Remarks to the preceding paper of A. Korányi. *)

By BÉLA SZ.-NAGY in Szeged.

1: Theorem 1 of the cited paper may be generalized as follows:
Theorem A. Let $f(x)$ be a real-valued, continuous function on $(-1,1)$, derivable on a subset S of full measure, including the point $x=0$. Suppose that the function $k(x, y)$, defined on $S \times S$ by the formulas

$$
k(x, y)=\frac{f(y)-f(x)}{y-x} \text { if } y+x, \quad \text { and } \quad k(x, x)=f^{\prime}(x)
$$

be positively definite, i.e.

$$
\begin{equation*}
\sum_{i} \sum_{j} k\left(\dot{x}_{i}, \dot{x}_{i}\right) \epsilon_{i} \bar{\epsilon}_{i} \geqq 0 \tag{1}
\end{equation*}
$$

holds for any finite system of points $x_{1}, \ldots, x_{i} \in S$, and any complex $\epsilon_{1}, \ldots, \varepsilon_{,}$. Then $f(x)$ may be represented in the form

$$
\begin{equation*}
f(x)=f(0)+\int_{-i-1}^{1} \frac{x}{1-x t} d m(t) \tag{2}
\end{equation*}
$$

with a bounded non-decreasing, right-continuous function $m(t)$.
The cited theorem settles the same fact under the more restringent condition that $f(x)$ is continuously derivable throughout $(-1,1)$. We may reduce, however, the above more general case to this particular one.

Let $\varepsilon>0$. If x_{1}, \ldots, x_{n} are any given points in $(-1,1)$, the points

$$
x_{i}(t)=(1+\varepsilon)^{-1}\left(x_{i}+t\right) \quad(i=1, \ldots, n)
$$

belong to S for almost every value of the parameter t with $|t|<\varepsilon$. This follows readily from the fact that S is of full measure. Thus, for almost all t in $(-\varepsilon, \varepsilon)$, and any complex α_{i}, we have

$$
\sum_{i} \sum_{j} k\left(x_{j}(t), x_{i}(t)\right) c_{i} \bar{c}_{j} \geqq 0,
$$

[^0]and consequently
\[

$$
\begin{equation*}
\sum_{i} \sum_{j} \int_{-\varepsilon}^{\ell} k\left(x_{j}(t), x_{i}(t)\right) d t \cdot \alpha_{i} \bar{\alpha}_{j} \geqq 0 \tag{3}
\end{equation*}
$$

\]

Put

$$
f_{\varepsilon}(x)=\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} f\left(\frac{x+t}{1+\varepsilon}\right) d t=\frac{1+\varepsilon}{2 \varepsilon} \int_{\frac{x-\varepsilon}{1+\varepsilon}}^{\frac{x+\varepsilon}{1+\varepsilon}} f(\tau) d \tau \quad(-1<x<1)
$$

the corresponding kemel function $k_{\varepsilon}(x, y)$ is obviously equal to

$$
\frac{1}{1+\varepsilon} \frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} k\left(\frac{x+t}{1+\varepsilon}, \frac{y+t}{1+\varepsilon}\right) d t
$$

thus, by (3)

$$
\sum_{i} \sum_{j} k_{\varepsilon}\left(x_{j}, x_{i}\right) \alpha_{i} \bar{\alpha}_{j} \geqq 0
$$

Now, the function $f_{\varepsilon}(x)$ is continuously derivable throughout ($-1,1$):

$$
\begin{equation*}
f_{\varepsilon}^{\prime}(x)=\frac{1}{2 \varepsilon}\left[f\left(\frac{x+\varepsilon}{1+\varepsilon}\right)-f\left(\frac{x-\varepsilon}{1+\varepsilon}\right)\right] \tag{4}
\end{equation*}
$$

and we are in the particular case considered by KORANYI. Thus $f_{\varepsilon}(x)$ may be represented in the form

$$
\begin{equation*}
f_{\varepsilon}(x)=f_{\varepsilon}(0)+\int_{-1-0}^{1} \frac{x}{1-x t} d m_{\varepsilon}(t) \tag{5}
\end{equation*}
$$

