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On the . extensron of rings wrthout dwrsors of zero.

Byj SZENDREl in Szeged

“It is known that any Ting R can be 1mbedded in another rmg

" R with unit element.  But this extensron may - contain. divisors of Zero,

-although the original d_oes not contain any. The following question has
been arisen by. T. SzELE: If the original ring contaitis no divisors of
. zero, is it possible to find an extension R with unit element containing
"no divisors of zero? l) The question is'— to our knowledge — unsolved
'"m general so. far. The subject of this -paper is to solve this nroblem.
It is well-known that ini the case of commutative rings such an’
extension is always possible. In this case R is an integral domain and
_ s0°R can be imbedded in a_field of quotients. MALCEV®), however,
has shown that this does not hold in the noncommutatxve case.

We shall prove the followmg

. Thedrem: Let R be an arbttrary rzng withou! dzvzsors of zero.
Then there extsls one and only one r[/zg R /zavmg the followzng prop-
erties: : ; ‘ L )

1. R co ntams a unit element
2. R contains no divisors of zero, :
3. R is. @ minimal extension of R, that is, there is no proper sub-

" ringof R whtch contains R dnd whtch possesses a unzt element?).

I

1) This problem is an instance of the questlon of - the existence of rmg
extensmns satisfying certain requrrements Another- is the followmg problem, raised
by L. Réper and unsolved so.far: Is ‘there ar extensxon of a given finite ring con-
. -serving the the .invariants of its additive group ?
. %) A. MaLcev, On the rmmersmn of an afgebralc rmg mto a held Matlz
) Annalen 113 (1937), 686--691. .
: 3) In general, i.e. without condition 2 there exrst more than ‘one mmrmal o
extensions. For instance, thie ring R of even mtegers has the following mmrmal
extensions with a unit element: :
" . L. the ring of all integers, . .
2 the ring of the elements of the. “from g—l—ns (geR n an mteorer), sum- and N
product being defined. by .
(e+na)+(¢ +n &=e¢+¢ F(tn )&
(o+ne) (¢ +n's) =00 +ng +no+tnne.
Of these only the first extension has no divisors of zero: Hence, - property 3 alone
: does not imply the umqueness of the extensxon . .
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Moreover, we shall see that R is an ideal'in R and R|R is-iso-
morphic to one of 'the homomorphic images of the ring I of all integers
(that is; either to I or to one of the residue class rings l/(d))

First we make the following remarks.

~All elements (3=0) of the additive group of R have the same
prime order p(=F1) where p is either a positive prime number or zero.
In fact, if not all elements have infinite order there exists an element.
a(+0) of prime order p. Then, for every element £(5=0) of R,

- ep.E=a.pE=0. Hence, by a=0, R havmg no d1v1sors of zero, we

have p§==0.
CIf there exist ‘an mteger m and an element a==0"in R such that'
a0 .. d=nma,

" then on account of (—a)~—(—m) (—a) there exists even a posmve m

satisfying ). Among the " latter ones there is a least one -which. we
shall denote henceforth by m, ‘and at the same time let ¢ R be for
‘the future an -element (3-0) satisfying. (1) with this minimal m. If there
are no. such m and a(=0), we shall put m =0 and @ =0. We note that
not only m, but also & is uniquely determined. Indeed, if @==0, it follows
from (1) that e?t=ma& for every. elem_ent £ of R, hence ef=mé&.
- If B+0.is another element satisfying (1) with the same m, then we
. get similarly g€ =mé. Hence (a—l?)E—O and supposmg E+0, we
~have .a =4, as stated.

- Now we -are oomg to prove the theorem

If d==(p, m)==1, then this implies thé existence of an /m’ with
mm' =1 (modp) Let us’ cons1der the element - f=m a(:l:O) ‘of R
Then by

' ~—(m a)-——m’2a2—m’3ma~—m a—,@
g is a unit element in R. For & denoting an arbitrary element in R
we have E,ﬁ‘z—gﬂ hence §8=:E. Likewise it may be shown thaf ﬂ:—E
Consequently it is unnecessary to extend the ring.
Henceforth we suppose d=1..

