢3==0 is equi~
valent to:

L 2 M
€ =U; 35 ==53;.

Proof of (5.3.4). We need only prove this assuming some i >/ > k.
That (1 —e); = e; follows from (5.3.3). By (5. 3.1) there exists an idempo-
tent 7 with fi=[e]—(1—e);}. Then fi=¢ ; by (5.3:3) this implies
Jfe==0, f(1—e)==f, hence, using (5.3.2), fi=f;(1—e); =0, that is,
¢ =(1—e)-

Proof of (3.3.5). Because of (5. 3. 1) and (5. 3. 2) the correspondence
(e) ¢« is a (1, 1) order preserving correspondence between the left
principal ideals of ) and the x = L(a)); it follows that ¢/ = (1 —e))—a,.
Now (5. 3.5) follows from (5. 3. 4).

Proof of (5. 3.6). Using (5.1.3):

((! —,5‘)}| e {({;j -{— ((I/,- —%—- ‘C/,j) (Q,‘ + C,'/,-)] aj;
= {ei(an + 2:) + (@ +ea)las;
(¢—3)) =[(¢—3)i +calar = (e 85+ a;+ cu)a:
== {e;; 33+ a;) a..

Proof of (5.3.7). We need only prove this assuming some k==i> /.
Using (5. 1. 3):

(¢ =i+ 35 = e+ (ar +55) (a4 +cn) + (85 + a)a](a: +a)
== ey + (3 + @i+ @) (a; -+ e} (@ + a))
» = (e + ) (@ 4 w)) eu.

The methods used to prove (5.3.2) will also show the following

theorems (we omit proofs since we do not make use of these theorems).
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(5.3.10) For @, 8 in R there is a ¥ in R satisfying ey=2 if and only
if «? = g0 '

For ¢ in R and £ in N':

(5:3.11) e«; =8y if and only if e@d=1;

(5.3.12) @;= gy if and only if Se=1.

6. The procedure for assigning coordinates.

~ 6.1. The i-elements in L. We shall call x an i-element if x = A’ and
xA"'=0. We shall prove that for arbitrary &’ in R, j=—1,..., i—1, and
arbitrary idempotent e in R, the formula:

(6.1.1) y=(+ A" )H(HU+A' )

(the factor II to be omitted if 1—1) defines an i-element. If e=1 then
e+ A" =a;+A"" and may be omitted.
Indeed, y = A’ and

-1
yAT = 1{ @+ 47)=A" [ (Bias+ A7) =0.
j= i=
Now consider an arbitrary but fixed i-element x. Define

6.1.2) ' X = (x+ A7) a:+a), j=1,...,i—1.
For fixed choice of idempotent e=e(x) with & =(x+A"")a; (such an e
exists by (5. 3.1)) we define:
(6.1.3) B=B(x)=x+¢€l; B =(B+A ) a+a)
(B may not be uniquely determined by x). The following relations hold:
6.1.4) e +a=x+a; X+A'=x+A"; +A =x+4a""
(6.1.5) B' — &)+ (x+ A7 YNai+ a) = €] + x;

Bla;=¢€l+xa;;

BA ' =[x+ el (x+ AN AT = (x+ele) A7 =0 by (5.3.5);

BH+ATT=A"4xtel =A"F e}l =A" '
(6.1.6) B'aj=(B+ A Va;=(BA™ + A ")a;=0;

B’+aj=(B+A"l)(a;+aj)= a;-}-aj. )
(6. 1.7) Bl + A" )= B(x+ A" )—x (use (6. 1. 3), (6. 1. 5)); "

B +a)=B(x+a)=x (use (6. 1. 5), (6. 1.6))..
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(6.1.6) shows that B’ is in L; for each j<i. Let «’ be the element
in N with «/;=B’. Then for every @& in R with 3/ = x/, as we shall
now show:

(6.1.8) el = =ep’.

To verify (6.1.8): from (6.1.7), e;=B =z x'; from (6.1.5) ~and’
(5.3.4), (¢')) =B'a; = e/ =(1—e)i; then (5.3.3) implies (1—e)e’ =0,
that is, e’ =c«’. 4 _

Next, since e’ @} = x’, it follows from (5. 3. 6) that:

(=) = (' +a)a;=¢f.
(5.3.3) now shows that e(e’—g3) =0, hence ec/ —ai=e3.

