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Introduction 

 

Virtual Machines have become a standard unit of resource allocation for 

cloud environment, and virtualization has been used for implementing cloud 

infrastructures because of its natural ability to decouple the physical hardware 

from logical servers. The increasing density of computational power allows 

packing a significant number of virtual machines on a single node, leading to an 

exponential growth of the number of logical servers to be manages by the cloud 

infrastructure. To investigate smart policies to administer such a large number of 

virtual machines we have developed Octopus, a lightweight system for scheduling 

virtual machines on a cluster of hypervisors. 

 

Octopus has been implemented using Microsoft Hyper-V in order to exploit 

the WMI interface to control the hypervisor programmatically with the F# 

programming language. The original goals was: 

1. to provide simple users a virtual machine manager to manage only 

their virtual machine, with total independence from the system 

administrator that doesn’t need to care about hosted virtual 

machines, and in total security because each user can see only its 

virtual machines and not the others’ ones. Moreover, users can 

create their virtual machines from a set of pre-configured templates, 

in order to have a virtual machine ready to be used in just few 

minutes; 

2. to design a system capable of moving virtual machines across 

different computing nodes in order to optimize the workload and 

pack computations to save energy by turning off nodes  
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More recently, our investigation has focused on the possibility of using 

expert systems to express complex policies and to govern this ever-increasing set 

of virtual machines. For this reason, we have embedded the CLIPS expert system 

inside Octopus in order to rely on a full rule-based expert system engine to define 

the resource management policies: the Octopus code asserts facts about VMs in 

the CLIPS systems and rules access system primitives exposed as functions invokes 

by triggered rules. The well-known RETE algorithm ensures a fast execution of 

policy while ensuring the ability to define policies that may even contain 

conflicting rules. 

 

Octopus has been presented to the Microsoft workshop “Cloud Futures 

2010” in Redmond, WA, USA, in the International Supercomputing Software (IIS) 

2010 in Hamburg, Germany, and more recently to the GARR workshop “Calcolo e 

storage distribuito” in 2012 in Rome, Italy. In all the presentations attendees have 

shown interest in the technology and possibly its deployment. 
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1 State of the art 

1.1 Virtual Machine 

 

A virtual machine [1], generally understood as hardware virtualization [2], is 

a software implementation of a machine that can execute programs like an 

emulated physical machine. 

The concept of hardware virtualization was born in the 1960s, with the 

purpose to partition large mainframes for better utilization. The first 

implementation of a virtual machine was designed and realized by IBM with its 

experimental computer M44/44X. Based on an IBM 7044 the M44/44X simulates 

multiple 7044 using both hardware and software capabilities. This machine indeed 

implements a machine virtualization very similar to the one we know today. 

With its evolution, the concept of virtual machine has been divided into two 

main categories: the complete system platform virtualization, capable of running 

an operating system (and all the software compiled to run on it), and the process 

virtualization [3] (or application virtualization), designed to emulate only single 

applications. 

Process virtual machines are used to execute programs compiled for a 

different architecture, interpreting or re-compiling the compiled instructions in a 

version compatible with the current architecture. The most common use of a 

process virtualization is implemented by the Java Virtual Machine [4] [5] and the 

.NET Common Language Runtime [6] [7], which executes programs compiled for 

an intermediate language that is different to the native assembly language one. 

This thesis regards the implementation of hardware virtual machines 

manager, so process virtual machines are not further discussed. 
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The complete system platform virtualization, or hardware virtualization, 

implements system virtual machine that emulates an entire hardware 

architecture. Sometimes a system virtual machine is used with the purpose of 

providing a platform to run programs where the real hardware is not available, for 

example to execute software available only for obsolete hardware; other times it 

is used with the purpose of providing multiple instances of the physical 

architecture for a better computing resource allocation or for running different 

operating system simultaneously. 

The hardware virtualization is managed by a software called “hypervisor”; 

the hardware can be entirely emulated, so the hypervisor runs as a process of a 

host operating system, or the emulation can be hardware assisted (in modern 

CPU, this technology is called Intel VT-x [8] or AMD-V [9]) to provide virtual 

machines direct access to the hardware and better performance. In this last case, 

virtual machines operating system run side-by-side with the host operating 

system, which generally works also as hypervisor. 

 

 

1.2 System Virtual Machine Managers 

 

Currently there are many hypervisors which support hardware 

virtualization, for both hardware-assisted and software-based virtualization. The 

most common are Microsoft Virtual PC, Microsoft Hyper-V, Parallels for Mac, 

Oracle VM VirtualBox, VMWare (Server, ESX, Workstation…) and Xen.  

All of them was born with different purposed, different host/guests supports 

and different features, but evolving they now offer similar properties. Virtual PC 

(now replaced by Hyper-V) and VirtualBox are dedicated for desktop 

environments, Xen is only for server environments, and Parallels and VMWare 
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offers both desktop and server products. Hyper-V was only for server 

environments, but with Windows 8 it replaced the Virtual PC product. 

Aside from the environment where they are meant to run, all of them 

supports both 32 and 64 bit virtual machines, with hardware-assisted support, and 

with a graphical interface which allows users to connect to the virtual machines 

and using them, like they are using a real hardware. 

The common limitation of all this software, from a point of view of this 

thesis, is that they have an interface that manages all the virtual machines hosted 

on that hypervisors, and none of them are meant to organize them and offer 

different view per-user. They are meant to be used only by administrators. 

 

The idea for this thesis is exactly to create a virtual machine manager that 

allows simple users (and not administrators) to create, manage and use their 

virtual machine independently. Users will be able to see only their virtual 

machines, and cannot interfere with the other’s one. The server administrator can 

manage them all, but he doesn’t need to: he is required only for maintain the 

server host and he doesn’t need to care about user’s virtual machines. 

Also the virtual machine interface, meant to be used by simple users which 

didn’t care too much about low levels properties, in particular its allocation, could 

use more than one host server to allocate virtual machines. Indeed, developing 

the idea for this virtual machine manager, we decided to make it a scheduler of 

virtual machines in a cluster of hypervisors, which is capable of deciding where a 

virtual machine should be allocated. Users will be able to use virtual machines 

through the virtual machine manager interface, which will provide them the 

network information for connecting to the requested virtual machine. 

 

During the implementation of this thesis, software with a similar idea born 

on the market. These are the Microsoft System Center Virtual Machine Manager 
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(VMM) and the IBM Platform Cluster Manager (former Platform Cluster Manager 

from Platform Computing). 

Anyway, both of them are thought to create a central point administration 

for system administrators in order to manage all the virtual machines from 

different hypervisors in a single interface, and again none of them are meant to 

be used by simple users. 

 

 



7 

2 Octopus: a virtual machine scheduler  

2.1 The project 

 

The purpose of this thesis was designing and implementing a Virtual 

Machine Manager that manages (schedules) virtual machines from different 

hypervisors, creating a single environment where the virtual machines can be 

automatically migrated in case of needs from one hypervisor to another. 

Also, we imagined to design the Virtual Machine Manager to be used by 

users, and not only to administrators. Users will see only their virtual machines, 

and each user will be able to fully administrate them: deleting a vm, change its 

settings, suspending/stopping a vm, etc; according to possible quotas. 

Users will also have the ability to create virtual machine using preconfigured 

templates. In this way, they will be able to instantiate a fully working operating 

system in few minutes, instead of creating an empty virtual machine and waiting 

for the time needed the Operating System to be installed. A preconfigured VM 

could be useful to create basic virtual machine fast and easily (with just the OS and 

drivers), test environments or any other kind of machine you need to use as soon 

as you can. 

With this precisely feature, where users can easily create a virtual machine 

usable in a very short time, and can fully administrate it suspending or deleting it 

whenever he wants, we wanted to create the concept of “Disposable Virtual 

Machine”: a virtual machine that you can create when you need it, even for a short 

period of time, and then throw it away.  

We decided to name this Virtual Machine manager “Octopus”. 
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In this thesis will be often referring to Octopus sometimes as a Virtual 

Machine Manager. 

 

 

The hypervisor servers are several third-party virtual machine managers, 

independently, with their own private storage space and a connection to a large 

shared storage space (i.e., a NAS or SAN). 

The Policy manager is a script running inside the Octopus Scheduler. It 

operates in order to react as events, like “a user want to create a virtual machine” 

or “a hypervisor node need to be shut down”. It makes actions, like turning on or 

off virtual machines, hypervisors, migrating virtual machines between hypervisors, 

etc. 

Virtual Machine can be migrated between hypervisors easily, thanks to live 

migration features native of the hypervisor itself [10] [11] [12] [13]. If live 

migration features are not supported, VM can still be migrated in a slower way 
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moving all the data from one hypervisor to another; in this scenario, the virtual 

machine disks must be allocated in the shared storage, in order minimize the 

transferred data and take as less time as possible. 

 

 

Summarizing, having a Virtual Machine manager that manages several 

hypervisors server and allow users to administrate their virtual machines have 

different benefits: 

- it results in a better resource allocation of the entire cluster 

- it allows a better power management of the cluster, turning off the 

unused nodes 

- it lighten the cluster administrator workload, avoiding him to manage 

the users’ virtual machines 

- it’s adaptable and scalable, allowing the cluster administrator to fit the 

scheduler policy through a script language 

 

 

2.2 Power consumption 

 

According to a report dated 2007 of the U.S. Environmental Protection 

Agency (EPA) [14], in 2006 the energy used by the USA’s servers and data centers 

is estimated about 61 billion kilowatt-hours (kWh), which is about 1.5% of the total 

of the nation’s electricity consumption, for a total electricity cost of about $4.5 

billion. 

In the same document, it states that this energy consumption is more than 

doubled between 2000 and 2006, and estimates that in 2011 will double again for 

an electricity consumption of more than 100 billion kWh. 
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According to recent studies, in particular to a report of the 2011 [15], the 

electricity used in USA data centers in 2010 was significantly lower than predicted 

by the EPA’s 2007 report, and between 2005 and 2010 it increased by only about 

36% instead of doubling. 

These numbers explain the rising attention that energy efficiency is getting 

nowadays. 

 

Although in 1992 the U.S. EPA launched the Energy Star [16] in order to incite 

hardware manufacturer to develop devices that consumes less energy, using 

techniques of high energy efficiency and power savings states (like sleep states), 

the computer hardware consumption is still significant. 

  

Virtualization was always been a key for energy savings and Green 

Computing [17] [18] [19], and this is also a key argument for this thesis. 

This thesis is going to illustrate how to better use a server cluster improving 

its efficiency keeping powered on only the nodes that are really needed, and 

keeping powered off the other ones.  

Node powers will be managed by Octopus policies, implemented via script. 

We are going to show an example of power management keeping powered on 

only the nodes where there are virtual machines allocated into, but administrator 

can personalize or rewrite the entire script to adapt the Virtual Machine manager 

“Octopus” to any scenario. 
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2.3 Security considerations 

 

Giving a user the ability to create their own virtual machine by themselves 

and using them without any administrative interaction could became a security 

issue. 

It is necessary that the Virtual Machine Templates that are configured to be 

used in the system will be “secure”. The definition of secure depends on the 

administration of course… It could be a closed/unconnected cluster, so anything 

could be secure, or it could be a cluster in a big corporate connected with the rest 

of the network, so source to attack to the data from the internal. 

The Octopus Administrator could configure the Virtual Machine Templates 

to be already joined on the Active Directory domain with can enforce security 

policies. It could also avoid that users will use the Virtual Machines with 

administrator privileges, providing them only an accessible “simple user” account. 

Any other considerations about the security risks about running a computer 

inside a network, especially when you have administrator account, are already 

widely discussed in literature [20] [21] [22]. 

