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On the solvability of systems of linear inequalities. 
By JÁNOS SURÁNYI in Budapest. 

To László Kalmár on his fiftieth birthday. 

Introduction. 

1. In what follows we shall' give some criteria for the solvability of 
homogeneous and inhomogeneous systems of linear inequalities of the form 
<1) /¿O) = a <i*i + <*i-2X-2 H 1- a ¡a xn s 0 (i=\,2,..., m) 
and 
(2) U (x) = U (x) -j- b, = o,i Xi + Ö12X2 H h o,„ x„ + bi m 0 (/ = 1, 2,..., m), 

respectively. By a solution of the systems (2) we mean any point. 
£ = (£1, £>,.. . , hu) in the «-dimensional Euclidean space satisfying L,(S) s 0 
for / = 1, 2 , . . . , m. In the case of system (1), however, we require of a solu-
tion ? to satisfy not only /,•(£) =^0 for / = . 1 , 2 , . . . , m but also for some 
j (1 = / = m) the strict inequality (,•(£) > 0 . 

The problem of homogeneous systems can immediately be reduced to 
that of inhomogeneous systems. In fact, the requirement that at least one of 
the linear forms /,(x) should be positive, is equivalent to the inequality 

7J i 

Zli(x)> 0. 
¿=1 

Owing to the homogeneity of the forms /,(x), the last inequality can be re-
placed as to solvability by the inhomogeneous one 

in 
/,„+i ( x ) = Z l i ( x)= a»'+i , 1 + a»>+i;2xo 1- o,„+1,,, x„ s 1, 

i = 1 
where 

0„1+1, = on , + Oofr -I f- o,,„, (k = 1 , 2 , : . . , rí). 

Now, setting 

L*(x) = li(x) for / = 1 , 2 , ...,m; LUx(x) = E / , „ + 1 ( X ) — 1, 

') All the numbers of this paper are assumed to be real numbers. 
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the solvability of the system (1) is equivalent to the solvability of the inho-
mogeneous system 

(1*) . L*(x)m 0 (i = 1 , 2 , . . . , / n + 1 ) . 

2 . In the present paper I shall give criteria for the solvability of sys-
tems of linear inequalities in terms of the coefficient-matrix. Our results can 
be easily obtained along the lines suggested by the classical results and 
methods of the theory of linear equations. A criterion of this type was recently 
found by L. M. BLUMENTHAL.2) He obtained his criterion (see theorem VI 
below) -in terms of the symmetrical matrix consisting of the elements 

a;, = a11 a,i + 0 ,2a j» - \ b dm ajn (/', y = 1, 2 , . . . , //?); 

as to his methods, he emphasized their metrical character. 
Starting from BLUMENTHAL'S preliminary note I have proved3) B L U M E N -

THAL'S theorem by means of the notion of linear independence, i. e. by using 
affine methods only. The methods used in my paper also furnished some 
further criteria (theorems I and II) in terms of the original matrix (o,,.),,,,,, a 
fact that seems to underline the adequacy of these methods. 

Theorem II was found independently by S. N. CERNIKOV4). The basic 
geometrical idea of his proof is similar to mine, but the elaboration runs 
along different lines. Therefore, we publish he're our former proof in a sim-
plified form, but first we shall give another demonstration by induction. 

3 . Let us denote the rank of the matrix 

/ O i l Oi2 . . . O i „ \ . 

^ 021 022 • • • 02„ 

vo,„i o,„o . . . amn) 
by /'. For the solvability (in the above sense) of the system (1), resp. (2), the 
following criteria hold. 

-) L. M. BLUMENTHAL, TWO existence-theorems for systems of linear inequalities, Pacific 
Journal of Math., 2 (1952), 523—530. Preliminary note: Abstract 2Ш in Bulletin of the 
Amer. Math. Soc., 5 8 (1952), 380. — ТН. MOTZKIN, Beitrage zur Theorie der linearen Un-
gleichungen, Dissertation, Basel, 1936, dealing with various problems concerning linear 
inequalities, gave also criteria for the solvability, which seem, as the reviews of his paper 
show, to be analogous to our theorem 1. His thesis was not accessible for me. 