with a non-decreasing bounded, right-continuous $m_{\varepsilon}(t)$ with $m_{\varepsilon}(-1-0)=0$. By (5) we have

$$
f_{\varepsilon}^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f_{\varepsilon}(x)-f_{\varepsilon}(0)}{x}=\lim _{x \rightarrow 0} \int_{-1-0}^{1} \frac{1}{1-x t} d m_{\varepsilon}(t)=\int_{-1-0}^{1} d m_{\varepsilon}(t)=m_{\varepsilon}(1)
$$

and by (4)

$$
f_{\varepsilon}^{\prime}(0) \rightarrow f^{\prime}(0) \text { for } \varepsilon \rightarrow 0 .
$$

Thus $m_{\varepsilon}(1) \rightarrow f^{\prime}(0)$ as $\varepsilon \rightarrow 0$, and so we may apply the theorem of Helly: there exists a non-decreasing, right-continuous function $m(t)$ with $m(-1-0)=0$, $m(1)=f^{\prime}(0)$, such that

$$
\int_{-i-0}^{1} g(t) d m_{\varepsilon_{n}}(t) \rightarrow \int_{-i-0}^{1} g(t) d m(t)
$$

for a conveniently chosen sequence $\varepsilon_{n} \rightarrow 0$ and for all continuous $g(t)$, in particular for

$$
g(t)=g_{x}(t)=\frac{x}{1-x t}, \quad|x|<1 . .
$$

On the other hand, we have $\lim _{\varepsilon \rightarrow 0} f_{e}(x)=f(x)$ by the continuity of $f(x)$, and so the relation (2) results from (5) for $\varepsilon=\varepsilon_{n} \rightarrow 0$.
2. Our second remark concerns theorem 2 of the cited paper, on operator valued functions. We generalize it in two directions: we drop, as in the preceding theorem, the hypothesis that the derivative be continuous, and we replace the hypothesis that the kernel function be positive definite by a weaker one ("weak positive definiteness").

Theorem B. Let $F(x)$ be a function defined on ($-1,1$), whose values are, bounded symmetric operators on Hilbert space $\mathfrak{5}$. Suppose that
a) $F(x)$ is weakly continuous in x throughout $(-1,1)$, and weakly derivable on a subset S of $(-1,1)$ of full measure, including the point $x=0$; i.e. suppose that, for any fixed $u, v \in \mathfrak{g}$,

$$
\begin{aligned}
&(F(y) u, v) \rightarrow(F(x) u, v) \\
& \text { for } y \rightarrow x, \\
&\left(\frac{F(y)-F(x)}{y-x} u, v\right) \rightarrow\left(F^{\prime}(x) u, v\right) \\
& \text { for } y \rightarrow x, x \in S
\end{aligned}
$$

the "derivative" $F^{\prime}(x)$ being necessarily a bounded symmetric operator;
b) $F(0)=O, F^{\prime}(0)=I$;
c) putting $K(x, y)=\frac{F(y)-F(x)}{y-x}$ if $x \neq y$, and $K(x, x)=F^{\prime}(x)$, then

$$
\begin{equation*}
\sum_{i} \sum_{j} \omega_{i} \bar{a}_{j} K\left(x_{j}, x_{i}\right) \geqq O \tag{6}
\end{equation*}
$$

for any $x_{1}, \ldots, x_{n} \in S$, and any complex a_{1}, \ldots, a_{n} ("weak positive definiteness").
Then there exists, in a Hilbert space $\mathfrak{\Omega} \supset \mathfrak{b}$, a self-adjoint operator A with $\|A\| \leqq 1$, such that $F(x)$ be the "projection" of $x(I-x A)^{-1}$ on \mathfrak{q} :

$$
\left.F(x)=\operatorname{pr} x(I-x A)^{-1}, \quad|x|<1 .^{2}\right)
$$

Proof. For any fixed $u \in \mathfrak{F},(F(x) u, u)$ satisfies the conditions of theorem A , thus we have

$$
(F(x) u, u)=\int_{-1-0}^{1} \frac{x}{1-x t} d m(u ; t) \quad(|x|<1)
$$

[^1]where $m(u ; t)$ is a non-decreasing function of t, which is normalized by the condition that it is right-continuous and $m(u ;-1-0)=0$. We have, moreover,
\[

$$
\begin{equation*}
m(u ; 1)=\left(F^{\prime}(0) u, u\right) \tag{7}
\end{equation*}
$$