 

About the Octopus design, the potential risks are: 

- abuse of the system, allocating too much resources and taking down 

nodes for overloading 

- unauthorized use of the Octopus functions (i.e., a user can operate on 

other users’ virtual machines) 

- stealing other user’s credentials hacking the database or sniffing the 

communications 
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The first point is handled by the cluster administrator. It’s his duty to adjust 

the policy script in order to prevent users to allocate too much resources, and 

especially to avoid a node overloading. 

The second one is implemented using an authentication system, that 

prevents users to call any Octopus function without a valid authentication token. 

In the Octopus Scheduler interface, every function takes as first parameter an 

authentication token, and if it’s not valid or the associated user doesn’t have the 

right to perform that operation, the function fails. 

About the third point, we know that handling password represent a very 

delicate point in a software, and implementation of password management 

requires refinement. To prevent users to hack the database and read/use the 

stored credentials, for instance, it should be enough storing an HASH of the 

password instead the password in clear. In this way, the password can be matched 

with the HASH, but the HASH cannot be used to authenticate someone. Also 

transmission via TCP/IP must be encrypted in a Socket Secure Layer (SSL) to 

prevent users from sniffing data (intercepting the traffic) or to execute man-in-

the-middle attacks. 

We decided to not focus too much on this third point, to focus on the other 

innovative aspects, and also to facilitate debugging during the software 

development. Anyway, this kind of improvement doesn’t impact at all in the 

Octopus architecture design and could be performed easily as a future 

development. 

 

 

 

 



13 

2.4 Technologies used 

 

The main decision of we had to take about something was with no doubts 

about the hypervisor to use. Theoretically it would be even possible to use 

different kind of hypervisors simultaneously, but this is not on this scenario at this 

time. 

 

We chose to use Microsoft Hyper-V because its ease to use via code, through 

its Windows Management Instrumentation (WMI) interface. Thanks to the Hyper-

V WMI, in fact, it’s possible to execute with a function any possible Hyper-V 

feature, and the WMI infrastructure allows applications to execute its functions in 

both local and remote computers. 

The Hyper-V live migration feature became available only with the Hyper-V 

Server 2008 R2, released in 2009. We starting developing Octopus in 2008, so we 

didn’t integrate the live migration feature. For this reason, migration in 

implemented in the “slow” way and the shared storage is an essential 

requirement. 

Also, because of the Hyper-V live migration requires the Failover Clustering 

feature, which is available only on the Enterprise or Datacenter edition of 

Windows Server, we decided to not add this feature when was released. We’d like 

to see Octopus running on the cheapest configuration possible, and for the records 

it exists a Windows Server edition called “Microsoft Hyper-V Server 2008 R2” 

which is totally free. 

 

Because of this, we decided to use the .NET Framework for programming 

the software. The .NET Framework was not only for manufacturing coherence 

(same Microsoft products), it have a native interface with WMI [23] that, added to 
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the advantages of a high level programming language makes it the best choice for 

this project. 

More specifically, we chose to write all the code in F#, a pretty young 

programming language developed by Microsoft and recently became part of the 

.NET language. It’s a multi-paradigm programming language, mainly functional, 

inspired by ML. We decided to use this because, aside that every language in the 

.NET Framework are virtually equivalent, the implementation of this software 

using a functional paradigm would have been more interesting from a software 

engineering point of view. 

 

And for the database server, we chose Microsoft SQL Server. This is not really 

supported by any strong argumentation since any other database server would be 

the same. This is was just because the other choices was software from Microsoft. 

 

2.4.1 Expert systems and CLIPS 

 

As already mentioned, Octopus users are administrators of their virtual 

machines; they can create, suspend, change and delete them anytime. However, 

to prevent users to abuse of the system (creating too much virtual machines) there 

are policies that it needs to be implemented. 

Speaking of Virtual Machine, the primary resource limit is the main memory  

(RAM) allocation: usually hypervisor hosts runs out their amount of main memory 

before finishing the disk space. 

So, an allocation policy could be one that limits users to allocate more than 

a fixed amount of main memory, regarding of the number of virtual machine he 

wants to create. But this depends of the kind of virtual machine he wants to create, 

too. In an environment of “Disposable Virtual Machine” we think about virtual 
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machine that are not CPU intensive; maybe allocated for their special 

configuration to test a particular software or to create a small console for office 

purpose. But in a scientific environment where virtual machines are used for 

intensive calculations, CPU quotas are necessary too. 

Since we cannot predict what kind of policy the Octopus administrator will 

need in its scenario, we first decided to create a script language to express simple 

policy. The language would be composed by events, actions and objects (users, 

hosts, virtual machines) with their properties. 

With this language for instance, we would have an event for a new virtual 

machine creation where we could check the virtual machines already allocated by 

the user who is requesting the new creation, calculate if with the new virtual 

machine the quota limits would be violated, then deny or allow the request. 

 

But except for quotas, there are other thing we decide to automatize. In an 

optical of power consumption, we would like to have an environment which is 

capable of use only the resource it needs and turn off the unused ones. 

So, sometimes, Octopus should monitor the resource utilization of its nodes, 

try to defragment the virtual machine allocation, migrating them from an host to 

another, and shut down the unused hosts. 

Before implementing the script language described above, we realized that 

in computer science it has been already invented something perfect to handle this 

problem: an expert system. 

An expert system is a computer system that emulates the decision-making 

ability of a human expert. They are designed to solve complex problems by 

reasoning about knowledge, like an expert, and not by following the procedure of 

a developer as is the case in conventional programming. An expert system has a 

unique structure, different from traditional programs. It is divided into two parts, 

one fixed, independent of the expert system: the inference engine, and one 
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variable: the knowledge base. To run an expert system, the engine reasons about 

the knowledge base like a human. 

 

We chose the expert system CLIPS, an implementation started in 1985 from 

the NASA and became a public domain software later. CLIPS is probably the most 

widely used expert system tools because it is fast, efficient and free. CLIPS 

incorporates a complete object-oriented language for writing expert systems and 

its user interface closely resembles that of the programming language LISP. 

Like other expert system languages, CLIPS deals with facts and rules. Facts 

represent the system knowledge, which can be asserted changing the state of the 

system. For example, a fact can be the number of hypervisors available, or a virtual 

machine allocated. 

The CLIPS command to assert facts is (assert) and its syntax is: 

(assert <element>+) 

For instance, to describe the hardware resources for the node HYPERVIS1, 

we could assert: 

(assert (node-name HYPERVIS1)) 

(assert (node-isreachable HYPERVIS1 true)) 

(assert (node-isavailable HYPERVIS1 true)) 

(assert (node-ipaddress HYPERVIS1 192.168.1.11)) 

(assert (node-memorysize HYPERVIS1 16384)) 

(assert (node-memoryfree HYPERVIS1 10654)) 

(assert (node-cpucount HYPERVIS1 4)) 

(assert (node-cpuload HYPERVIS1 21)) 

(assert (node-diskfree HYPERVIS1 154312)) 

which create the fact that it exists a node named HYPERVIS1, which is reachable 

(turned on) and available, has 16Gb of total memory and about 10Gb free, 4 CPU 

with a total load of 21%, and about 150Gb of free disk. 
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And to describe a virtual machine, we could assert: 

(assert (vm-name ed7ba470-8e54-465e-825c-99712043e01c 

VMMARCO1)) 

(assert (vm-owner ed7ba470-8e54-465e-825c-99712043e01c 

mura)) 

(assert (vm-hostname ed7ba470-8e54-465e-825c-99712043e01c 

VMMARCO1)) 

(assert (vm-server ed7ba470-8e54-465e-825c-99712043e01c 

HYPERVIS1)) 

(assert (vm-cpucount ed7ba470-8e54-465e-825c-99712043e01c 

2)) 

(assert (vm-memorysize ed7ba470-8e54-465e-825c-

99712043e01c 4096)) 

(assert (vm-ipaddress ed7ba470-8e54-465e-825c-99712043e01c 

192.168.1.121)) 

(assert (vm-cpuload ed7ba470-8e54-465e-825c-99712043e01c 

6)) 

(assert (vm-state ed7ba470-8e54-465e-825c-99712043e01c 1)) 

(assert (vm-disksize ed7ba470-8e54-465e-825c-99712043e01c 

81920)) 

which create the fact that there is a virtual machine (with a GUID = “ed7ba470-8e54-

465e-825c-99712043e01c”) named VMMARCO1, with the hostname VMMARCO1, 

owned by the user “mura”, running on the host HYPERVIS1, it has allocated 4Gb 

of main memory and 80Gb of disk space, and it has 2 CPU with a total load of 6%. 

 

As the Facts are the knowledge of the system, the Rules represents the 

actions the system must take depending on its knowledge.  

The CLIPS command to define rules is (defrule) and its syntax is: 
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(defrule <rule-name> [<comment>] 

[<declaration>]               ; Rule Properties 

<conditional-element>* 

=> 

<action>* 

) 

and the defined rule will be fired only if all the conditional elements are satisfied. 

For instance, we could have a rule which states that, if a node have less than 

1Gb of free memory, it should be set as unavailable. A possible rule for this 

scenario could be: 

(defrule detachnode 

(node-name ?name) 

(node-isreachable ?name true) 

?avail <- (node-isavailable ?name true) 

(node-memoryfree ?name ?mem) 

(test (< ?mem 1024)) 

=> 

(retract ?avail) 

(assert (node-isavailable ?name false)) 

) 

Note the tokens that begin with a question mark: these are variables, 

declared locally in the rule to be referred from a conditional point to another, or 

to an action.  

In this case, we use “?name” to iterate all conditions to the same node name, 

“?mem” to store its free memory and then test it, “?avail” to store the fact “node-

isavailable” itself in order to be retracted later. 

 

Rules are “activated” (ready to run, or to be fired) when all the facts in their 

declaration part is asserted, and at least one of those fact must be asserted after 

the last execution of the rule itself. This is both for an efficient implementation of 
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the CLIPS’s Rete algorithm, and to avoid that a rule will be fired forever without 

any fact change in the knowledge. 

 

Let’s see an example. Let our CLIPS environment be populated with the set 

of Facts for the node HYPERVIS1 we have previously seen. 

Using the CLIPS command (agenda) we can see, without firing them, which 

Rules are activated and will run at the next (run) command. The command 

(agenda) doesn’t return any rule because the declaration “(test (< ?mem 1024))” 

with ?mem taken from “(node-memoryfree ?name ?mem)” is not satisfied. 

 

Now, assume we retract the fact “node-memoryfree HYPERVIS1 10654” and 

we assert the fact “node-memoryfree HYPERVIS1 900”. Now the output of 

(agenda) is: 

CLIPS> (agenda) 

0  detachnode: f-1,f-2,f-3,f-10 

For a total of 1 activation. 

CLIPS> 

It is telling us that the rule “detachnode” is activated, satisfied by the facts 

1, 2, 3 and 10. 

The execution of the command (run) will fire the detachnode, marking the 

facts 1, 2, 3, and 10 “already checked”. In the case of the detachnode, a successive 

(run) wouldn’t fire the rule again anyway because in its action the commands 

(retract ?avail) 

(assert (node-isavailable ?name false)) 

would have made impossible its activation removing a fact required in its 

declaration “node-isavailable ?name true”. But even if without this, successive 
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executions of (run) wouldn’t make the rule “detachnode” firing twice because, the 

second time, there wasn’t any of the fact in its declaration list asserted new. 