3) The new proof of BLUMENTHAL'S theorem was first presented in the seminary of 
P . TURAN, August 1952. A form completed with new criteria was read at the „Bolyai János 
Mathematical Society", January 31, 1953. See Matematikai Lapok, 4 (1953), 196, and pub-
lished in Hungarian: Egyenlőtlenségrendszerek megoldhatóságáról, Az Eötvös Loránd Tudo-
mányegyetem Természettudományi Karának Évkönyve (Annals of the University. Eötvös 
Loránd in Budapest, Faculty of Nat. Sci.), 1952/53, pp. 19—25. 

4) С. H. Черников, Систем линейных неравенств, У с п е х и М а т е м . Н а у к , 8 
(1953), fasc. 2, pp. 8—73. See esp. pp. 17—29. 
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T h e o r e m I. System (1) is solvable if and only if 2r—1 subscripts 
ii, h,...', i,-1, A'i, A'2,..., ky can be found so that the determinants 

a h h . • fli.lv 

( 3 ) 4 = 

Oj'.-, a j h . . • a j k r 

0=1,2,.,., m) 

are either all non-negative, or all non-positive, but not all 0. 

T h e o r e m II. System (2) is solvable if and only if 2r subscripts 
/,, i2, ..., /,., k\, k2,..kr can be found so that 

( 4 ) A = 

a,\ 1-, a^U., . . . 

Q a , - J . : , • • • 0;.,l:r 

a,rkt . . . a,ri.r 

and, for j = 1, 2 , . . . , m, 

<5) 

By making use of our remark in 1 we can deduce Theorem I immediately 
from Theorem II. Indeed, let us assume that Theorem II is already proved. 
We shall see that, if system (1) — and so also system (1*) — is solvable, 
then the subscript /,• occurring in Theorem II may be chosen equal to / n + 1 . 
Indeed, one of the subscripts iuL,...,ir is equal to m + 1, for in the oppo-
site case we should have 

a h K a i t k 2 • • a ^ i - r 

A 1 
a , 2 k L a»V'2 • • O i , k r bu 

A ~ A 
a i r k . ± • . . a i r k r 

b,r 

aJh ajki . • • ajkr bj 

D, m+i • 1 
J 

Oi.fc, Oi.h • • • 'ah>!r 0 

1 airi;2 . . . alrur 0 
k , flm+1, k , • • • Qm+l, k r 1 

contrary to the requirements of Theorem II. Hence we may suppose m -f 1 = /,., 
because a permutation of the subscripts. has. the same effect on the sign of 
A and that of the Z)/s. 

Now, if /, =/77 + 1, then we have by (5) 

A _ _ L 
A A 

ailkt . 0 

a ' r -
0 

QM+L, A', FLM+L,• • • Q,11+1, kr — 1 

ajkL ajhi • Cljkr 0 
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for j = 1, 2 , . . . , m. Thus the conditions of Theorem I are also proved to be 
necessary. 

Suppose now that the conditions of Theorem I are fulfilled, i. e. all the 
•determinants ¿k (1 ^ / ^ m) different from 0 have the same sign, and some 
of them does not vanish. Since these determinants differ from each other but 
in their last row,.we have 

fl/.ft, fli.fr, • . • fl,v„. 

»1» 

0 + 2 4 = 
1 = 1 • • û'V-^r 

= d. 

Om+l, A-; 

Furthermore 

ahh • • • tf,y.> 

il 

ajk, ' • • • Û/7.V 

ûî,/,-2 • • a,y.v 0 

Qi I-V-1 1 fli .*•„ • r-1 - • Oi^r ,0 
= A 

• flin+1, • • Qin+1, /.> — 1 

• Ojk,. 0 

for j—\,2,...,m, whence 

A _ 4 > 0 
d d = u 

by the hypotheses of Theorem I. Thus the conditions of Theorem II hold 
true for the system (1*) with the row-subscripts z'i, /'2, . . m + 1. This 
means that system (1*), and so also system (1), is solvable. 