In the next section we shall make use of the following remark. Sup--
pose € is also a possible choice for e(x) and let &/, j< i, denote the cor-
responding N-elements. By definition, é=e"; (5.3.2) implies ee= ¢,
eé=e; and from (6. 1.8) '

6.1.9) eai=qa’ (1 =j<i).

Since BA"'=0, .

-1 ] i-1 ) -1
6110  [I@;+4"=[]B+47)=8+ [ 4" =
= J= =1

. . i-l . . .
(6.1.11) (el + A" --U[ (i+ ATy =(x+A"YB=x
=

We shall now prove that for arbitrary &’ with 2 = x', j<i, the i-ele-
ment y given by (6.1.1) is identical with x. Indeed,
@+ AN+ A= AT + B+ AT @+ a)
= AT LB a)=AT - x (use(6.1.4), (6.1.5), (6. 1.6))
<A1 1 : _/

for each j < i; hence x =y. It follows from the .indivisibity_ of inverses that

x=y (DA =xA""'=0and y+ A" =+ A =x+ A7),
~ Conversely, as we now show, for arbltrary 1dempotent e and arbitrary
& in N, the i-element y of (6.1.1) has the propertles y = &% for j<i, and’

e is a possible choice for e(p). Indeed, (y+ A ")a,=e! and
i-1
y =(e —}—A"‘)[ g (15’;’”}.-+AZ-")+A}"](a;+a,~)

= (O A Y@+ a) =5,
as stated. Moreover, (6.1.8) shows that ¢’/(y)=es’
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6.2. The rule for assigning left modules to elements of L.
For each x in L call x,,...,x. a base-decomposition of x if each x; is an
inverse: ‘
x;=[xA'—xA""] (i=1,...,n).
-Clearly each x; is an i-element and x-=x, @G- --@x,. For each base-decom-
position of x and for any idempotent ¢’ satisfying:

(@) =(xi+A"a; = (xA + A Va;,
let B(x)), B'(x), ¢’ = /(x) be determined as in § 6.1, and define the vector

u(x;)=(—e",...,—e" <, e,0,...,0).
Now, for each such u(x;), i==1,...,n, assign to x the left module

M@, ..., x)=@(x),...,u(x))
We note that: (i) the x; may not be uniquely determined by x and for each
x; the idempotent ¢ may not be uniquely determined by x;, however it follows
from (6.1.9) that (u(x)) is uniquely determined by x; so that M(x,,..., x.)
is uniquely determined by x,,...,x.; (ii) if x is a j-element then the x; are
uniquely determined with X, =x for i=j; and x;==0for i==/; (iii) if x; is an
arbitrary i-element for each i==1,...,n, and x=x,%- -G x, then XiyoeoyXu
is a base-decomposition for x. - '
We shall prove below the following statements (6.2.1)—(6.2. 7).

(6.2.1) Every left module M of finite span is identical with M(x,,.. ., x.) for
some base-decomposition X, ..., x. of some x in L.

(6.2.2) Suppose x,,...,x, and X,,..., X, are base-decompositions for the
same x. If :
H(x,)==(—em .., —emeten 0. ..,0)
and
u(X.,)=(—ae"t, . .., —emme0,...,0)
and the «”* and the @"* both form canonical matrices) with
e.==e", then M(x,,...,x.)=M(X,,..., X.).

(6.2.3) Suppose.y is an i-element, u(y) has i-th coordinate ¢ and 2z is a
“ j-element with 1 = j<i=n. Then (i) if v in W safisfies €y =7, the

vector u(y)+yu(2) also has i-th coordinate equal to € and coincides

with u(x) for some i-element x; and (ii) if for some i-element x there

is a relation u(x)==u(y)-+yyu(2) for some y in N, then x+z=y+z.