 

In CLIPS is also possible to define functions with the following syntax: 

(deffunction <name> [<comment>] 

    (<regular-parameter>* [<wildcard-parameter>]) 

    <action>* 

) 

that allows to write scripts easily, defining functions that performs generic 

operations or controls logic. For instance, we could define the following functions: 

(deffunction getAllVmForOwner (?ownerName) 

  (bind ?toReturn (create$)) 

  (bind ?factName vm-owner) 

  (bind ?factz (find-all-facts ((?x ?factName)) (eq 

(nth$ 2 ?x:implied) ?ownerName))) 

  (loop-for-count (?i 1 (length$ ?factz)) 

    (bind ?g (fact-slot-value (nth$ ?i ?factz) 

implied)) 

 (bind ?toReturn (append$ ?toReturn (nth$ 1 

?g))) 

  ) 

  (return ?toReturn) 

) 

This function return a list (in CLIPS called multified values) of all Virtual 

Machines GUID for the ones owned by the specified parameter. In particular: 

• remember the syntax of vm-owner:     

(vm-owner <vmId> <owner>) 

• create an empty multifield value with (create$) 

• retrieve all the facts named ?factName (= vm-owner) which satisfy 

the condition “the second value of the fact must be equal to 

?ownerName” 
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• iterate the retrieved facts and, for each one, append to the multifield 

value its first value 

• return the created multifield value 

  

Functions like (bind), (create$), (find-all-facts), (eq), (nth$), (loop-for-count), 

(fact-slot-value), (return) are just some of the functions pre-defined in the CLIPS 

implementation. A full list is available on its specification. 

The function (append$) was not available, and it was defined in this way: 

(deffunction append$ (?m ?e) 

  (insert$ ?m (+ (length$ ?m) 1) ?e) 

) 

The functions (create$), (nth$), (length$), (insert$) and the new defined 

(append$) are used to create and manipulate “Multifield values”. The Multifield is 

a CLIPS type that contains more than a value of different types, and it can be used 

as a list. 

Some examples: 

CLIPS> (create$) 

() 

CLIPS> (append$ (append$ (append$ (create$) uno) due) 

tre)) 

(uno due tre) 

CLIPS> (length$ (append$ (append$ (append$ (create$) 

uno) due) tre))) 

3 

CLIPS> (nth$ 2 (append$ (append$ (append$ (create$) 

uno) due) tre))) 

due 
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2.4.2 Microsoft Hyper-V 

 

Microsoft Hyper-V is a Microsoft hypervisor initially developed only for 

Server products (Windows Server) but now available also in the workstation 

version of Windows 8 (only in some editions). 

It allows creating and managing hardware-assisted virtual machines, using 

an architecture called Type-1 or Bare metal. The hypervisor runs directly on the 

hardware at the CPU ring -1 (a special ring introduced by Intel and AMD to support 

hardware virtualization), then the host operating system and all the virtual 

machines run at the CPU ring 0 that allows guests operating system to run 

unmodified in the virtualized environment. 

Isolation between virtual machine (and the host OS) is implemented in terms 

of partition. The main partition is the one where the host OS is running and it have 

direct access to the hardware. The main partition, when a virtual machine is 

executed, spawns a child partition that does not have direct access to the 

hardware resources but it views a virtual view of them, in term of virtual devices. 

Any request to the virtual devices is redirected via the VMBus to the devices in the 

main partition, which will manage the requests. 

Hard disks are virtualized using the VHD (virtual hard disk) image format, 

also natively supported on the recent editions of Windows. 

It allows to store, in a single file, an entire virtualized hard disks with 

partitions information and file allocation tables. 

Like a real hard disk, the Virtual Hard Disks are fixed in size; however, it can 

be allocated statically, using since its creation all the virtual hard disk size, or 

dynamically, which starts with the disk information only and grows up 

progressively when new data is written. 
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The Virtual Hard Disks can also be organized hierarchically: a virtual hard disk 

can inherit all the data from a parent VHD; in this case, the child VHD will contains 

only the “changed” data other than the new ones. 

Thanks for parent/child VHDs, Octopus can implement the virtual machine 

templates. 

A template is just a VHD with an operating system configured, drivers and 

applications, and a small Octopus service executed on the OS start to specialize 

the installation changing its hostname, configuring the user account and 

eventually configuring the networking. 

In order to instantiate a virtual machine using that template, Octopus will 

instantiate a child VHD inheriting from the template one; so, all the changes 

needed to specialize the virtual machine are written in the child VHD and the 

virtual machine itself store its data in its child VHD. 

This approach allows saving a lot of time instantiating a virtual machine (the 

operating system is already installed, so other application we want to have in the 

virtual machine): it requires only the time to create the virtual machine metadata 

on the hypervisor and to execute the code to specialize the operating system 

information. 

Initially, it saves also a lot of space, because the changed needed to 

specialize the virtual machine are very small compared to the full operating system 

installation. However, the more the virtual machine is used, the more space its 

child VHD will occupy. Compared to standard allocations of virtual machine, this 

approach consumes at most a surplus of the size of the template, but in a scenario 

where virtual machine are used for few operations then discarded (disposable 

virtual machine), the data allocated will be substantially reduced. 

 

Hyper-V also, since the 2008 R2 version released in 2009, supports the live 

migration of virtual machines [24]. It means that virtual machines can be migrated 
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between Hyper-V server maintaining network connections and uninterrupted 

services running in the virtual machine. 

However, the Hyper-V 2008 R2 live migration have strict requirements: 

- each node must have the Failover Clustering feature, which is a feature 

available only on the Enterprise or higher edition of Windows Server. 

- each node must have a network adapter that carries Cluster Shared 

Volumes (CSV) communication. Client for Microsoft Networks and File 

and Printer Sharing for Microsoft Networks must be enabled in the 

network adapter properties to support SMB, which is a requirement for 

Cluster Shared Volumes. 

- it is required that the storage configuration and hardware on the failover 

cluster be identical and that the cluster nodes used for live migration 

have processors by the same manufacturer 

 

2.4.3 Windows Management Instrumentation (WMI) 

 

Windows Management Instrumentation (WMI) is the infrastructure for 

management data and operations on Windows-based operating systems. It is 

possible to write WMI scripts, like in VBScript or Windows PowerShell, or 

applications to automate administrative tasks on remote computers, but WMI also 

supplies management data to other parts of the operating system and products. 

One of the product that expose its management interface through WMI is 

Microsoft Hyper-V, which is also another reason for choosing it as the supported 

virtualizator in Octopus. 

The most important features of WMI are: 
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• .NET management interface 

because the System.Management namespace relies on the existing 

COM/DCOM plumbing, the created WMI provider and its set of WMI 

classes becomes automatically available to all .NET applications 

independently of the language used. 

• Remoting capabilities over DCOM and SOAP 

WMI, other than the DCOM transport, offers SOAP transport since 

Windows Server 2003 R2 through the WS-Management initiative led by 

Microsoft, Intel, Sun Microsystems and Dell. This initiative allows to run 

any scripts remotely or to consume WMI data through a specific set of 

interfaces handling SOAP requests/responses. The advantage for the 

WMI provider developer is that when he exposes all his features 

through WMI, Windows Remote Management/WS-Management can 

in turn consume that information as well. 

• Support for queries in WQL 

WMI offers support for Windows Management Instrumentation Query 

Language (WQL), which is a SQL-like implementation of the CIM Query 

Language (CQL), a query language for the Common Information Model 

standard from the Distributed Management Task Force. It is a subset of 

the standard ANSI SQL with minor semantic changes. 

For instance, to query all system Drives on a computer that have less 

than 2Mb of free space: 

SELECT * FROM Win32_LogicalDisk WHERE FreeSpace < 

2097152 

• Eventing capabilities 

WMI offers the capability to notify a subscriber for any event it is 

interested in. WMI uses the WMI Query Language (WQL) to submit 
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WQL event queries and defines the type of events to be returned. The 

eventing mechanism, with all related callbacks, is part of the WMI 

COM/DCOM and automation interfaces. 

 

Thanks to the .NET management interface, it is possible to call directly from 

the .NET code any WMI function. For instance, a C# code equivalent to the WQL 

query mentioned before “SELECT * FROM Win32_LogicalDisk WHERE 

FreeSpace < 2097152” (with a variable for specifying the free space) is: 

IEnumerable<ManagementObject> GetLogicalDisks(ulong 

freeSpace) 

{ 

    var mc = new ManagementClass("root\\CIMV2", 

"Win32_LogicalDisk", null); 

    ManagementObjectCollection moc = mc.GetInstances(); 

 

    foreach (ManagementObject mo in moc) 

    { 

        if (mo["FreeSpace"] != null) 

        { 

            ulong f = (ulong)mo["FreeSpace"]; 

            if (f < freeSpace) 

                yield return mo; 

        } 

    } 

} 

The information about the Win32_LogicalDisk class can be found at the 

Microsoft MSDN site: 

http://msdn.microsoft.com/en-us/library/windows/desktop/aa394173.aspx . 

It is also possible to execute direcly WQL queries through the .NET code: this 

is useful to retrieve only the instances that satisfies specified conditions instead of 

checking that condition on the received instances. Equivalent of the code as before 

but using WQL is: 

http://msdn.microsoft.com/en-us/library/windows/desktop/aa394173.aspx
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IEnumerable<ManagementObject> GetLogicalDisks(ulong 

freeSpace) 

{ 

    string query = 

        "SELECT * FROM Win32_LogicalDisk WHERE 

FreeSpace < " + freeSpace; 

 

    using (var s = new ManagementObjectSearcher(new 

ObjectQuery(query))) 

    { 

        var moc = s.Get(); 

        foreach (ManagementObject mo in moc) 

            yield return mo; 

    } 

} 

Another example involves the Hyper-V management interface, and it 

enumerates the existing virtual machine in the specified node (null for localhost): 
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IEnumerable<ManagementObject> GetVirtualMachines(string 

node) 

{ 

    string scope; 

    if (node == null) 

        // localhost 

        scope = "root\\virtualization"; 

    else 

        scope = 

String.Format("\\\\{0}\\root\\virtualization", 

node); 

 

    var mc = new ManagementClass(scope, 

"Msvm_ComputerSystem", null); 

    ManagementObjectCollection moc = mc.GetInstances(); 

 

    foreach (ManagementObject mo in moc) 

    { 

        string systemType = (string)mo["Caption"]; 

        if (systemType == "Virtual Machine") 

            yield return mo; 

    } 

} 

 

The information about the class Msvm_ComputerSystem can be found at 

the Microsoft MSDN site: 

http://msdn.microsoft.com/en-us/library/cc136822.aspx . 

 

 

2.4.4 Microsoft .NET Framework and F# language 

 

We decided to implement Octopus using the .NET Framework, and in 

particular using the F# language. We chose the .NET Framework because its ease 

http://msdn.microsoft.com/en-us/library/cc136822.aspx
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of interaction with the Windows Operating System and with Microsoft Hyper-V, 

both trough WMI. 

The .NET Framework is a software framework developed by Microsoft that 

runs primarily on Microsoft Windows, but it exists a free and open source 

implementation called Mono capable of running all the mainly used systems 

(Linux, Android, BSD, iOS, OS X, Windows, Solaris, ...). It includes a large library and 

provides language interoperability across several programming languages. 

Programs written for the .NET Framework execute in a software environment (as 

contrasted to hardware environment), known as the Common Language Runtime 

(CLR), an application virtual machine that provides services such as security, 

memory management, and exception handling. The class library and the CLR 

together constitute the .NET Framework. 

 

The language F# have become recently an official language of the .NET 

framework. It is a multi-paradigm programming language, which means that its 

syntax allows programmers to use it with different programming paradigm. In the 

case of F#, it supports functional programming, imperative and object-oriented 

programming. Its main programming paradigm is the functional programming. 

It is born as a ML implementation in .NET; in fact, its syntax is very similar to 

the ML’s. Like ML (and generally other functional languages), it is a strongly typed 

language that use intensive type inference; that means that data types do not 

need to be explicitly declared by the programmer, they will be deduced by the 

compiler during compilation. Also, like ML, it’s a functional language with eager 

evaluation. Eager evaluation, in contrast with lazy evaluation (used by the 

functional language Haskell for example) forces the evaluation of sub expression 

immediately when evaluated instead of waiting for its utilization. 
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For functional programming, it also provides several constructs like tuples, 

records, lists, discriminated unions… and common functions typical of functional 

programming, like map, reduce, filter, etc. 

