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On the extension of rings without divisors of zero. 
By J , .SZENDREI in.Szeged. 

- It-is known that any r i n g . R can .be imbedded in another -ring 
R w i t h unit element. ' But this extension may-contain divisors of zero, 

•although the original does not contain any. The following question has 
been arisen by. T. S Z E L E : If the .original ring contains no. divisors of 
zero, is it possible to find an extension R with unit element containing" 

' no divisors of. z e r o ? ' ) The question is '— to our knowledge — unsolved 
in general so-far: The subject of this paper is to solve this problem. 

It is well-known that in the case of commutative rings such an 
extension is always possible. In this case R is an integral domain and 
so R can be imbedded in a_ field of quotients. MALCEV^), however, 
has shown that this does not hold in the noncommutative case. 

We shall prove the following 

... T h e d r e m : Let R be an arbitrary ring without divisors of zero.' 
Then there exists one and only one ring R having the following prop-
erties: _ ; • . ' ' 

1. R contains a unit element, • . 
2. R contains no divisors of zero, 
3. R is a minimal extension of R, that is, there is no proper., sub-

ring of R which contains R and which possesses a unit element3). 

. This problem is an instance of the' question of • the existence of ring 
extensions satisfying certain requirements. Another is the following prpblem, raised 
by .L. REDEI and unsolved so far : Is there an extension of a given finite ring con-
serving the the invariants of its additive group ? . 

. S) A. MALCEV, On the immersion of an- algebraic ring into a field, Math. 
Annaleti, 113 (1937), 686--691. 

3) In general, i. e. without condition 2, there exist more than one minimal 
extensions. For instance, tlie.ring R of 'even integers has the following -minimal 
extensions with a unit element: - - - - . 

. . 1. the ring of all integers,- _ ^ : • 
- 2. the ring of the elements of the from Q-\-ne (QZR, n an integer), sum and 

product being defined .'by , 
(?+«*) + (£>'+n '£).= e 4 y + ( n + n ' ) . £ > ' • .' ' . 
(p+n e) (p' n' E) = p Q' •-)- n ()' -f- n'.Q -)- n n' e. 

Of these only the first extension has no divisors of zero: Hence, • property 3 alone 
does not imply the uniqueness of the extension. ' . • ' . . ' 
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Moreover, we shall see that R is an ideal 'in R and R[R is iso-
morphic to one of the homomorphic images of the ring I of all integers 
(that is,• either to 1 or to one of the residue class rings Ij{d)). 

First we make the. following- remarks. 
AH elements (4=0) of the additive group of R have the same 

prime order />(4=1) where p is either a positive prime number or zero. 
In fact, if not all elements have infinite order there exists an element, 
a(={=0) of prime order p. Then, for every element £(4=0) of R, 
ap-% = a-p% = 0. Hence, by «4=0, R having no divisors of zero, we 
have p% = 0. 

If there exist an integer m ' a n d an element a4=0 in R such "that 
(1) . a2==ma, 

. then on account of (— a)2 = (—m).(— «) there exists even a positive m 
satisfying (1). Among the latter ones there is a least one which wè 
shall denote henceforth by M, "and at the same time let CL^R be . fo r 
the future an element (4=0) .satisfying (1) with this minimal, m. If there 
are no. such m and a (4=0), we shall put m = 0 and a = 0. We note that 
not only m, but also a is Uniquely determined. Indèed, if «4=0, it follows 
from (1) that a2% = ma£ for every, element | of R, hence = 
If /?=j=0. is another element satisfying (1) with the same m, then we 

; get similarly = Hence (a—/?)§ = 0 and .supposing £=¡=0, we 
- havé .a = /î, as 's tated. ' • • ' • ' . • . 

• Now we are going to prove the theorem. 
If d=(p, m)=\, then this implies thé existence of an m' with 

mm'~ 1 ( m o d p ) . Let us consider' the element /? = m'a (4=0) 'of R. 
Then by . 

/?2 == (m' a)2 = rn'2 a2 = m'2m a — m' a = /3. 

is a unit element in R. For | denoting an arbitrary element in R 
we have £/?2 = £/î, hence £ / ?=£ . Likewise it may be shown thai 
Consequently it is unnecessary to extend the ring, . 