') A matrix whose rows form a canonical basis (see § 1.2) is called a canonical
matrix.
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6.2.4) If x has a base-decomposition x,,...,x, with
- u(xm) = (—_a’"f Lo,—ammlen 0,.,.,0),
with -the same e”, such that the e™* form a canonical matrix and
M(x,..., x)=M(x,...,x,), then
(6.2.5) for each x in L, all M(x,,...,x.) assigned to x coincide, so that we
" may write M(x) for M(x,,...,Xx);
6.2.6) x =y implies that M(x) = M(y);
6.2.7) M(x)=M(y) implies x = y. _
The coordinatization theorem follows easily from (6.2.1), (6.2. 5)
(6.2.6) and (6.2.7). '
6.3. Proof of (6.2.1). M is spanned by. some canonical basis
u=(a,...,¢"), i=1,...,n (§ 3. 4). Choose ¢/, x(i) as. follows:

o= “u,

x(@) =[(&) + A7) g [(—e);+ A7)

Then § 6.1 shows that each x(i) is an i-element and that e is a possible
choice for e(x(f)); with this choice of e(x(i)) it follows from the last para-
graph of § 6.1 that ¢/(x(i)))=—«" (for a canonical basis e« =), that
u' is a possible choice for-u(x(i)) and hence M coincides with M(x,, ..., x.).

6. 4. Proof of (6.2.2). We shall show that X,.== x, for all m so that

the «"* are uniquely determined by x and the e (if the «"* are to form a
canonical matnx)

Set U= () = a, for each k<m. Since  (5.3.5) shows that
(e (e)r =0, it follows that
6.4.1) U (x4 A =0; xu(U* +A‘ H=0.

We shall show that .

6.4.2) xy=x I (U o

this wnll establish the uniqueness of x,, since the U" are uniquely determined
by the ¢~
From § 6.2 there is a B(x.) = x.,, for which
“ml. "—B(xm) +Am 1) (am‘*‘ak); . . .
now (5.3.3) 1mphes that (e™); = (); i. e, (B(xw)+AMa. = U*. Henc
U+ A¢ = B(x.) = x,, for each k and so ) .
right side of (6.4.2) = x... _
o A6
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Equality in (6.4.2) now follows from the indivisibility of inverses; indeed,

(6.4.3)  (right side of (6.4.2)) +A™" = xA" + A1 =x,, + A"

so that equality holds in (6.4.3), and
(right side of (6.4.2)) A™ ' = (x,+ -« + Xn-1) 1] (U"+A,.)

c= (X4 -0 F X 1)H(U +Ax" )

(- x) U A7) T U4 AT

=%+ - 4 Xm-2) li(Uk-i-A}l‘_’) . (use (6.4.1))
[
m-3 )

=(x+---+ xm_s) ! ! (Ulf_!_Azx-‘z) —— O — xmAm—l.

6.5. Proof of (6.2.3). (i) u(y)+yu(z) is of the form
(—ep,—eg?,...,—€8", %0,...,0)

and hence coincides with u(x) for some i-element x by the last paragraph of
§ 6.1.

(ii) We need only prove x = y - z; for the relatnon u(y)=u(x)+(— /)u(z) "
would imply, in the same way, y =x+2, hence x+z=y+z=x-+2

To show x=y-+2z we need only prove the statement: for arbitrary
idempotents € and e and «" with eée”=e™ for m<i, g™ with e8™=g"
for m < i, and 6" with e6"==6" for m < j, the conditions

a” =g" . for j<m=i
(6.5.1) z ol =pg/—ye ' for some y
" =pg"+y6" for 1=m<j

imply:
Ciel ,
(6.5.2) (&+A"Y I (@m+ ALY
’ m=1
. o N it .
= (& +A™) I @+ A" + & + A7) TT O+ A5Y).
It is sufficient to establish in place of (6.5. 2)

(6.5.3) .,,H (AL _
II(ﬂ:';. F ALY+ A 17(0:;# A

m=1
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for we can then derive (6.5.2) by adding @4+ +ai. to both sides of
(6.5. 3) and then clipping both sides by