Like other functional languages, iterations are usually expressed using 

recursion, recursive functions that invokes themselves. Usually, in imperative 

programming paradigm, recursion is avoided because it increases considerably the 

call-stack size. On the contrary, in functional languages, recursion is often used 

being careful to respect the tail-recursion requirements: if the recursive function 

do not execute any instruction after calling itself, the recursion can be expressed 

like a iterative while, avoiding building new stack entry for each call. 

This is an example of the function “factorial”, which calculates the number 

factorial, in both non-tail-recursive and tail-recursive implementation: 

 

Non tail-recursive Tail recursive 

let rec factorial n = 

match n with 

| 0 -> 1 

| _ -> n * factorial (n - 1) 

 

let factorial n = 

let rec f n t = 

    match n with 

    | 0 -> 1 * t 

    | _ -> f (n - 1) (n * t) 

f n 1 

 

(* the recursive function is wrapped inside 

a normal one because the recursive one 

requires the "tail" parameter, which we want 

to hide to the caller *) 

 

An example of the F# code using WMI interface to query Hyper-V for the 

existing virtual machine, in other words the F# equivalent code for the C# provided 

before, is: 
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let getVirtualMachines node = 

    let scope = 

        match node with 

        // localhost 

        | None | Some(null) -> "root\\virtualization" 

        | Some(n) -> sprintf 

"\\\\%s\\root\\virtualization" n 

 

    let mc = new ManagementClass(scope, 

"Msvm_ComputerSystem", null) 

    let moc = mc.GetInstances() 

 

    [ for _mo in moc do 

        let mo = _mo :?> ManagementObject 

        let systemType = string (mo.["Caption"]) 

        if systemType = "Virtual Machine" then yield mo 

] 

that have type: 

   val getVirtualMachines : string option -> ManagementObject list 

that means that it’s a function which takes a string option and returns a 

ManagementObject list. 

The option type in F# is used when an actual value might not exist for a 

named value or variable. An option has an underlying type and can hold a value of 

that type, or it might not have a value. The value “None” is used when an option 

does not have an actual value. Otherwise, the expression “Some(...)” gives the 

option a value. 



32 

3 Implementation 

 

The implementation of this thesis was designed in two different projects: 

one for the implementation of a library that wraps all the WMI calls directed to 

Hyper-V, in order to allow an easily Hyper-V management via both scripts (i.e., 

using the PowerShell) and applications. This project is called Hyper-F. 

Hyper-F is mainly represented by a single dll library which exports all the 

functions and data structs required to manage an Hyper-V server. However, 

because of some operation cannot be executed remotely, it was necessary to 

implement a Windows service that must be installed on every Hyper-V server to 

execute locally those particular operations. 

 

The other software is Octopus itself, and it’s composed by several projects: 

 

• The Octopus Scheduler 

this is a Windows Service that runs in a centralized “headnode” and 

coordinates all the Hyper-V servers, scheduling their virtual machines. 

It also contains the CLIPS environment, implemented as an open source 

library called CLIPSNet and available at the page  

http://sourceforge.net/projects/clipsnet . 

• The Octopus VM Deployer 

the deployer is a Windows Service or linux script that must be installed 

in a VM Template in order to detect a new deployment and execute the 

operation to specialize that instantiation. 

• The Octopus Web Interface 

this is the web interface used by administrators and users to create and 

manage virtual machines. 

http://sourceforge.net/projects/clipsnet
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• other projects, like a setup project to automatize some operations during 

the  software installation, a small GUI application to execute the 

configuration of a fresh installed Octopus service, and some libraries to 

share common code between projects. 

 

3.1 Hyper-F 

 

As mentioned before, the implementation of the functions that calls the 

WMI functions to manage Microsoft Hyper-V has been developed separately in a 

.NET library, defining a small API (application programming interface) to manage 

local and remote servers. 

Other than a library, Hyper-F is also consisted by a Windows Service 

application, installed in every Hyper-V server we want to manage and it is used to 

execute locally all the function we cannot execute remotely, either because of 

Hyper-V limitation or because security issues. 

 

 

 

Most of the WMI functions exposed by Microsoft Hyper-V are wrapped in a 

.NET function, which other than invoking the relative WMI function, performs 

security and stability checks, and hides the WMI generic ManagementObject type 
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to the developer using a safer wrapped object. In fact, all the WMI functions 

returns a single or a collection of ManagementObject as a result, which, depending 

on the function, they can represent Virtual Machines, Virtual Hard Disks, Virtual 

Ethernet cards, etc. 

 

So the library is designed in 2 main layers: 

 

 

 

The HyperF.WMIInterface layer is the only one that have direct access to the 

WMI interface for both OS and Hyper-V functions, and it exposes the functions 

that calls the WMI functions. They include only basic correctness check, in order 

to avoid that the WMI function call could result in a unpredictable result. An 

example of one of this function is the following, which allows to create a new 

virtual machine: 

developer

HyperF.HyperF functions

HyperF.WMIInterface functions

WMI
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/// <summary> 

/// Creates a new virtual machine with default settings: 

/// One single-core processor, 512Mb of RAM, no Hard disk,  

/// no NIC, no other stuff 

/// 

/// #Example:  

/// #Creates a new VM called " MYVM01" in the server NODE03  

/// #  new_VM (Some "NODE03") "MYVM01" null 

/// #Example:  

/// #Same as above, but it stores the VM data in the specified path 

/// #  new_VM (Some "NODE03") "MYVM01" @"\\NODE08\VirtualMachines" 

/// </summary> 

let new_VM server (newVmName:string) (path:string) = 

  let getVirtualSystemGlobalSettingDataInstance 

(scope:ManagementScope) = 

    let settingPath = new 

ManagementPath("Msvm_VirtualSystemGlobalsettingData") 

    use globalSettingClass = new ManagementClass(scope, settingPath, 

null) 

    use globalSettingData = globalSettingClass.CreateInstance() 

    globalSettingData.["ElementName"] <- newVmName 

    if path <> null then globalSettingData.["ExternalDataRoot"] <- 

path 

    globalSettingData.GetText(TextFormat.WmiDtd20) 

 

  let scope = new ManagementScope((getVirtualizationManagementPath 

server), null) 

  use virtualSystemService = Utility.getServiceObject scope 

"Msvm_VirtualSystemManagementService" 

  use inParams = 

virtualSystemService.GetMethodParameters("DefineVirtualSy

stem") 

  inParams.["ResourcesettingData"] <- null 

  inParams.["Sourcesetting"] <- null 

  inParams.["SystemsettingData"] <- 

getVirtualSystemGlobalSettingDataInstance scope 

   

//http://msdn.microsoft.com/en-us/library/cc136786(VS.85).aspx 

  use outParams = 

virtualSystemService.InvokeMethod("DefineVirtualSystem", 

inParams, null) 

   

  let code = outParams.["ReturnValue"] :?> uint32 

  if code = uint32(Utility.ReturnCode.Completed) then 

    new ManagementObject(string outParams.["DefinedSystem"]) 

  else if code = uint32(Utility.ReturnCode.Started) then 

    Utility.jobCompleted outParams scope 

    new ManagementObject(string outParams.["DefinedSystem"]) 

  else 

    failwithf "Define virtual system failed with error %d" code 
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This functions creates an empty virtual machine with default settings: 

512Mb of RAM, 1 CPU, no hard disks and no Ethernet cards. The result of the 

function is a ManagementObject that represent the new Virtual Machine just 

created. 

This function is not exposed outside the library; instead, it is wrapped on 

another higher-level function, defined inside the HyperF.HyperF layer, that hides 

the ManagementObject functions and returns a VirtualMachine object, which is 

an Hyper-F type: 

module LocalOnly = 

  

  (* ... *) 

  

  let new_VM_To newVmName path = 

    let vmobj = WMIInterface.new_VM None newVmName path 

    new VirtualMachine(vmobj) 

Note that this function doesn’t have any parameter to specify the Hyper-V 

server. 

In the higher-layer HyperF.HyperF, some functions are defined inside a 

submodule called LocalOnly. Those are the functions that it cannot be called 

remotely, or during tests we found that calling them remotely can cause runtime 

issues (generally security issues). To execute this kind of functions we use the 

Windows Service “Hyper-F remote executer”. So, to create an empty virtual 

machine, developers will call this function: 
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let new_VM_To server newVmName path = 

  match server with 

  | None -> LocalOnly.new_VM_To newVmName path 

  | Some(s) when isLocal s -> 

              LocalOnly.new_VM_To newVmName path 

  | Some(s) -> 

              let ret = 

                

execute_remote_HyperF_function_withReturn s 

                   [| "new_VM_To"; newVmName; path |] 

              VirtualMachine.Deserialize(ret) 

This function checks for the “server” parameter: if None, then it’s meant to 

be executed locally, if Some but the specified server is the local one, execute it 

locally, else call the remote Hyper-V service to invoke that function locally with the 

specified parameters. In this last case, the result is serialized in a string and 

deserialized to be retuned as object. 

 

We have seen an example of the functions that allows to create a default 

empty virtual machine… of course there are other functions to fully customize the 

virtual machine: 
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let set_VMMemory (vm:VirtualMachine) 

(newMemoryAmountMb:int) = 

  WMIInterface.set_VMMemory vm.ManagementObject_VM 

(int64 newMemoryAmountMb) 

 

let set_VMCPUCount (vm:VirtualMachine) newCpuCount = 

  WMIInterface.set_VMCPUCount vm.ManagementObject_VM 

newCpuCount 

 

let add_VMNic (vm:VirtualMachine) (switch:NetworkSwitch 

option) isLegacy (macAddress:string option) = 

  match switch with 

  | None -> WMIInterface.add_VMNic 

vm.ManagementObject_VM None isLegacy macAddress 

  | Some(s) -> WMIInterface.add_VMNic 

vm.ManagementObject_VM (Some 

s.ManagementObject) isLegacy macAddress 

 

let add_VMHardDiskToController 

(controller:DiskController) address vhdPath = 

  if address >= int(controller.Limit) then failwith 

"The specified Address is out of the controller 

limit" 

  let drive = 

    let d = try get_VMDrivesByController controller |> 

Array.find (fun x -> x.Address = address) 

            with _ -> add_VMDiskDriveToController 

                           controller address 

    if (get_VMDiskByDrive d).IsNone then d 

    else failwith "There is already a disk drive in the 

specified Address" 

  add_VMHardDiskToDrive drive vhdPath   

etc… 
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3.2 The CLIPS environment 

 

The CLIPS environment is instantiated and controlled by the Octopus 

Scheduler module. This chapter maybe have should written inside the “Octopus 

Scheduler” one, but it’s so much important for the thesis that we preferred to 

dedicate it more visibility. 

  

As already described before, the Virtual Machine Manager is controlled by 

the expert system CLIPS in order to make decisions autonomously, and to 

implement policies that limits users using and creating the virtual machines. 

For every main loop iteration (the interval between each iteration is about 

60 seconds), the Octopus Scheduler checks the status for every Hypervisor Hosts 

and for every Virtual Machines. Then, all the performance values collected are 

asserted as Facts inside the CLIPS environment. During these 60 seconds, several 

events could occur: an user asks for virtual machines, a virtual machine finishes its 

initialize configuration, a user stop one virtual machine, etc… Any of this event is 

asserted to the CLIPS environment in order to let a policy to decide what to react 

for that event. 

Concluding the iteration, the Fact “triggeringRun” is asserted and then the 

(run) command is ran. 
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The Fact “triggeringRun” is used to have a fresh fact asserted just before the 

next run, in order to have Rules fired at every (run) or when the other conditions 

don’t changes. 