*‘Let us consider the set S of the equivalence classes of all symbols
of .the form (¢,n) (¢€R, n integer) with regard to the equlvalence_

' "relatlon (¢, )~ (¢, ') defined by

A , n—n'=td ¢ —-g=ta B (4 integer‘)."
- We defme addmon and multlpllcatlon in’ S by the rules '

| (o.m+ (@) =(e+0¢,n+n),

(e, m (¢, ') =(¢¢' +n¢ +n e,n‘n), _
- It is clear that S is a ring with -(0,1) as. unit element. The eo_rres_-
‘pondence (o, 0)+>o defines an isomorphism between a subring .of S
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and the ring.R. Since R and S have no_elements in common and:S

contains a subring isomorphic to R, the weéll-known theorem of im-

beddmg leads ‘us to a ring R which contains R and which is lsomorphnc

to S such that under thls isomorphism we have : -

. (0 0) 4——)@

. Suppose we have under the same 1somorphlsm

. J (0 ])<—->8

: w1th £€R then we have in general

@ . L (en)yienes _

In the rmg ‘R we. add and multiply in the followmg way with recard '

to me=a (if m, @ are zéro0, this says nothmg) :
: (04 ne)+-(e +ns)—o+o+(n+n)e -

{y+ne)(@+n e)::oo 4o’ 4 g—l—nns a L

We- DI‘OVC that ]\7 has no dr\nsgrc of zero. . - .
If m=0, that is, only the zero element satxsﬁes (1) then assume -
C) ' : (o+n£)(9 +n'e)=0. . o
Hence o0’ 4 no’ +n 0=0 and nn'e=0..The latter 1mp11es eithern=0 -
. or n’=0; suppose n—=0, say. Thus g¢’ +n"9=0. _
' a) If also n’=0, then g¢'=0, consequently g—O or. o' =0,
that is, either o+ ne=0 or o' +n'e=0. '

b) Ifn” -,—O we show ¢=0. Indeed, 1f 00, then 99 ‘=n (—o)(:%:O) '
00’ =n'(—p) o', hence (—yo’ )2——n (—o), this contradicts’ the- hypothes1s

Consequently one’ of the factors in (3) must-be zero.

Fmal'yﬂlet us consider the case m>1 and p=0. Smce me=a,
the elements of Rare of tiie form g—i—ns w1th O<n<m—1 Supposmg

@ - @¥na@+n=0  Q=nn=m—1)
we shall prove that one of the factors must be. zero. We: have by (4)
thh regard to me=a = . : :
m(o+ns)m(o +n e)_(mg—i—na)(mo +n a)—O
_Sxme both factors belono to R, - one of them is zero. Assume for
example mo~+nd. Then 4 . o '
ﬁ ' mga—{—ncﬂ:moa—{—nma—— (éa—{—‘_na)=0 '
nnplles p bemg zero; that ‘ -
) N . ... ea@+na=0,
o } o*a+rnoa= (o +n9)a—
hence by a0, 0°4ne=20, 'that is Co o
‘ (—0)* =n(-—o) 0= n=z=m—1).
S . A15
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This is a contradiction to the minimality of m. Therefore ¢=0 and
n=0, that is, o4+ ne=0 which proves our statement. .

In order to- prove -property 3 in.the theorem, et us consider an
extension R (with - the unit element g and without divisors of zero)
of R. Condition (1), i.e.- @t = ma=-me,a, implies e =me,, 1f'm>0, .
~m is the least positive integer with this property, for if we had a=m,¢,
with' 0 < m, < m, then a®==m, e, a=m,a would contradict the minimality
of m in (1). The equation e =me, defines the same rules of counting
in the set R, of all elements of the form o+ ng (oél? n an integer)
as the rules.in R. Hence the one-to -one correspondence defined by
& € IS an- 1somorphlsm between R, and R. If R is also a_minimal
extensxon then R—R,~ R which implies the umqueness of the extens:on

Fmally, it .is clear that R is an ideal.in R. Furthermore it is easy
to see that R|R=1/(d). In fact, in casé d=1,7 RfR~0 which. shows
that it is unnecessary. to extend. .In the case m=0 |f p=0, RIR: I
) -and it p>1, R/R 1(p). Fmally, in. the case m> 1 and p==0,

' 'R/R Hf(m). =~ o . .
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