L ) i-1 .
(&+A7) IT (@5+ AL,
m=j+1 .
But (6. 5. 3) can be derived from
(6.5.4)  left side of (6.5. 3)<[[(ﬂm+A )+H(0}',‘,,+A’ Yy

by clipping both sides of (6.5.4) by &+ +A"": indeed, this clipping
does not change. the left side of (6. 5. 4) since one of its factors is
G+ AT =(F —ye)+ A
=i+ (—rye)j + A using (5.3.7)
=84+ AT } using (5.3.2);
on the other hand this clipping changes the nght side of (6 5. 4) to

T8+ K+ B+ A7) ey o
=right side of (6.5.3)

since the ‘modular law implies (&+ ¢ +A ) A =¢ + A",
Since " = " +yef™ for-m <j and & = —ye, the desired (6. 5. 4)
follows immediately from (5.2.3), using ye in place of the y in (5. 2. 3).

6.6. Proof of (6.2.4). By (6.2.3), for each m>1, the vector
u(x.)+ e 1u(x,) coincides with u(x,) for some m-element X, such that
X+ X, =Xn+4x,. Then x,, X,,..., Xa is again a base-decomposition of x with
a™'et=0 for m> 1. Similarly X;,..., X, can be replaced so that the new
a7 satisfy also ™ 2e2=0 for m > 2. Successive repetition of this procedure
establishes (6. 2. 4).

6.7. Proof of (6.2.5). If M=M(x,, ..., Xs)=(u(xy), ..., u(x.)) and
e is the m-th coordinate of u(x.) we may, without changing M, replace
u(xn) by f*(u(xn) where f™ is any idempotent satisfying (f/")n=(xA"+A™")@n.
The statement (6. 2. 5) now follows from (6. 2. 4) and (6. 2. 2).

6. 8. Proof of (6.2.6). If x=y, we may choose base-decompositions
Xi,i=n and y,,i = n so that x; = y; (for example, choose y;=x;+[yA*—
—(yA* 4 x)]. Then (e(x))i = (e(3:)) which .implies e(x.)e(y,)we(x.) we
may choose 8/(x;) to coincide with 8/(y) smce

B = (i + A) ) @+u) = xi+ A7) (@t a).
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Now e(x)u(y)=u(x;) for i =n, hence M(x,,...,x.)=M(y,...,¥). Be-
cause of (6.2.5) it follows that M(x) = M(y).

6.9. Proof of (6.. 2.7). Since x is a union of i-elements, it is clearly
sufficient to prove (6. 2.7) with the restriction that x is an i-element. Then
we suppose- that y has a base-decomposition y;, i = n, and that

{6.9. 1) u(x) = u(y)+ - +7.u0(y)

Let e(x) be the i-th coordinate of u(x) and let e(y.) be the m-th coor-
dinate of u(y.). Then in (6.9.1), we may suppose that (i) 7, =0 for m>i,
(i) e(x)e(y)) = v:=-e(x), (iii) e(x)y.=7. for all m.

To prove (i), suppose i< n. The n-th coordinates of u(x) and of
-, u(y.) for m < n are all 0; hence the n-th coordinate of y.u(y.) equais 0
and we may suppose ;. =0. Successive applications of this argument esta-
blish (i). -
Now consider i-th coordinates; e(x)==1:e(y:), hence e(x)e(y;) =y:e(y;)
==¢(x) and we may replace ;; in (6.9.1) by e(x) to obtain (ii).

Since e(x)u(x)==u(x) we may replace v, in (6.9.1) by e(x)7.. to ob--
tain (iii).

We may even assume that y;=1 in (6.9.1), for the last paragraph of
§ 6.1 shows that y;u(y), (that is, e(x)u(y;)), coincides with u(y:;) for some
i-element y;. The last paragraph of § 6..1 shows that y; = y; since

(e(3))i =(e(x)e(y)): = (e(3)):-

Hence it is sufficient to prove (6.2.7) with y; replaced by ¥:. Thus we may
suppose that in (6. 9. 1) vi==1 and e(y;) =e(x)=-¢e (say) and ey.,,= y. for
all m. Now (6. 2. 3) shows that u(p)+ yi-1u(yi-1) = u(2) for some i-element z -
with z = y;4-y;..,. Similarly, v(2)+ vi2u(yi-s) ==u(Z) for some i-element
2= 2+Yia =yi+Yir+Yia. Repetition of this argument finally yields
X = Yi+ Yoo+ Y1 = p, as required.