In accordance with what has been said, we may restrict ourselves to 
the proof of Theorem II. 

First proof, by induct ion on r. 

4 . If r = 0, i .e. all the coefficients.vanish, then d= 1 and the condi-
tions of Theorem II reduce to ( / ' = 1 , 2 , . . . , m), which are in fact 
necessary and sufficient in this case. 

a) Suppose now that r > 0 and the theorem is already proved for sys-
tems with coefficient-matrices of rank r—1. 

Let us assume first that the system (2) is solvable and £ is one of its 
solutions. Then we can find also a solution for which some of the linear 
forms Lj(x) vanish, but not identically. Indeed, if this is not the case for the 
original H, then supposing a,-;.-, is a non-vanishing coefficient, we diminish 
or augment the value of xUl according as aiki is positive, or negative, until 
one of the linear forms vanishes. This happens for xkl = Si, say. Put = 
= , ^ - I > , ?«)• If we have e. g. £,,(£') = 0, then, express-
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ing and substituting it into the other linear forms, we find that the 
system 

(2') 
¿i 0 ' ) = I an- -^r- a I y> + • • • + ( a<- - fl*. I + 

- M a , - , + . . . + 3= o 
v J I a>,k, J ah): 1 

(/ = 1, 2 , . . . , m) admits the solution 

(6) (§1, §2, • • ., I/.-.-1, b/.yi-l, • • •, bu)-
Since the coefficient-matrix of (2') has obviously the rank r—1, hence by 
the induction hypothesis we can find subscripts i2,.'.., ir, k.,,..., kr for which 

(4') 

and 

(5') 

A' 

aUk„ ~~ci;,kl . . . a,-.,kr — 
fli.t, " r flf.t, 

a i ,k r . . . Cl;,.kr Oirln 

± 0 , 

A' A' 

tf «•,/.-, —auk, ••• o w 

i fri 

O/.fc. 

a-.i-i 

a;,kr 

bi, 
fli.A'i 

6/ 

6-, 
iit.A-, ^ ' ^ CI¡.,1c, 

~— Oirkt 
0 

for / ' = 1 , 2 , ...,m. 
But the determinants A' and D] in (4') and (5') are equal to al\ times 

the determinants A and Dj in (4) and (5), respectively, and so the necessity 
of our conditions has been proved. 

b) Assuming again the theorem proved for r—1, suppose the condi-
tions (4) and (5) are fulfilled for a system (2) of rank r (r > 0). If e. g. a£lSi '4=0r 

then the conditions (4'), (5') also hold, and so the system (2') of rank r— 1 
admits a solution of the form (6). Let us choose 

QLX 
"bl" bi-,-1 

Oi.fc, a.-,*, a i l k l ailkl 

then for £ = (£ , , . . . , , . . . , £„) we have Z.„(£) = 0, and the other 
linear forms will assume the same value in the point as the corresponding 
linear form in the point (6). This completes the proof of the sufficiency of 
the stated condition. . 

5 . The practical use of the criteria of theorems I and II can be facili-
tated by the following two remarks: 
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Remark I. If the conditions of Theorem I, resp. Theorem II, are satis-
fied for some r' < r, then the system (1) resp. the system (2) is solvable. 

Thus, e. g., if the non-vanishing coefficients of an unknown occurring 
in system (1) are all of the same sign, respectively if none of the constants 
bi in (2) is negative, then the corresponding system is solvable. 

To prove our remark, observe that if the conditions are satisfied with 
the subscripts i2,..., i,'-i, kl} k2, ..., kr-, resp. / , , / , , . . . , / > , k1} k.2,..., kr', 
then the subsystems 

Oixkl h aik,.,Xkl, (/' = 1, 2 , . . . , 772) 
and 

aik,xkl -j 1- aikr,xkr, + bi ^ 0 ( / = 1,2, ...,m) 

are solvable owing to Theorems I and II, respectively, and their solutions, 
completed by values 0 for the further unknowns, furnish solutions for the 
corresponding original system. 