\]

Putting, for $u, v \in \mathfrak{F}$,

$$
m(u, v ; t)=\frac{1}{4}[m(u+v ; t)-m(u-v ; t)+i m(u+i v ; t)-i m(u-i r ; t)],
$$

we get a right-continuous function of bounded variation, with $m(u, r ;-1-0)=0$, such that

$$
\begin{equation*}
(F(x) u, v)=\int_{-i-0}^{1} \frac{x}{1-x t} d m(u, v ; t) \quad(|x|<1) \tag{8}
\end{equation*}
$$

This relation (8) and the normalization conditions determine the function $m(u, r ; t)$ uniquely. As a matter of fact, the function

$$
w(z)=\int_{-1-0}^{1} \frac{1}{z-t} d m(t)
$$

is, for any $m(t)$ of bounded variation, regular in the complex plane cut along the segment $[-1,1]$ of the real axis. In our case, the values of $w(z)$ are given for $z=1 / x,|x|<1$, thus $w(z)$ is uniquely determined in its whole domain, and $m(t)$ is determined by $w(z)$ by the well-known inversion formula of Stieltjes.

We have in particular $m(u, u ; t)=m(u ; t)$, and, since the left-hand side of. (8) is, for any fixed t, a (hermitian) symmetric bilinear form in f, g, so is $m(u, v ; t)$ necessarily a symmetric bilinear form in f, g, too.

Therefore, there exists a bounded symmetric operator $B(t)$ on 5 such that

$$
m(u, v ; t)=(B(t) u, v) ;
$$

$B(t)$ is a non-decreasing, right-continuous function of t; with $B(-1-0)=0$ $B(1)=F^{\prime}(0)=I$. In other words, $\{B(t)\}$ is a generalized spectral family. By a well-known theorem of M. Neumark, it may be represented in the form

$$
B(t)=\operatorname{pr} E(t),
$$

where $\{E(t)\}$ is an ordinary spectral family in a convenient larger Hilbert space. $\dot{x} .{ }^{3}$) It results of (8), then, that

$$
F(x)=\operatorname{pr} x(I-x A)^{-1}
$$

[^2]where A denotes a self-adjoint operator on \mathfrak{A}, namely:
$$
A=\int_{i-0}^{1} t d E(t) .
$$

This finishes the proof.
3. We may generalize the theorem still further, by dropping the condition. $F^{\prime}(0)=I$. Then the following representation holds:

$$
F(x)=R \cdot \operatorname{pr} x(I-x A)^{-1} \cdot R
$$

with a self-adjoint A in $A \supset \mathscr{C}, \| A \mid \leqq 1$, and with a positive self-adjoint R in .

$$
R=\left[F^{\prime}(0)\right]^{1}=.
$$

We omit the proof; it goes partially along similar lines that were followed by the author in a previous paper. ${ }^{+}$)
(Received May 20, 1956.)
${ }^{4}$) Bela Sz.-Nagy, A moment problem for self-adjoint operators, Acta Math. Acad. Sci. Hung., 3 (1952), 285-293.

[^0]: *) A. Korányl, On a theorem of Löwner and its connections with resolvents of selfadjoint transformations, these Acta, 17 (1956), 63-70.

[^1]: ${ }^{9}$) For this terminology and notation see B. Sz.-NaGy, Prolongements des transformations de l'espace de Hilbert qui sortent de cet espace. Appendice au livre "Leçons d'analyse fonctionnelle" par F. Riesz et B. Sz.-Nagy (Budapest, 1955).

[^2]: ${ }^{\text {3 }}$) See f. i. ${ }^{\text {T) }}$