This completes the proof of all statements from (6. 2. 1) to (6.2.7) and
establishes the coordinatization theorem.

7. The case of projective geometry.

7. 1. The previous discussion clearly applies to the case of classical
projective geometry with a normalized frame consisting of points, that is,
atoms™). We shall now investigate the meaning of our conditions (4. 3. 3),
(4.3.4) and (4.10.3) in the case of plane projective geometry (the only
case in which these conditions need to be postulated).

¥) In this case M, the ring of coordinates, is a field (see footnote 13).
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7.2. Because of footnotes 5 and 10 and singe x, y, a;, aj;, ¢; are all
atoms, (4.3.3) and (4.3.4) need be assumed only for the case of xa;=0,
ya;=0, and (4. 10. 3) need be assumed only for the case that xa., ya.,
xc; and yc; are all 0.

Now in the case of projective geometry, we shall show that (4.3.2)
implies (4. 3. 3). Indeed, suppose (4.2.1) and (4.2.2) hold; we need con-
sider only the case that (4. 2. 3) fails. Then A=a; and the z of (4.2.4)
reduces to a;+a; so that (4. 3. 3) does hold.

Similarly we shall show that (4.3.2) implies (4. 3.4). Indeed, suppose
(4.2.2) and (4. 2. 3) hold; we need consider only the case that (4. 2.1) fails. Then
(a:+ A+ B)x=0 and the 2 of (4.2.4) reduces to 0 so that (4. 3. 4) does hold.

Similarly we shall show that (4. 10. 2) implies (4. 10. 3). Indeed, suppose
(4.9.1) and (4.9.2) hold. If (4.9.3) fails, A=a; and the z of (4.9.4)
reduces to a;+y. If (4.9.3) holds, then

(2 of (4.9.4))+y=a:(x+A+cy)+y=ait+y
so that (4. 10. 3) does hold.

7.3. Thus we need assume only (4.3.2) and (4.10. 2) under the re-
strictions of § 7. 2. Straight-forward inspection confirms that the assumptions
of §7.3 do hold if we have the following conditions™¥):

Quadrangle condition ((7.3.1)—(7.3.4)): Suppose two quad-
rangles P, i=1,2,3,4, and P}, i=1, 2, 3,4, and a line W are such that:

(7.3.1) no three of the vertices of the same quadrangle lie on a common line ;
(7.3.2) W contains none of the vertices of either quadrangle.

) To derive (4.3.2) from the quadrangle condition, choose P,=—=A, P;,=2B,
=(x+ A)(a;, + B), P,=[(x + A) (a; + B) + al(y + B) and W==gq;+ a, (the condi-
tions (4.2.1), (4.2.2) and (4.2.3) together with the restrictions x = a;, y &= a; imply that
A, B are points with A== B, and that (7.3.1), (7. 3. 2) hold). Actually (4.3.2) can be de-
rived from the uniqueness of the harmonic point condition; indeed the z of (4. 2.4) coin-
cides with the harmonic conjugate of a; with- respect to a; and b where b itself is the
harmonic conjugate of a; with respect to x and y. The uniqueness of the harmonic point,
condition is of course implied by the quadrangle condition but the converse need not hold
{5, § 1li 3]. To derive (4. 10.2) from the quadrangle condition, choose P;= A, Py=[y—+
-+ (¢; -+ A) (@, + B @;+B), Py=(a;+ B)(c;+A), P/=(x+ A)(¢;+B) and W=2,+4q,
(the restrictions (7. 3. 2) and (7.3.3) follow from (4.9.1), (4.9.2) and (4.9.3) together
with the restrictions x5=a;, x &=¢;, y=+=a,, y=¢; -

) (7.3. 1) is the fandamental theorem on quadrangular sefs as given by VesLen and
Youna {6, Theorem 3, page 47]; (7.4.3) is the theorem of Desargues {6, Theorem 1, page
41}, and (7.4.2) is the duai (and converse) of the theorem of Desarcues [6, Theorem 1,
page 41]. However, the hypotheses of our quadrangle condition, and (7.4.2), (7.4.3) are
subject to restrictions which are not specnﬁcally included in the corresponding theorems of

- Vesien and Youna.
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For i, j=1, 2, 3, i==j, let Pj=(P.+P)W (P is a point since P;+4 P
and W are different lines). Similarly let P;=(P:+P})W. Now suppose
also that:

(1.3.3) P;=P;; except possibly for the pair (i, j)==(3, 4).
(7.3.4) Then (1. 3. 3) holds also for the pair (i, j)= (3, 4).