An example of this is used by the initialization and finalization script, 

implemented with these two Rules: 

(defrule initRun 

  (declare (salience 1000)) 

  (triggeringRun) 

  => 

  (bind ?nodes (host-list)) 

  (bind ?len (length$ ?nodes)) 

  (bind ?*hostsMemory* (create$)) 

  (loop-for-count (?i 1 ?len) 

    (bind ?node (nth$ ?i ?nodes)) 

    (bind ?freeMem (getNodeValue host-memoryfree ?node)) 

    (bind ?*hostsMemory* (append$ ?*hostsMemory* 

(create$ ?node ?freeMem))) 

  ) 

) 
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(defrule postRun 

  (declare (salience -1000)) 

  ?f <- (triggeringRun) 

  => 

  (retract ?f) 

) 

Before explaining what they do, the first thing you should note is the special 

declaration “(declare (salience <num>))”. It is used in CLIPS to declare the priority 

for the Rules to be fired. Rules with the same priority (default is 0) will run in an 

unpredictable order, but thanks to the salience you can ensure some Rules will fire 

after or before others. Rules with higher salience will be fired first. 

The first Rule, initRun, is used to initialize the multifield ?*hostsMemory* 

(this is a global variable1) which contains the main memory available for every 

hosts. This is keep in a structure because, during several virtual machine 

allocations, it must be changed in order to be up to date between an allocation 

and the next. 

The last Rule, postRun, is only used to clear the Fact “triggeringRun”. 

 

 When the CLIPS command (run) is executed, depending on the knowledge 

is asserted, some Rules that implements the Octopus policies may run. 

We decided to implement a script to show the following policies and 

automations: 

• Deny to any user to own more than <maxVmPerUser> virtual machines 

• Defragment the hosts utilization migrating the virtual machines from 

one host to another one, with the purpose of using as few nodes as 

possible. 

• Keep the hypervisor hosts turned off when unused 

                                                      
1  The syntax to define a global variable is (defglobal ?*name* = value) 
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3.2.1 Policy to implement quotas 

 

Let’s see the script that implement the policy that denies users to own more 

than 5 virtual machines. 

First of all, we need to concretize the <maxVmPerUser> parameter. We have 

defined it as a global variable in CLIPS, in order to be easily configurable without 

modifying anything else. So we defined: 

; the maximum number of VM that a user can create 

(defglobal ?*maxVmPerUser* = 10) ; 10 virtual machines 

Now, let’s assume there is a user who want to instantiate a new virtual 

machine, using the template with ID = 1 which describes a virtual machine with 2 

CPUs, 4Gb of ram, a 60Gb of disk and “Windows Server 2008” operating system. 

After received the request, the scheduler will assert in the CLIPS 

environment a fact described in the following syntax: 

(event-creating-vm 

 <request id> 

 <owner name> 

 <number of vm> 

 <number of CPU per vm> 

 <ram size per vm> 

) 

so, in our example, it will assert the following fact: 

(assert (event-creating-vm sampleId mura 1 2 4096)) 

Now, in this policy we have defined the following Rule that checks the 

number of Virtual machines already owned by that user and allows or denies it to 

create more:  
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(defrule createVmRule  

  ?f <- (event-creating-vm ?reqId ?owner ?numVm ?numCpu 

?ramSize) 

  => 

  (bind ?alreadyCreated (countVmPerOwner ?owner)) 

  (if (> (+ ?alreadyCreated ?numVm) ?*maxVmPerUser*) 

   then 

    (deny-newvm ?reqId (str-cat "no more than " 

?*maxVmPerUser* " VMs per user")) 

   else 

    (bind ?nodes (assignNodesForNewVm ?numVm ?numCpu 

?ramSize)) 

    (if (< (length$ ?nodes) ?numVm) 

     then 

      (deny-newvm ?reqId "insufficient resources for 

this request") 

     else 

      (create-newvm ?reqId ?nodes) 2 

    ) 

  ) 

  (retract ?f) 

) 

this rule takes any “event-creating-vm” fact and assign the variables 

• ?f, which described the fact itself 

• ?reqId ?owner ?numVm ?numCpu ?ramSize, which contains all the event-

creating-vm parameters 

 

then, with no other conditions, execute the rule. In the actions of the rule: 

• It will count the virtual machine already owned by the user who is 

requesting the creation, using the function (countVmPerOwner) defined 

in this script. 

                                                      
2 actually the function here is not “create-newvm” but “internal-create-newvm”, needed to 

handle the event we are going to create a virtual machine in a turned off host. We are going to see 
this later, and the end of the 3.2.3 chapter. 
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• Compares the value ( ?alreadyCreated + ?numVm ) to the value in the 

global variable ?*maxVmPerUser* : 

o if it’s greater, deny the creation of the new Virtual Machine(s) 

calling the function (deny-newvm), that notifies the scheduler that 

the request is denied 

o if it’s not, then select a list of nodes, using the function 

(assignNodesForNewVm), where the new virtual machines can be 

allocated, and notifies the scheduler, using the function (create-

newvm), to proceed creating the new virtual machines. 

• Lastly, it undefines the initial fact “event-creating-vm” stored in ?f . 

 

Note that this rule uses some user-defined functions, like 

(countVmPerOwner), (assignNodesForNewVm), (create-vm) and (deny-vm). 

The first one, find all facts named “vm-owner” which have as second 

parameter the value ?owner; then returns the number of facts found. 

The second one iterates the available nodes looking for a way to fit all the 

virtual machines requested, depending on the hosts’ available main memory. If it 

succeeds, it return the list of the nodes where the allocate the single Virtual 

Machines (a succeeded request for 3 VM always returns 3 nodes), if it fails return 

an empty list. 

The (create-vm) and (deny-vm) are actually implemented in F#, inside the 

Octopus scheduler code. This is possible thanks to a feature of the CLIPSNet library 

we use, which allows to declare a .NET function and define a CLIPS function which 

invokes the .NET code. The code in F# to do that is the following: 
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type DelegateStrStr = delegate of CLIPSNet.DataType * 

CLIPSNet.DataType -> unit 

type DelegateStrMulti = delegate of CLIPSNet.DataType * 

CLIPSNet.DataTypes.Multifield -> unit 

 

module clipsFunctions = 

  let clips_create_newVm (reqId:CLIPSNet.DataType) 

(nodes:CLIPSNet.DataTypes.Multifield) = 

    let reqIdStr = string reqId 

    let nodeArray = [| for x in nodes -> string x |] 

    let requestGuid = new Guid(reqIdStr) 

    FunctionsCore.allowRequestOfNewVm requestGuid nodeArray 

 

  let clips_deny_newVm (reqId:CLIPSNet.DataType) 

(reason:CLIPSNet.DataTypes.String) = 

    let reqIdStr = string reqId 

    let requestGuid = new Guid(reqIdStr) 

    FunctionsCore.denyRequestOfNewVm requestGuid 

 

 

let mutable env : Environment = null 

 

let initEnv () = 

  if env <> null then env.Clear(); env.Dispose() 

  env <- new Environment() 

  new UserFunction(env, new 

         DelegateStrMulti(clipsFunctions.clips_create_newVm), 

               "create-newvm") |> ignore 

  new UserFunction(env, new 

         DelegateStrStr(clipsFunctions.clips_deny_newVm),    

               "deny-newvm") |> ignore 

 

  let clipsDefaultFile = 

      try (getFile getServiceBinPath  

          "clips-default.clp").FullName 

      with _ ->  

          failwith  

            "Clips file \"clips-default.clp\" not found." 

  env.Load(clipsDefaultFile) 

  (* etc etc *) 

The DelegateStrStr and DelegateStrMulti represent the types of the 

functions that we will export on the CLIPS environment: the first one is a function 

that takes two generic CLIPS DataType (that we use as string parameters) and 

returns void, the second one is a function that takes a generic CLIPS DataType 
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(again, used as a string), a CLIPS type Multifield (that is the clips representation of 

a record: in this instance, we use it as an array of strings) and returns void. 

The module clipsFunctions contains all the functions that will be exported 

inside the CLIPS environment, just for arrange the code for better organization. 

The function initEnv initializes the CLIPS environment: it creates a new 

environment with “new Environment()” and exports a .NET function using the 

constructor UserFunction specifying the environment to use, the function 

wrapped in its delegate type-representation and the CLIPS function name. 

It also contains the code to load the CLIPS script “clips-default.clp” that 

contains the policy that must be preloaded on the CLIPS environment, like the 

createVmRule rule that we have seen. 

 

After the initialization, the CLIPS environment will contain the (create-vm) 

and (deny-vm) as a functions with these syntax: 

(deny-newvm ?reqId ?reason) 

(create-newvm ?reqId ?nodeList) 

and, every time one of those function will be called, actually a .NET code is 

executed and the .NET return value will be the return value in CLIPS. 

 

3.2.2 Policy to defragment the servers’ VM allocation 

 

The idea of this policy is to compact the utilization of the Virtual Machine in 

order to use as few nodes as possible. So, if the entire load of a node can be moved 

to other nodes, we do it to have a node unused. 
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This policy fits well, and do the best, with the next policy: the one that shut 

down the unused nodes. Combined, Octopus will consume as little power as 

possible. 

 

This is the Role that implement this policy: 

 (defrule defragmentNodesAllocation 

  (declare (salience -99)) 

  (triggeringRun) 

  => 

  (bind ?nodes (host-list)) 

  (loop-for-count (?i (* (length$ ?nodes) -1) -2) 

    (bind ?ii (* ?i -1)) 

    (bind ?node (nth$ ?ii ?nodes)) 

    (loop-for-count (?j 1 (- ?ii 1)) 

      (bind ?vms (getAllVmOnNode (nth$ ?ii ?nodes))) 

      (loop-for-count (?k 1 (length$ ?vms)) 

        (bind ?vmId (nth$ ?k ?vms)) 

        (if (< (getVmMemorySize ?vmId) 

(_getGlobalNodeMemFor (nth$ ?j ?nodes))) 

 then 

   (migrate-vm ?vmId (nth$ ?j ?nodes)) 

   (_setGlobalNodeMemTo (nth$ ?j ?nodes) (-

(_getGlobalNodeMemFor (nth$ ?j ?nodes))  

(getVmMemorySize ?vmId))) 

   (_commitGlobalNodes) 

   (return) 

        ) 

      ) 

    ) 

  ) 

) 

It is declared with a low salience so other Rules, like “createVmRule”, can be 

fired first and “defragmentNodesAllocation” can work on an up to date 

environment. 
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The implementation is the following: 

i. let be ?len = (length$ ?nodes), therefore the number of the hosts 

ii. for each node ?n1 from the index ?len to 2 

iii. -- for each node ?n2 from the index 1 to ( ?len – 1 ) 

iv. -- -- for each VM ?v instantiated in the host ?n1 

v. -- -- -- it checks if ?v can fit in ?n2, if so it migrates ?v from ?n1 to ?n2 

In other words, this algorithm try to compact the hosts utilization moving 

the Virtual Machine from the hosts with higher index to the hosts with lower 

index.  

 

3.2.3 Policy to shut down the unused hosts 

 

This policy, combined with the previous one, can be called the “green 

policies”. 

The idea is very simple: assuming that the cluster is under-loaded most of 

the time, and thanks to the previous policy that tries to keep the load compacted 

in few nodes, we shut down and keep turned off the empty hypervisor hosts and 

we turn them on only when needed. 

 

The implementation is simple as its idea. The Rule that implements this 

policy is the following one: 
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(defrule checkNodesToShutdown 

  (declare (salience -100)) 

  (triggeringRun) 

  => 

  (bind ?nodes (host-list)) 

  (loop-for-count (?i 1 (length$ ?nodes)) 

    (bind ?node (nth$ ?i ?nodes)) 

    (if (getNodeValue host-isreachable ?node) 

      then 

        (bind ?numVm (length$ (getAllVmOnNode ?node))) 

        (if (eq ?numVm 0) then (shutdown-node ?node) 

(break)) 

    ) 

  ) 

)    

Note that the salience is a little bit lower that the 

“defragmentNodesAllocation”, so it can turns off the nodes that the 

defragmentation has just cleared. 