Even more useful is5) 

R e m a r k II. If the column vectors with subscripts ku k2,..., kr in the 
coefficient-matrix of rank r are linearly independent, then in looking for 
deterlninants satisfying the conditions of our theorems, we may restrict our-
selves to these columns with subscripts kl} k,,..., kr. 

Let us denote by a1 ; a 2 , . . .a,,, b the column vectors; then the systems 
(1) and (2) may be written in the form 

a ^ x + a o X H h iXn > 0 , 
resp. 

a, + a2x2 H h a j » + b g 0, 

where u ^ O means that u is a vector without negative components in the 
given coordinate system, and v > 0 means that v=sO and v has at least one 
positive component. 

By hypothesis, we have some vector equations 
ak = cki a,M + ck2 ak, -\ \-ckrakr (k = 1, 2,..., n). 

Thus if § is a solution of system (1) or (2), then (riu i}2,.. :,i] r) with 
)]Q — C\Qt\ -j-coptoH f-c,,^» ( o = 1 , 2 , . . r ) 

is a solution of the system 
a;.-, y, + akay2 -1 + ak,.yr > 0, 

or 
+ akj>.2 H akl.yr + b ^ 0, 

respectively. Consequently, the conditions of the theorems must be satisfied 
also for the columns in question, q. e. d. 

3) Cf. theorem IV of my paper quoted under »), pp. 22—23, and the second note 
to theorem 3 of the paper quoted under J), pp. 27—28. 

a 7 
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Second proof. 

6. Our Theorem II can be derived from the obvious inhomogeneous ana-
logue of H . MINKOWSKI'S0) classical result concerning homogeneous systems. 
Although we restrict ourselves to Theorem II, we prove MINKOWSKI'S theorem 
for homogeneous systems too, because BLUMENTHAL'S result will be deduced 
from this theorem. For the sake of completeness, we shall reproduce his 
theorem together with the original proof. We shall employ the notations as 
used above. 

T h e o r e m III (MINKOWSKI). System (1) is solvable if and only if it 
admits a solution £ for which an independent system of r— 1 linear forms 

exists, which vanishes at the point £. 

(This implies /,(£)> 0 for every linear form U independent from the 
froms /,-,, / ,„,. . . , for £ has to be a solution of (1) in the sense given 
in 1.) 

T h e o r e m IV. System (2) is solvable if and only if it admits absolu-
tion for which an independent system of linear forms 

/,,(*), /,2(x), . . . , /„.(x) 
exists so that the corresponding inhomogeneous forms vanish: 

I ( 1 (£) = L,2 (£) = •• • = L,v(H) = 0 . 

Such a solution £ will be called an extremal solution ("ausserste 
Losung" in the terminology of MINKOWSKI). 

In the case of a homogeneous system, the geometrical meaning of the 
theorem is as follows. Each inequality determines in /z-dimensional Euclidean 
space a closed half-space bounded by a hyperplane [n — 1-dimensional linear 
manifold] through the origin. The solutions are the points common to all 
the half-spaces, i. e. lie in a pyramid with its. vertex in the origin (for /• = «), 
or in a "trough" with an "n—r-dimensional edge", through the origin. The 
extremal solutions are the points of the n — 1-dimensional boundary faces 
of the pyramid or trough. In the case of an inhomogeneous system, the 
situation is quite analogous. 

In order to find an extremal solution, we approach, starting from an 
arbitrary solution, to the boundary hyperplane of a half-space, until we reach 
some boundary hyperplane. Then, remaining in this hyperplane, we approach 
towards another, and so on, and thus we reach boundary faces of lower and 
lower dimensions. This argument shows the existence of an extremal solu-
tion. The following algebraic proof rests on the samé idea. 

«') H. MINKOWSKI, Geometrie der Zahlen, 2. Aufl. (Leipzig, 1910), pp. 39—45. 
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7 . The sufficiency of the condition in Theorems III and IV is obvious. 
Let us assume, conversely, that the system (1) admits a solution t . We 

•choose a maximal linearly independent system 
<(7) /„(*), / ,y(x),. . . , /,,(*) 
in the set of all linear forms vanishing in the point (If all the forms are 
positive in the point S, then the set.(7) is empty, s = 0.) 