7.4. 1t is well known (and easily shown) that in a plane projective
geometry all lines contain the same number of points, N (say), and each
point lies on precisely N distinct lines. We shall prove:

" (7.4.1) (i) If N=3 or 4 the quadrangle condition necessarily holds.
(ii) N is infinite or finite but > 4, the quadrangie condition®) can be
deduced from the following two triangle conditions:

(7.4.2) If P, i=1,2,3, are points not on a line, if P, i=1,2,3, are
points not on a line, if W is a line containing none of the P,
P, i=1,2,3, and if for each pair i, j=1,2,3, iZ=j: the lines
P:+ P, and P;- Pj (these are lines different from W) meet W in the
same point, then a point Q exists such that for each i=1,2,3:
the points Q, P, Pi are on a line. ' _

(7.4.3) If P, i=1, 2,3, are points not on a line, and P}, i=1, 2, 3, are
also points not on a line, and Q is a point on none of P;+ P;,
Pi+Pj, i, j=1,2,3, iZ=j, and if for each i=1,2,3: Q+P:=
=Q+ Pi, then a line W exists such that for each pair i, j=1, 2, 3,
i==j: the lines W, P;+ P;, P:+ P; contain a common point.

Proof of (7.4.1) (i). From (7.3.1), (7.3.2) and (7. 3. 3) each of
Py, Py, Pi is different from each of Pis, Pu, P, P, and Pyy== Py==
Py == Psy == Pi3. Suppose if possible that Py ==P¢;. Then N must be > 3;
"hence N=4 and Pjy=Py;, Puy=Pxs, Pi2=P3 or Pi (without loss of
generality, assume Pi= P3;). Let Q be a point on P, P,, with Q different
from each of Py, Py, P (such Q exist since N—4). Now each of Q+ P;,
Q-+ P is a line and must contain the point of W which is different from
each of Py, Ps, Pis. Since Q is different from Py, it follows that Q lies
on P.+ Ps; since Q also lies on P, +4 Py and Puxs == Py, this implies Q = Pis.
This contradiction establishes (7. 4. 1) (i)

Proof of (7.4.1) (ii): Case L Supposé, as a special case, that:
(1.4.4) Pi+P:==Pi+ P5; Pi+Ps==Pi+Pi; PihPo=Pi+ P
We may assume _

(1.4.9) _ Ps+ Pi=EP5+ P
_ for equality in (7.4.5) would immediately imply Py = Ps,.
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(7.4.2), applied to Py, Ps, Py and Pi, Pi, P}, shows that a point Q
exists such that for each i=1,2,3: the points Q, P;, P! lie on a line.
Similarly a point Q' exists such that for each i=1, 2, 4: the points @,
P;, P, lie on a line. From (7.4.4) itfollows easily that Q == (P1- Pi)(Pz-+ P%)
= @ and that Q is different from each of Py, P, Ps, Py, Pi, Pi, P, Pi.

If the line P;+ Py contained @ it would also contain Pi; then
Py -+ Py== Py~ Py == P{ + P{y== P -+ P}, contradicting (7.4.4). Thus Q does
not lie on P+ P,. Similarly Q does not lie on any of Py Ps, Pi+ Ps,
Pi-1-Ps.

Next, if P34 P, contained @, it would also contain P§-+ Pi, contra-
dicting (7.4.5). Thus Q does not lie on P;-+ Py, and similarly Q does nof
lie on P34 P4,

The preceding paragraphs show that (7. 4.3) applies to Py, Py, Py and
Pi, Ps, P;. Hence there exists a line W’ such that for each pair i, j=1, 3,4,
i==j. W', P,-+P;, P, P; contain a common point,

Now by (7.4.4), P+ P, = P;+ Pi; hence their intersection Py (which
lies on W) must lie on W’. Similarly, Py (which lies on W) must lie on W".
Since Pi==Puy it follows that W= W' Hence Py=(Ps--P;) W=
{(Pi+ PYW=P}, as required.