Henceforth we suppose (/4=1-, . • 
v L e t us consider the set 5 of the equivalence classes of all symbols 

of .the form (ç,n) (q£R, n integer) with regard to the equivalence 
relation (Q, n) ~ (Q', n') defined by 

n—h'^=td q' — Q — ta (t integer)-

We define addition and multiplication in S by ' the rules 

( ( > , « ) + ( < > ' ' 0 : ( C + ( / , « + " ' ) , . . . 
(Q, ")(?',»') = ((?'?' fnç' + n' Q, nn'J. 

It is clear that 5 is a ring with (0,1) as . unit element. The corres-
pondence (0, defines an isomorphism between a subring-of S 
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and the ring./?. Since R and 5 have no elements in common and S 
contains a subring isomorphic to /?, the well-known theorem of im-
bedding leads us to a ring R which contains / ? a n d which is isomorphic 
to S such that under this isomorphism we have - -

° (P, 

. Suppose we have under the same isomorphism 

• . . ' : 

with E^R, then we have in general 

(2 ) • . • (», « ) < '{»M-/l £. 

In the r ing ' / ? we add and multiply .in the following way with regard 
to me = a (if m, a are zero, this says noth ing) : . " 

• • • (? + n £)+-(?: + n' E) = p + p' + {n + n ' ) E. 
(y + ne) (p' + n'e)'= gg' + ng' + n'g + nn'£.. v: 

We prove that -R. has no divisors of zero. ' ; 
• If m = 0, that is, only the zero element satisfies (1) then assume • 

(3 ) ( p + > £ ) ( p ' + n ' £ ) = 0 . ' 

Hence pp.' + «p' + « ' p = 0 and n n ' £ . = 0. The latter implies either"« = 0 
or «' = 0 ; suppose n = 0, say. Thus pp '4- .« '« = 0. 

a) If also n' = 0, then grf' — O, consequently. p = 0 or. g'= 0, 
that is, either p- j -«£ = 0 or p' + « 'e = 0. • 

; b) If n'4=0, we show p = 0 . Indeed, if p=l=0, then p p ' = . « ' ( — p ) (4=0), 
pp ' 2 = n ' (—p) p',. hence ( — g ' ) 2 = n'(—p), this contradicts the hypothesis. 

Consequently .one of the factors in (3) must be zero. 
Finaliy^let us consider the case m> 1 and p = 0. Since m e = a , 

the elements of R are of the.form p4 -«£ .w i th 0<,n<±m—\. Supposing 

(4) - . ' (p-J - /2f ) ( p ' - J - n ' f ) = 0 ( O ^ n , n ' ^ m — 1) 

we shall prove that one. of the factors must be. zero. We have by (4) 
with regard to me a 

m(p4- ne) m(g' + /z'f) = (/7ip4- na)(mg' -j-n'a) = 0 . 

Since both factors belong to R, one of them is zero. Assume, for 
example, mo-\-nt i . Then • : 

m p a 4- h a2 = m o a 4- n m a = m (g a -J- n a) = 0 
implies, p being zero, that . • 
" • . . . \ 

. (5) gri-f na -Q, 

g-a-\-nga=(o-+n(>) a = 0,. • • ' 

hence, by ce4=0> i>2 4 - « = .0, that is • 
(-oy-^n(-g) ' (0<n^m-\). 

A 15 



234 J. Szendrei: Extension of rings. 

This is a contradiction to the minimality of m. Therefore g = 0 a n d 
77 = 0, that is, p + nE = 0 which proves our statement. 

In order to- prove property 3 in. the theorem, let us consider an 
extension R (with • the unit element el and without divisors of zero) 
of R. Condition (1). i.e.-az — ma—--m£1a, implies a — m e , , l f ' m > 0 , 
m is the least positive integer with this property, for if we had a = mls( 

wi th '0 </72, < m, then o2 = m,£1a = /n,a would contradict the minimality 
of /7i in (1). The equation a = mel defines the same rules of counting 
in the set of all elements of .the form (> + /?£, (g^R, n an integer) 
as the rules in R. Hence the one-to-one correspondence defined by 

is an isomorphism between 7?, and R. If R is also a . minimal 
extension, then R = R z R which implies the uniqueness of the extension. 

Finally, it .is- clear that R is an ideal , in R f u r t h e r m o r e it is easy 
to see that RjRxI\(d). In fa.ct, in case d== 1,- RjRz0 which-_shows 
that it is unnecessary, to extend. In the case m = 0 if p = 0, RjR - / , 
and ' if p>\, RjRzIKp). Finally, in. the case m > 1 and /7 = 0, 

•RIRzfl(ni). ' ' . 

(Received August 24, 1950.) 