 

For each reachable Hypervisor Node, it just check the number of Virtual 

Machines allocated in that node. If zero, shut down the node. 

 

We need to make a consideration now. Now that we can have powered off 

nodes as well as powered on nodes, during the creation of a Virtual Machine we 

need to take care of this to turn on a node we need to use for an allocation. 

For this purpose, the function (create-vm) used in the Rule createVmRule 

must be replaced with the function (internal-create-vm) defined as follows: 
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(deffunction internal-create-newvm (?reqId ?nodes) 

  (bind ?allNodesReachable TRUE) 

  (loop-for-count (?i 1 (length$ ?nodes)) 

    (bind ?b (isNodeReachable (nth$ ?i ?nodes))) 

    (bind ?allNodesReachable (and ?allNodesReachable 

?b)) 

    (if (not ?b) then (poweron-node (nth$ ?i ?nodes))) 

  ) 

  (if ?allNodesReachable 

    then (create-newvm ?reqId ?nodes) 

    else (assert (delay-create-vm ?reqId ?nodes)) 

  ) 

) 

This function checks if all the nodes chosen for that particular request are 

turned off, inferred because reachable. 

If all nodes are already turned on, just redirect the call to the (create-vm) we 

already know. 

If some of the nodes are not reachable, it calls (poweron-node) on them to 

turn it on. Then, instead of calling (create-vm), it asserts “delay-create-vm ?reqId 

?nodes” to delay the creation of this request to the next (run), hoping that the 

nodes we are trying to turn on will be turned on. 

To handle this new Fact, there is a new Rule of course: 
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(defrule checkDelayedVmCreation 

  (declare (salience 1)) 

  (triggeringRun) 

  => 

  (bind ?delayedCreations (getFacts delay-create-vm)) 

  (loop-for-count (?i 1 (length$ ?delayedCreations)) 

    (bind ?ff (nth$ ?i ?delayedCreations)) 

    (bind ?f (fact-slot-value ?ff implied)) 

    (bind ?allNodes (create$)) 

    (bind ?allNodesReachable TRUE) 

    (loop-for-count (?j 2 (length$ ?f)) 

      (bind ?b (isNodeReachable (nth$ ?j ?f))) 

      (bind ?allNodesReachable (and ?allNodesReachable 

?b)) 

      (bind ?allNodes (append$ ?allNodes (nth$ ?j ?f)) 

    ) 

    (if (not ?b) 

      then 

       (poweron-node (nth$ ?j ?f)) 

    ) 

  ) 

  (if ?allNodesReachable 

    then 

      (create-newvm (nth$ 1 ?f) ?allNodes) (retract 

?ff)) 

  ) 

) 

The salience for this Rule is greater than 0, the default salience. It means that 

this Rule will be fired before firing all the “createVmRule” activations. 

It retrieve all the “delay-create-vm” Facts and, for each of them, checks the 

available status of their nodes. If are all reachable finally it calls the (create-vm) 

function, otherwise it tries again to power the unreachable nodes up, and leaves 

the Fact asserted. The next execution of (run) will fire this rule again, and so on 

until all nodes are powered on. 
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3.2.4 Considerations on policies 

 

The policies illustrated here have the purpose to demonstrate the 

expressivity of the expert system CLIPS and the versatility of the Octopus 

scheduler. They are not optimized and, most important, they don’t cover all the 

possible scenarios. This would be quite impossible, too. 

But every system administrator who decide to configure Octopus for his 

cluster can easily adjust / rewrite the policy using all the events raised from 

Octopus to CLIPS and all the command exposed from Octopus in CLIPS. 

 

This is a list of the events that Octopus raises: 

(event-creating-vm <reqId> <user> <numVm> <numCpu> 

<ramSize>) 

(event-created-vm <vmId>) 

(event-deleted-vm <vmId>) 

(event-suspended-vm <vmId>) 

(event-paused-vm <vmId>) 

(event-starting-vm <vmId>) 

(event-started-vm <vmId>) 

(event-migrated-vm <vmId> <hostSource> <hostDest>) 

This is a list of command that Octopus exposes on CLIPS: 

(deny-newvm ?reqId ?reason) 

(create-newvm ?reqId ?nodeList) 

(migrate-vm ?vmId ?nodeDest) 

(suspend-vm ?vmId) 

(shutdown-node ?vmId) 

(poweron-node ?vmId) 
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3.3 The Octopus Scheduler 

 

The octopus scheduler is a Windows Service application entirely written in 

F#. As all windows services, it runs and stay in background all the time the 

Windows operating system is up, even if there isn’t any user logged in. 

It is consisted to a main loop that periodically checks all the Hyper-V servers 

to control their availability and performance counters, and all the virtual machines 

instantiated in those servers. In details, it monitors the RAM memory utilization 

and the CPU load. 

 

 

3.3.1 The creation of a Virtual Machine 

 

We have just seen how the creation of a virtual machine is handled in CLIPS: 

the fact “event-creating-vm” is asserted and a set of rules and functions defined 

in CLIPS decide if the user is allowed to create the virtual machine(s) or not. 

What happens next, if the CLIPS allows the user to create the virtual 

machine(s), is that CLIPS calls its function "create-newvm", which calls the F# 

function “clips_create_newVm”, which calls the function allowRequestOfNewVm: 

val allowRequestOfNewVm : System.Guid -> string array -> unit 

This function takes 2 arguments: the GUID that represent the virtual 

machines creation request, and a string array that contains the nodes selected by 

CLIPS where the new virtual machines will be allocated. The GUID is assigned by 

Octopus when the user request a creation of virtual machine through the Octopus 
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Service, and the entire request is stored into the SQL Database until CLIPS 

processes that request. 

When allowRequestOfNewVm is called, for each virtual machine requested, 

Octopus execute a routine of virtual machine creation that consists of this 

following steps: 

 

1. check the correctness of parameters, configuration data and reliability 

of the assigned Hyper-V server. Eventually, handle faults. 

Let’s name the shared storage path as “saveVmPath”. 

2. create a new empty virtual machine into “saveVmPath”, with default 

RAM size and CPU count, using the Hyper-F function 

“HyperF.new_VM_To”. 

3. Hyper-V actually stores the virtual machine inside a subdirectory names 

“Virtual Machines”, and then inside another subdirectory named as the 

GUID of the virtual machine itself. So the real path of the virtual 

machine is ( saveVmPath + “\Virtual Machines\” + vm.Guid ). 

Let’s name this path as “realVmPath”. 

4. create a new differencing Virtual Hard Drive, deriving from the one 

represented by the selected Virtual Machine Template, into the path 

“realVmPath”. 

5. create a Virtual Floppy Disk, which contains the deployer configuration 

file (used by the Octopus Deployer to specialize the virtual machine 

instance), into the path “realVmPath”. 

6. assign to the virtual machine the RAM memory amount and the CPU 

count values, chosen by the user. 

7. add to the virtual machine a legacy Network Adapter, with a MAC 

address chosen by Hyper-V. 
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8. connect the Virtual Hard Disk and the Virtual Floppy Disk to the virtual 

machine. 

9. assign a GUID to identify the Virtual Machine, in order to hide to the 

user the GUID used by Hyper-V. 

Finally, add the virtual machine record to the SQL database, setting its 

state to “Configuring”.  

 

Note in the point 7, we add a Legacy Network Adapter. Hyper-V have a flag 

“legacy” for network adapters that identify if the NIC driver will be a general one 

(legacy = true) or if it can use specialized driver that takes advantage of hardware 

support (legacy = false), which requires the Operating System to have that 

particular driver. Of course, the non-legacy NIC has better performance than the 

legacy one. 

During the creation of a virtual machine, Octopus use a legacy NIC because 

it doesn’t know if the Virtual Machine template uses an Operating System that 

contains the specialized driver of not, and the legacy one works in all operating 

systems. So, it’s the Octopus Deployer, which knows that, to execute a command 

through the Octopus Service to eventually upgrade the NIC from legacy to non-

legacy. 

For the records, at the moment of this thesis is written, Hyper-V have the 

integration services drivers for: 

 Windows (XP Service Pack 3, Vista SP2, 7+) 

 Windows Server (2000 SP4, 2003 SP2, 2008+) 

 Linux Red Hat Enterprise Linux 5.7, 5.8, 6.0-6.3 x86 and x64 

 Linux CentOS 5.7, 5.8, 6.0-6.3 x86 and x64   
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After the execution of allowRequestOfNewVm, the Virtual Machines 

requested are allocated on the selected Hyper-V server and are ready to be 

configured. 

The Octopus Scheduler have a task that periodically (every 30 seconds) 

checks the status of Virtual Machine configurations. It is used to avoid to execute 

more than 1 configuration at time for every Hyper-V server, and to starts the 

configuration process for new virtual machines. So, after a virtual machine 

creation, this task will run the configuration process. 

The configuration process is actually performed by the Octopus Deployer, so 

the Octopus Scheduler task just starts the virtual machine in Hyper-V using the 

Hyper-F function “HyperF.start_VM”. 

 

 

3.4 The scheduler’s database 

 

The Octopus Scheduler uses several database tables to store persistent and 

volatile information: 

- the User table, which is used to handle users authentication 

- the HyperVNodes table, which is used to store information about the 

hypervisors nodes 

- the VMTemplates, used to store the virtual machine templates 

information 

- the VirtualMachineRequested, used to store the Virtual Machine 

creation requests by users, waiting to CLIPS to decide if the request can 

be allowed 

- the VirtualMachineData, used to stored all the persistent information 

for a virtual machine, even after its deletion 
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- the VirtualMachinePendingCreation, used to store temporary the 

information to create a new virtual machine after a CLIPS approval 

- the VirtualMachineActive, used to store all the Virtual Machine 

information about its current lifetime 

- the GeneralConfig table, used to store various settings 

 

The first tables we are going to see are related to authentication. We have a 

“Users” table where username, password, authentication token, and other user 

information are stored: 

 

 

Column name Data Type Allow Nulls 

ID int No 

Username nvarchar(30) No 

Firstname nvarchar(20) Yes 

Lastname nvarchar(20) Yes 

FullName nvarchar(50) Yes 

Password nvarchar(50) No 

AuthToken uniqueidentifier No 

AuthTokenExpire datetime No 

 
Table 1 - Database table Users 

 

For security reason, we know we should store only the hash of the password, 

or the password encrypted, and not the password itself in clear. But for the 

purpose of this thesis, which is realizing a virtual machine scheduler with a 

scriptable policy, and also to make debugging more easy, we overlooked this 

security issue. 
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This is a very simple way for authenticate users; there are other well-known 

better system of authentication, i.e. which allows users to have more active 

sessions (with more authentication tokens), but again this was not in the purpose 

of this thesis, and can be discussed in future development of the software. 

 

After a user logs in, Octopus creates a string (at now, a GUID) which 

represent its authentication token. It has an expiration of 8 hours, set on the row 

“AuthTokenExpire”. The authentication token represent a valid identity to call any 

Octopus function. 

When a user logs out, Octopus clear its authentication token and set its 

expiration to a date in the past. 