Case 11. Suppose, as a special case, that:

(1.4.6) Pi+Po== P{+ P3; Po+ Ps=F Pi+P4; Po+ Py== P+ P,
Then the proof for Case 1 with 1 and 2 interchanged shows that (7. 4. 1) (if)
holds in this case also.

General Case. We shall show the existence of points Pf, i==1,2, 3, 4,
such that: '

{7.4.T) the conditions (7.3.1), (7.3.2) and (7.3.3) and also (7.4.4) are
satisfied by P; and P}, i=:1,2, 3,4;
(7. 4. 8) the conditions (7.3.1), (7.3.2) and (7.3.3) and also (7.4.6) are
satisfied by P* and Pi, i=1,2,3,4.
It will then follow that Psy==P§ = Py, which will complete the proof of
(7.4. 1) (ii).
To determine such P}, choose any line W’ through Py, different from
W, P - Py, P{ -+ P4 (this is possible since N = 4). Choose a point Pf on W’
but different from each of Py, (P +Ps) W', (Pi+P)W’ (such P exist
since N = 4). Choose a point P8 on W’ but different from each of Py, Pi,
(Po+Py) W, (Pa-+ Py W’ (such P% exist since N > 4).
Now let P;‘:(Pf“[* P13)(P§+Pga), Pi':(Pf—I—PM)(R}‘ —{— P;)A,). It is easily
verified that Pj, P{ are points and that these P} satisfy the conditions
(7.4.7) and (7. 4.8).
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Next we shall verify:

(7.4.9) The dual (and converse) triangle conditions (7.4.2) and (7.4. 3) are
equivalent,

Proof of (7.4.9). Assume (7. 4.2) and suppose that P,, P;,i=1,2,3,
and Q satisfy the conditions of (7. 4. 3).

If Py-=Pq,then the line containing Py and any point of (P. -~ Ps) (P54 Pi)
will serve as the required W; hence we may suppose P;=i=/Pi. Similarly
we may also assume Pz} P3i, P3==Pj and hence P+ Pi, Ps-} P4, P;-- P
are different lines.

Let Ai~ (P2--Ps)(Pa-+ Pt),As-~ (P3+P1)(Pi - P1), As==(P, + Ps)(P{ - P%).
Then the A; must be different points.

Let A3 == (A1 A2)(Py - Ps), Pt ==(Ai-+ P5)(Pi+ P%). Necessarily, A3 is
a point different from A,. If Az were on P3--Pj%, this would imply that
A1-- A4 coincides with P%-}-P; and contains As, hence also Pi; thus
Pi, P4, P; would lie on a line, contrary to hypothesis. Thus A3 is not on
Pi+-Pj; (similarly A3 isnoton Pi--P$). Hence P is a point not on Pj—- Pj.

Now Aj=- Az, so that the line A+ As serves as the required W; for
if A3} A;, then A3 does not lie on Pi-P% and the conditions of (7.4.2)
are satisfied by Py, P», Pz and Pi, Pi, P and the line A,-}A2. Hence
there exists a point @ such that @, Py, Pi lie on a line and Q,
P;, P; lie on a line for i=2,3. Then Q" must be Q and P} lies on P+ P1,
hence P}==Pi, and hence A; lies on Pj-Pj%, a contradiction. This shows
that A3 = Ay as stated and (7.4.3) is proved assuming (7.4.2).

The dual of the above proof shows that (7.4.2) holds if (7.4.3) is
assumed. This completes the proof of (7.4.9).

Thus our coordinatization theorem proves that a projective geometry
can be coordinatized if its dimension is =3 or if its dimension is 2 and
DESARGUES’s theorem, as stafed in (1. 4.3), holds.

On the other hand, if a projective geometry can be coordinatized, the
projective geometry can be embedded in a projective geometry of dimension
=3, and it is then easy to verify that DESARGUES’s theorem must hold.
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