Since for s = r all the linear forms would vanish in the point i, hence 
s cannot exceed the value r—1. For s = r—1 the solution £ is already an 
•extremal. solution, and the set (7) constitutes a desired set. 

In case.s,<,r—1, we choose a form As+1(x) with /,s+1(S)> 0 ; +1(x) is 
•clearly independent of the forms (7). Considering that s + 1 < /', there exists 
a further form //j+2(x) independent of /;,(x), /,•„(*),..., // +1(x) and, conse-
quently, different from 0 in the point Proceeding in this way, we arrive at 
a set of forms 

<7') ^ lig+](x),IigJx),...,Iir(x) 
which are all different from 0 in the point S. (7) and (7') form a maximal 
independent system among the forms /¡(x) (/ = 1, 2 , . . . , m). This implies that 
•every U(X) may be expressed in the form 

^ ( x ) ^ ^ / , - ( X ) + C,2/,2(X)-1 hc,,/.,(x) (/ = 1 , 2 , . . . , m) 

with appropriate constants ct,. . 

8 . Let us consider the linear forms in 

^, (0 = c1,s-Hi + c,,s+2/,s+o©H he,-,,-/.-,© ( / = 1, 2 , . . . ,m) . 

For t = t(i = i , g + ^ ) all these forms are positive, except those vanishing iden-
tically. Since we have = at least one of these forms will diminish 
if we reduce the value of t, starting from the value t0. So proceeding until 
one of them vanishes, we arrive at a value t = tu for which one of the 
linear, forms which were non-vanishing for t0, will vanish; let one of these 
be the form Aio(t). 

In view of the linear independence of the set (7), (7'), the system 

•k(x) = = ••• = li.(x) = 0, /,-<+1(x) = tu /,• +2(x) = / , S + 2 ( § ) , . . . , /,V(X) = / „ . © 

is solvable. A solution •>] of it is at the same time a solution of the system 
of inequalities (1), since the inequalities /,(??) == A^t,) s 0 ( / ' = 1, 2 , . . , m) 
and /ip(n) = /,r(S) > 0 hold. Since /,0(|) + 0, 

/!o(x), lit(x), k(x), ..., lls(x) 

are linearly independent and all vanish in the' point i], thus the maximum 
number of linearly independent forms among those vanishing in point v; is 
greater than the number of those vanishing in the point H. Repeating this pro-
cess a sufficient number of times, we obtain an extremal solution. 
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For system (2) we may proceed just in the same way; here it is allow-
ed that all the forms L,{x) may vanish, so that a solution required by 
Theorem IV can also be found. 

9 . Theorem II may be derived immediately from Theorem IV. Let £ 
be an extremal solution of the system (2), 

Lit(x), U(x), . . . , Lir(x) 

the corresponding linear forms, and J a maximal non-vanishing determinant 
of their coefficient-matrix. 

Let us put Li(S)=Ti, so that 

7,, = Ti, = ••'•== Tir — 0 and T j ^ O for ; ' = 1 , 2 , . . . , m. 

Since the system of equations 

fliiXi + a(-2Xo+ b ainxH=Ti—bi 
is solvable, thus, bordering the determinant zl (and using the notation adopted 
in (5)) we obtain 

fl/.i-, a,\i-3 ••• fli,).> " — b h 

dun, dun. ••• cii,kr — &,., 

= T j / l — D j = 0 , 
fliVfc, airi:, ••• a,rkr- —b„. 

«//.•, "ji; ••• ajkr Tj—bj 

Pi T • > 0 
Thus the necessity of the conditions has been proved. 

If, conversely, the conditions (4) and (5) hold, then the system of 
equations 

aik,xk, + aik.2xk, H b aik,.xkr = ~ — bi . (/ = 1 , 2 , . . . , m) 

is solvable. Denoting by . . . ,£„) a solution, 

£ = ( 0 , . . . , 0, , 0 , . . . , 0, £,„ 0 , . . . , 0, 0 , . . . . , 0) 

is a solution of system (2) too. In fact, we have 

= + = 0 , 

establishing the sufficiency of our conditions. 