 

Regarding the hypervisors node, we have the HyperVNodes table: 

 

Column name Data Type Allow Nulls 

ID int No 

HostName nvarchar(65) No 

IpAddress nvarchar(15) No 

ExternalNIC uniqueidentifier No 

IsReachable bit No 

CpuCount int No 

MemorySize bigint No 

LastCpuLoad real Yes 

LastMemoryFree bigint Yes 

LastCounterUpdated datetime No 

 
Table 2 - database table HyperVNodes 

 



59 

This table stores all the information used by Octopus about the hypervisors 

it manages. The HostName, IpAddress, ExternalNIC, and IsReachable are using to 

reach and manage the node in the network; the CpuCount and MemorySize should 

be static (unless the hardware changes) and represents the resource capacity of 

the node. LastCpuLoad and LastMemoryFree are the last values read from the 

performance counter the Octopus scheduler in its main loop. LastCounterUpdate 

of course represent the time that the counters are read the last time. 

 

For managing the Virtual Machine Templates we use the VMTemplates 

table: 

 

Column Name Data Type Allow Nulls 

ID int No 

IsDeleted bit No 

Name ncarchar(65) No 

Description ntext No 

CpuCountMin int No 

CpuCountMax int No 

MemorySizeMbMin int Yes 

MemorySizeMbMax int No 

VhdPath nvarchar(256) No 

ParentTemplateID int No 

 
Table 3 - database table VMTemplate 

 

This table contains both descriptive information like Name and Description, 

used to show to users what template they could need, and technical information 

like CpuCountMin and Max, which is the range of CPU cores supported / suggested 
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for this operating system or this specific installation, the same applies for the 

memory size with MemorySizeMbMin and Max, the VhdPath column to specify 

the physical path of the template file .vhd, and the ParentTemplateID. 

This last column is usually 0, indicate that the template depends by nothing 

but its own vhd. But, in the case of a virtual machine is “templatized”, a new 

template will be created setting this field as the template id that virtual machine 

had. 

 

Technically, the column ParentTemplateID indicates that this template has a 

differencing disk from the specified template. Consequently, a virtual machine 

instantiated with a template (for instance, with ID=5) that derives from a parent 

(for instance, with ID=2) will have this chained differencing disk: 

 

 

Of course, once a VHD is created as “differencing disk” from another one, 

the parent vhd cannot be changed anymore. It becomes a read only disk. All it’s 

information are inherited in its children vhd, which contain only the differences 

from the parent. 

 

About the Virtual Machine management, we have several tables. 

One is dedicated to the user requests for new virtual machine creations, and 

it’s called VirtualMachineRequested: 
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Column Name Data Type Allow Nulls 

ID int No 

RequestID uniqueidentifier No 

NumberOfVm int No 

OwnerName nvarchar(50) No 

MachineNames nvarchar(64) No 

Password nvarchar(128) No 

Description ntext Yes 

CpuCount int No 

MemorySize bigint No 

VmTemplateID int No 

Allowed bit Yes 

 
Table 4 - database table VirtualMachineRequested 

 

This table is used to handle users requests to new virtual machines. After a 

user asks for one o more new virtual machines, the request is stored in this table 

(which contains all the information to handle the request – again, the security 

about the password was not an issue during the development of this thesis –) and 

then the event “event-creating-vm” is asserted in CLIPS. 

If the expert system CLIPS decides to allow this creation, the column Allowed 

changes from NULL to TRUE and will be created as much as many records in the 

table VirtualMachinePendingCreation depending on the number of virtual 

machine requested (column NumberOfVm). 

 

Therefore, the VirtualMachinePendingCreation table is described as follows: 
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Column Name Data Type Allow Nulls 

ID int No 

VmDataID int No 

HostServer nvarchar(64) No 

Password nvarchar(128) No 

 
Table 5 - database table VirtualMachinePendingCreation 

 

The data contained in this table are very basic since the main information 

about virtual machines are kept in the table VirtualMachineData. The column 

VmDataID is the foreign key to the record to VirtualMachineData. We will describe 

this table shortly. 

 

In the meantime, we describe the table VirtualMachineActive: 

Column Name Data Type Allow Nulls 

ID int No 

VmDataID int No 

OctopusGuid uniqueidentifier No 

HyperVGuid uniqueidentifier No 

CurrentServer nvarchar(64) No 

StoredPath nvarchar(256) No 

HyperVState int No 

HyperVHealthState int No 

HyperVHeartbeat int No 

LastStateCheck datetime No 

IsCheckpointed bit No 

IpAddress nvarchar(15) No 

 
Table 6 - database table VirtualMachineActive 
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This table contains all the information regarding the current virtual machine 

session. Some of these are meant to change often, like the several Hyper-V states 

and heartbeat, other ones instead describes this instance and doesn’t change 

never, like the GUIDs and the StoredPath. 

The CurrentServer field contains the current hypervisor node that is hosting 

the virtual machine. Every time the virtual machine is migrated, this field must be 

updated. This field is also important to know which is the right Hyper-V server that 

hosts the virtual machine, in order to provide Hyper-F the correct parameter to its 

management. 

Note the presence of two GUIDs: the HyperVGuid and the OctopusGuid. The 

HyperVGuid is the GUID assigned by Hyper-V to represent univocally the virtual 

machine in the system. This GUID is necessary to Hyper-F to invoke correctly the 

WMI functions to manage the virtual machine. Nevertheless, this GUID is never 

shows outside Octopus and, even if users don’t have to handle GUIDs manually, 

they (their clients) operates only with the OctopusGuid. The octopus scheduler 

always translate the HyperVGuid to OctopusGuid and viceversa to let “the 

outside” managing the virtual machines without knowing the real Hyper-V GUIDs. 

Also, the Hyper-V GUID could virtually change depending on the kind of 

migration performed between systems, for this reason it’s better to avoid users to 

work on the real GUID. 

 

The last two tables we have seen have the field VmDataID, which is a foreign 

key for the field ID of the VirtualMachineData, described as follow: 
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Column Name Data Type Allow Nulls 

ID int No 

OctopusGuid uniqueidentifier No 

OwnerName nvarchar(50) No 

MachineName nvarchar(64) No 

Description ntext No 

CpuCount int No 

MemorySize bigint No 

OctopusState int No 

MacAddress nvarchar(12) No 

VmTemplateID int No 

 
Table 7 - database table VirtualMachineData 

 

All the information contained in this table are meant to live after the Virtual 

Machine deletion, as a history of the virtual machines created in the system. All 

the fields are pretty self-descriptive, or we already have seen them in other tables. 

The OctopusState is the only one which deserves some additional words. It 

contains a state which represent what Octopus is doing with this virtual machine. 

It could be “Normal”, then the relevant state is the Hyper-V one, “Configuring” 

when the virtual machine is just created and during the specialization phase (see 

The Octopus Deployer), “Deleting” or “Deleted”, just before and after deleting the 

virtual machine, and some eventual errors like “CreationFailed”, “DeletionFailed”, 

“MigrationFailed”, “CheckpointingFailed”, and “GenericError”. 
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The last table we are going to describe is the GeneralConfig one: 

 

Column Name Data Type Allow Nulls 

ID int No 

ConfKey nvarchar(50) No 

ConfValue ntext No 

 
Table 8 - database table GeneralConfig 

 

This table is used as a blob of data, or better as a Dictionary. It stores generic 

pairs key/value as text to ensure its persistence during the live of the system. 

At this time, it is used for general configuration, like to set the Domain 

Administrator credentials and the storage path used to store the Virtual Hard Disks 

(VHD). 

 

Concluding, the general schema for the database tables is the following one: 
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3.5 The Octopus Deployer 

 

The Octopus Deployer service is a start-up service, implemented for both 

Windows and linux, which is designed to run at the operating system startup to 

check if the local virtual machine needs to be configured (specialized), and 

eventually do that. 

 

This service is used mainly to change the computer hostname and the 

Administrator/root password, with the choices made by the virtual machine’s 

owner. 

This service can be also used to perform specific operations in specific 

operating system instances; for example, in windows where the Hyper-V 

Integration Services are installed, it notifies the Octopus Service that the Virtual 

Machine’s Network Card can be upgraded from the legacy one to the non-legacy, 

in order to increase its performance. 

 

The implementation we provided for Windows and Linux are just examples. 

We implemented the Deployer service for Linux as a script in Python language, 

and for Windows as a Windows Service, but the implementation can be performed 

in different ways. In fact, we could change the Windows implementation with a 

javascript script, or a PowerShell script, in order to let administrators to change 

and personalize it to perform additional operations like joining a domain, applying 

security policies, etc. 
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3.5.1 Octopus deployer for Windows 

 

The Windows version is implemented as a windows service. At the windows 

startup, it checks for the floppy disk if present, and looks for a file called 

“octopusDeployer.xml”. If the floppy disk is not present, or the file is not present 

on the floppy, the service stops itself. 

If that file is found, it copies it into its local directory (to avoid using the 

floppy again) and starts the configuration process. 

The virtual machine configuration, in windows, is performed with the 

following tasks: 

 

1. searches for the configuration file “octopusDeployer.xml” in a floppy 

disk. If not present, it halts. 

2. reads the configuration file (see Appendix A) 

3. changes the Administrator password 

4. changes the computer hostname 

5. invokes the Octopus Service function to upgrade the NIC, from the 

legacy one to non-legacy. 

Note that the Deployer is designed to run only in the Windows 

version which supports the Hyper-V integration services, and they 

needs to be installed in the virtual machine template. 

6. shuts down the local computer 

This is because the Octopus Service waits for the VM to be turned 

off before upgrading the NIC. In Hyper-V you can add or remove 

Network Cards from virtual machines only if they are turned off. 

Anyway, the Octopus Service has a timeout of 60 seconds, then 

forces the turn off of the virtual machine which has requested the 

NIC upgrade. 
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7. Now the virtual machine is started again, and the Deployer service 

starts at the windows startup. It remembers it’s in a configuration 

process, so it resumes the previously configuration. 

The configuration is actually done, so now it invokes the Octopus 

Service function to notify the end of the virtual machine configuration. 

 

With the last step, the Octopus Service knows that the configuration is done, 

so it changes the virtual machine state from “Configuring” to “Normal” and the 

virtual machine is ready to be used by the owner user. 

 

The tasks 1, 2 and 5, as usual, are performed through the Windows 

Management Instrumentation interface. In detail, they calls the following WMI 

functions: 

 

 MIIS_CSObject.SetPassword in namespace 

root\MicrosoftIdentityIntegrationServer 

 

 Win32_ComputerSystem.Rename in namespace root\cimv2 

 

 Win32_OperatingSystem.Win32Shutdown in namespace 

root\cimv2 
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3.5.2 Octopus Deployer for Linux 

 

The linux version of the Octopus Deployer is implemented as script, written 

in Python language. It is executed every time the machine starts to perform the 

following operations: 

 

1. It checks for the configuration file in a floppy disk. If present, jump 

to the step 3, else jump to the step 2. 

2. It changes the machine name, then it halts. 

3. reads the configuration file (see Appendix A) 

4. changes the Administrator password 

5. changes the computer hostname 

 

The linux version is very simpler than the windows one. It doesn’t need to 

reboot after changing the machine name (windows needs it) and, since there is no 

universal support for Linux for the Hyper-V Integration Services, it doesn’t upgrade 

the Network Interface which requires the Virtual Machine to be shut down. 

 

The script is written to be as far as possible portable between Linux 

distributions, so instead of using specific routines to change permanently the 

hostname, we chose to change it at every startup using the standard shell 

command “hostname” (steps 2 and 5). 

Same point for changing the root password. Since it doesn’t exist a portable 

command to do so unattended (without user interaction), we had to script a 

routing that uses the standard shell command “passwd” and interact with the 

command. The routine is described as follows: 
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def set_root_password(passwd): 

    debugPrint("Setting password") 

    child = spawn('passwd root') 

    debugPrint("waiting for prompt 1") 

    child.expect('.*[Nn]ew .*[Pp]assword') 

    child.sendline(passwd) 

    debugPrint("waiting for prompt 2") 

    try: 

        child.expect(['.*[Nn]ew .*[Pp]assword', 

'[Rr]etype', '[Rr]e-enter'], timeout=10) 

    except Exception, e: 

        child.send (chr(3)) # Ctrl-C    

        child.sendline('') # tell passwd to quit 

        raise Exception('New root password was not 

accepted') 

    child.sendline(passwd) 

    debugPrint("waiting for EOF") 

    child.expect(EOF) 

    debugPrint("closing...") 

    child.close() 

In a Ubuntu distribution, we put the script in a dedicated location 

/etc/octopus and we added to the file /etc/rc.local the following line: 

/etc/octopus/startup-config.py 

to have the script executed at every computer start-up, after all the other system 

scripts. 