. or 
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Blumenthal ' s criterion. 

1 0 . In order to prove BLUMENTHAL'S theorem, we need a simple con-
sequence of MINKOWSKI'S Theorem III which has some interest in itself as well. 

T h e o r e m V. System (1) is solvable, if and only if a maximal inde-
pendent system of linear forms, 

/,,(*), k(x), ..., lir(x) 
exists such that in the relations 
(8) l, (x) = Ca /,-,(*) + CPMX) + • • • +-cirlir(x) ( ' = 1 , 2 , . . . , m) 

the coefficients cir of l,,.(x) are positive or 0. 

This condition is necessary. To see this we have only to choose an 
extremal solution 2, a corresponding independent system /,,(x), h,(x),..., /,r_i(x), 
and a further form /,-,.(x) independent of them. Thus, owing to 

/ „ (? ) = / , ( ? ) = • • • = / „ . ^ © = 0 , /,,.(£) > 0 , 

we have 
0 ^ / , ( £ ) = c,7, , .(c), 

and therefore, 

If, on the other hand, for i=\,2,...,m then a solution £ of 
the system of equations, < 

k(x) = lh (x) = •-.. = /,,._! (x) = 0, /,, ( x ) = 1 

will also be a solution of the system of inequalities (1), in view of the 
inequalities 

/,-,(£) = 1 ( > 0 ) , / , ($ ) = c , / , . ( £ ) = i s 0 ( / = 1 , 2 , . . . , / « ) . 

11 . In order to obtain a criterion in terms of the coefficients, we have 
to do nothing else but to calculate the coefficients cir for each given i 
( I g i g m ) from the equation system arising from (8): 

(9) a,-,sea + aukCc2 -1 h o.vi-Cfr = aik ' (k= 1 , 2 , . . . , n). 

By a direct solution of the system (9), we arrive at theorem I again. When, 
however, we transform the system by using a procedure applied to integral 
inequalities by A . HAAR7) , then we get BLUMENTHAL'S criterion concerning 
the matrix 

(«,;/)»,„, with ccij = a iiaji + ai2aj2-\ 1-fl ,- , , . 

7) A. HAAR, Über lineare Ungleichungen, these Ado, 2 (1923—24), 1—14. 
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T h e o r e m VI. System (1) is solvable if and only if for appropriate 
subscripts iui,,..., /',. 

K,V2 • • a.VR 

Ö = 
(CVi . • CCVr > 0 , 

««Vi, iiiru . • ('¿rir 

and substituting the last row by the corresponding elements of any row, the 
resulting determinants are non-negative: 

for / = 1 , 2 , . . . , m. 

a v , «¡A • 

(Ci,!, uu.. - • CCi,i 

• • CCi r• 
('•a, -.. ecu, 

Indeed let us multiply the kih equation of (9) by a!r)k for a given o — 
= 1,2, . . . , r , and add the equations thus obtained; then we find that the 
factors Cn, C12,..., Cir satisfy the equations 

( 1 0 ) + ( « > - - - - • • • 1 , 2 , . . . , / - ) . 

Their matrix is identical with that of the quadratic form 
l* r r r n u r r \2 

p = l t r= l v g = l <r= 1 i ; = l - J, = l Vp=l ' J 

which is seen to be either positive definite or semidefinite. However, this 
quadratic form must be definite, for in the opposite case the linear forms 
/,-,(*), / , 2(x) , . . . , lir(x) would be dependent. Thus we get 6 > 0, and therefore 
the system (10) admits a unique solution which must coincide with the 
factors in question, in particular, 

Cir = 
ö • 

in view of ö > 0, and on account of Theorem V this completes the proof of 
Theorem VI. 

I am grateful to P . T U R Ä N who kindly drew my attention to the prob-
lem of linear inequalities. 
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