Again, this file is distribution dependent. In other distributions, for example 

in SuSe, there isn’t any rc.local file. This can be addressed creating a symlink into 

/etc/init.d/rc5.d which points to a small script /etc/init.d/octopusDeployer which 

simply contains following lines: 

#!/bin/sh 

/etc/octopus/startup-config.py 
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4 Conclusions 

 

This thesis describes the implementation of a Virtual Machine Manager 

which several features: 

- managing virtual machines in a cluster of hypervisor servers 

- allowing users to manage their virtual machines independently, without 

interacting with the system administrator 

- allowing users to instantiate virtual machine from a pre-configured 

template, which allows a very quick instantiation of the virtual machine 

(it’s ready to be used in few minutes) 

- scripting in the system exprert CLIPS environment the scheduling policy 

and the quotas Octopus must apply to the system, in order to cover a 

broad spectrum of scenario. 

 

Initially, the thesis’ goal was only to create a virtual machine manager with 

scheduling features, which aggregates several hypervirsor servers to create a large 

unique resource to allocate virtual machines; with a graphical interface (or web 

interface) dedicated to users, and not to administrators, which shows only the 

virtual machines owned by the user who is using it, and allows him to fully manage 

his virtual machines and to create new ones from preconfigured templates. 

The policies were initially implemented static, with some parameters to set 

simple quotas (max virtual machines per user, max ram used per user, etc) and an 

algorithm that migrates virtual machines between hosts to defragment its 

allocation and save energy turning off the empty hosts. 

 

At later stage in the study we decided to investigate how to improve the 

policy manager to be more dynamic. We first decided to develop the policy 
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manager as an internal script, with a simple language defined by ourselves. But we 

realized that we were trying to design something that already exists in many form 

in bibliography. We then decided to try the CLIPS language with a very efficient 

open source implementation. 

We added to the Octopus Schedule the CLIPS environment and we adapted 

the layers to interact with the CLIPS environment. In other words, action that 

Octopus do (by itself or by users request) has become actions invoked by CLIPS 

(for instance, creating a virtual machine, migrating them, deleting them, etc) and 

the environment where Octopus looks to take decisions (hosts performance 

counters, virtual machines, virtual machines performance counters) has become 

the environment (or, in CLIPS language, the facts) of CLIPS. 

 

During all the development time, the Octopus Virtual Machine Manager 

received positive feedbacks. Letting the users creating and managing their own 

virtual machines, with the ability to create them in just few minutes, and the script 

language which allows administrator to implement quotas and policies are the 

most appreciated features of Octopus, which indicates that these features are a 

real need for the today’s virtualization software. 

 

Octopus was first presented at the Cloud Futures 2010 [25], a workshop 

organized by Microsoft in Redmond, WA, USA. The public was very interested in 

the concept of “template-based virtual machine creation” because it allows to 

have a ready-to-use virtual machine in a couple of minutes in a distributed way 

where IT managers are not a bottleneck for the resource allocation process. Also, 

the Octopus policies allow to manage the virtualization servers that keeps unused 

nodes turned off received a very good response; green computing is always 

welcome nowadays. 

 



74 

Octopus was then presented at the International Supercomputing 

Conference (IIS) 2010 in Hamburg, Germany. We tuned Octopus for the occasion 

to deploy a complete High Performance Computing cluster composed by only 

virtual machines, with a template for the head node and a template for the 

computing node. We showed how Octopus can be used to deploy a virtualized 

HPC cluster in less than 10 minutes, have it ready for the computation, and 

calculate an intensive calculation with Ansys Fluent, a flow modelling simulation 

software. It received a very good reception by the public, and many of them 

declared that they would like to have a virtual machine manager like Octopus is 

their organization. Of course, the green computing advantages was another 

vantage point. 

 

Regarding High Performance Computing computation, we found that in 

some times using virtual machines can speed up the computation in a cluster of 

many-cores nodes. 

The hardware we have experimented was a single Gateway prototype of 4 

CPU 8-cores (for a total of 32 cores) and 32Gb of RAM, configured with Windows 

Server 2008 R2 and Microsoft Hyper-V. 

We tried executing a complex simulation in Ansys Fluent 12.1 with 16 

processes with and without shared memory, first as processes in the host 

operating system (without virtualization), then as processes sparse in a virtual 

cluster composed by 16 nodes (virtual machines with 1 core and 1,5Gb of RAM) 

and a head node (vm with 2 cores and 2Gb of RAM) with Microsoft HPC v3. Tried 

executing in both single and double precision. 

All the executions, single precision in shared memory, single precision in 

non-shared memory, double precision in shared memory, double precision in non-

shared memory, was always faster when executed in 16 virtual machines then 

executed as 16 local processes. 
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We also tried the non-shared memory executions with  Microsoft MPI 

(MPMPI, based on MPICH2), and MPI for HP (HPMPI). 

 

Virtual speedup (hw/virtual) 

 HPMPI shared HPMPI MSMPI Average 

single 

precision 

115.17% 109.16% 118.33% 114.22% 

double 

precision 

131.82% 137.42% 139.45% 136.23% 

  

In all the cases, the virtualized cluster has improved the calculation time with 

more speedup in the double precision numbers. The result was hard to explain, 

but we deducted that because some software (like Ansys Fluent) are not able to 

scale linearly increasing arbitrarily the number of core, using single core virtual 

machines we are able to exploit better the powerful of every cores obtain a better 

scalability. 

This result is amazing, and it deserves more investigation in exploiting the 

hardware to improve calculation time for all computations. This is definitely an 

interesting topic to investigate about, as a future work.  

 

More recently, Octopus was presented at the GARR workshop called 

“Calcolo e storage distribuito” in 2012 in Rome, Italy. In this workshop, we focused 

the attention to the using of an expert system (in this case CLIPS) to implement a 

policy manager for a virtual machine scheduler. Attendees was very interested in 

the idea because of the flexibility a scripted expert system can give for scheduling 

large amounts of virtual machines. 
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4.1 Future works 

 

Now that we have developed the software, it’s ready to be deployed in a 

real environment to investigate better what the CLIPS script need to be improved. 

During the development of Octopus, we just assumed generic requests of system 

administrators using both our experience and external feedbacks. But only a real 

deployment can allows us to collect a large amount of feedbacks, diversified by 

different scenario, that allows us to improve the policy manager adding or 

improving the Actions set and to enrich the CLIPS Facts with more usable 

information. 

 

Also, as future works, there are some development improvement that it’s 

possible to apply to Octopus that we preferred to not implement in this first 

release. 

  

First of all, since every currently-used hypervisors support an SDK or provide 

and API to interact with them, it would make sense to implement similar libraries 

like Hyper-F but for the other hypervisors, and make them as plug-in modules. 

Then, implementing a new layer under the Octopus scheduler which generalizes 

the communication with hypervisors, it would be possible to plug new modules to 

communicates with new hypervisors, and make Octopus a scheduler of 

heterogeneous hypervisors servers. 

Of course, in this scenario, migration between nodes that run different 

software virtualization could be impossible; even the simplest migration, which is 

migrating a turned off virtual machine. A turned off virtual machine is basically 

stored only in its virtual hard disk; the virtual machine hardware specification is 

easy to recreate without any noticeable change. In this case, it’s sufficient to 
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migrate the virtual hard disk between nodes, or moving nothing in case of a shared 

storage, to destroy the virtual machine metadata from the source server and 

recreate the same virtual  machine metadata in the destination server, then attach 

to it the old virtual hard disk. But it’s just enough that two different software 

virtualization doesn’t support the same virtual hard disk format to make the 

migration between them impossible. 

Otherwise, using different virtualization software could allow to deploy a 

specific configuration of a virtual machine in a better hypervisor. Deploying a 

Windows virtual machine is surely better with Microsoft Hyper-V, while it doesn’t 

virtualize perfectly a Linux one (primarily for the lack of the Hyper-V integration 

services). And a Mac OS X virtual machine can be deployed (just for license issues) 

only on Apple-based hardware. Octopus could organize the virtualization servers 

into groups, based on the virtualization software, and schedule virtual machine 

into them separately. 

 

Another optimization that Octopus needs is about the Hypervisor Nodes and 

Virtual Machines monitoring, that is the routine that monitors the performance 

counter (memory, cpu, disk) of nodes and virtual machines, and checks the virtual 

machines’ status (running, stopped, paused…). 

The monitoring at now is performed actively by Octopus, which in the main 

loop of the Octopus Scheduler it checks node by node, and virtual machine by 

virtual machines, all those values. This approach is not scalable, and with a large 

number of nodes which can host a very large number of virtual machine, it could 

become a serious bottle neck. 

A new approach could be implementing the monitoring routines 

decentralized, in services installed in the Hypervisors Nodes which read and 

pushes on the Octopus Services all the values read in their local machines. In this 
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way, Octopus doesn’t have to poll the servers continuously and hang up in 

connection timeout if the server becomes unavailable. 

 

During the thesis development, we have already developed the idea to 

snapshot and templatize virtual machines, but we didn’t provide an 

implementation to focus only on the expert system policy manager. 

The idea of snapshotting (or checkpointing) is already a consolidated 

concept in the virtual machine world [26] [27] [28]. It consists of take a snapshot 

(like a quick image) of the virtual machine in a particular moment, saving the 

current disk state and the memory state (including all hardware registers) to have 

the possibility to resume that exact virtual machine state in the future. This could 

be achieved using the hypervisor functionality, which in the current 

implementation is the Snapshot function of Hyper-V, or manually saving the virtual 

machines, copying the saved state in a safe location, differencing the virtual hard 

disk to establish a check-point, then restarting the virtual machine. We didn’t 

investigate the advantages and disadvantages of the two approaches yet. 

The idea of templatization is to make a current virtual machine, in a turned 

off state, a virtual machine template. In this way, users will be able to create 

templates for other users using the virtual machines they have instantiated and 

re-configured. It will be possible to have hierarchies of templates: a clean 

template, which is inherited from specialized templates with different software, 

which are inherited from further-specialized templates with different 

configurations. 

 

At the end, as future development, we must consider improving the security 

implementation, a better authentication method and the creation of user’s roles. 

At this moment it exists only two types of users, simple users and administrators. 

Adding role will make possible to assign different privileges to different users (also 



79 

easier to script in the policy manager) like, for instance, allowing virtual machine 

templatizing only to certain users. 
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Appendix A: 
deployment configuration file sample 

 

<?xml version="1.0" encoding="utf-8"?> 

<VMConf> 

  <GeneralConf> 

    <VmGuid> 

      68cc5f67-2c39-4d50-a960-d52736c85d38 

    </VmGuid> 

    <MachineName>TEST3</MachineName> 

    <AdminPassword>PasswordTest</AdminPassword> 

    <OwnerName>mura</OwnerName> 

    <OctopusServiceAddresses> 

      <Address>octopussched</Address> 

      <Address>fe80::88ee:ed33:c1ba:7d04%17</Address> 

      <Address>fe80::9d9:218c:e26e:7037%10</Address> 

      <Address>2002:8372:2a1::8372:2a1</Address> 

      <Address>192.168.1.1</Address> 

      <Address>131.114.2.161</Address> 

    </OctopusServiceAddresses> 

  </GeneralConf> 

</VMConf> 

 

 

 


