On the extension of rings without divisors of zero.

By J. SZENDREI in Szeged.

It is known that any ring R can be imbedded in another ring \overline{R} with unit element. But this extension may contain divisors of zero, although the original does not contain any. The following question has been arisen by T. SZELE: If the original ring contains no divisors of zero, is it possible to find an extension \overline{R} with unit element containing no divisors of zero?¹) The question is — to our knowledge — unsolved in general so far. The subject of this paper is to solve this problem.

It is well-known that in the case of commutative rings such an extension is always possible. In this case R is an integral domain and so R can be imbedded in a field of quotients. MALCEV²), however, has shown that this does not hold in the noncommutative case.

We shall prove the following

Theorem: Let R be an arbitrary ring without divisors of zero. Then there exists one and only one ring \overline{R} having the following properties:

1. \overline{R} contains a unit element,

2. \overline{R} contains no divisors of zero,

3. \overline{R} is a minimal extension of R, that is, there is no proper subring of \overline{R} which contains R and which possesses a unit element³).

1) This problem is an instance of the question of the existence of ring extensions satisfying certain requirements. Another is the following problem, raised by L. REDEI and unsolved so far: Is there an extension of a given finite ring conserving the the invariants of its additive group?

²) A. MALCEV, On the immersion of an algebraic ring into a field, *Math.* Annalen, 113 (1937), 686-691.

³) In general, i. e. without condition 2, there exist more than one minimal extensions. For instance, the ring R of even integers has the following minimal extensions with a unit element:

1. the ring of all integers,

2. the ring of the elements of the from $e + n \varepsilon$ ($e \in R$, *n* an integer), sum and product being defined by

$$(\varrho+n\varepsilon)+(\varrho'+n'\varepsilon)=\varrho+\varrho'+(n+n')\varepsilon,$$

$$(\varrho + n\varepsilon) (\varrho' + n'\varepsilon) = \varrho \varrho' + n\varrho' + n'\varrho + nn'\varepsilon$$

Of these only the first extension has no divisors of zero. Hence, property 3 alone does not imply the uniqueness of the extension.

Moreover, we shall see that R is an ideal in \overline{R} and $\overline{R}|R$ is isomorphic to one of the homomorphic images of the ring I of all integers (that is, either to I or to one of the residue class rings I|(d)).

First we make the following remarks.

All elements (± 0) of the additive group of R have the same prime order $p(\pm 1)$ where p is either a positive prime number or zero. In fact, if not all elements have infinite order there exists an element. $\alpha(\pm 0)$ of prime order p. Then, for every element $\xi(\pm 0)$ of R, $\alpha p \cdot \xi = \alpha \cdot p \xi = 0$. Hence, by $\alpha \pm 0$, R having no divisors of zero, we have $p \xi = 0$.

If there exist an integer *m* and an element $\alpha \neq 0$ in *R* such that (1) $\alpha^2 = m\alpha$,

then on account of $(-\alpha)^2 = (-m)(-\alpha)$ there exists even a positive *m* satisfying (1). Among the latter ones there is a least one which we shall denote henceforth by *m*, and at the same time let $\alpha \in R$ be for the future an element (± 0) satisfying (1) with this minimal *m*. If there are no such *m* and $\alpha(\pm 0)$, we shall put m = 0 and $\alpha = 0$. We note that not only *m*, but also α is uniquely determined. Indeed, if $\alpha \pm 0$, it follows from (1) that $\alpha^2 \xi = m\alpha \xi$ for every element ξ of *R*, hence $\alpha \xi = m\xi$. If $\beta \pm 0$ is another element satisfying (1) with the same *m*, then we get similarly $\beta \xi = m\xi$. Hence $(\alpha - \beta)\xi = 0$ and supposing $\xi \pm 0$, we have $\alpha = \beta$, as stated.

Now we are going to prove the theorem.

If d = (p, m) = 1, then this implies the existence of an m' with $mm' \equiv 1 \pmod{p}$. Let us consider the element $\beta = m' \alpha (\pm 0)$ of R. Then by

$$\beta^2 = (m'\alpha)^2 = m'^2\alpha^2 = m'^2m\alpha = m'\alpha = \beta$$

 β is a unit element in R. For ξ denoting an arbitrary element in R we have $\xi\beta^2 = \xi\beta$, hence $\xi\beta = \xi$. Likewise it may be shown that $\beta\xi = \xi$. Consequently it is unnecessary to extend the ring.

Henceforth we suppose $d \neq 1$.

[°] Let us consider the set \overline{S} of the equivalence classes of all symbols of the form (ϱ, n) $(\varrho \in R, n \text{ integer})$ with regard to the equivalence relation $(\varrho, n) \sim (\varrho', n')$ defined by

$$n-n'=td$$
 $\varrho'-\varrho=t\alpha$ (t integer).
We define addition and multiplication in \overline{S} by the rules

$$(\varrho, n) + (\varrho', n') = (\varrho + \varrho', n + n'),$$

 $(\varrho, n) (\varrho', n') = (\varrho \varrho' + n \varrho' + n' \varrho, nn')$

It is clear that \overline{S} is a ring with (0, 1) as unit element. The correspondence $(\varrho, 0) \leftrightarrow \varrho$ defines an isomorphism between a subring of \overline{S}

Extension of rings.

and the ring R. Since R and \overline{S} have no elements in common and \overline{S} contains a subring isomorphic to R, the well-known theorem of imbedding leads us to a ring \overline{R} which contains R and which is isomorphic to \overline{S} such that under this isomorphism we have

$$(\varrho, 0) \leftrightarrow \varrho$$
.

Suppose we have under the same isomorphism

 $(0, 1) \leftrightarrow \varepsilon$

with $\varepsilon \in \overline{R}$, then we have in general

(2)

 $(\varrho, n) \leftrightarrow \varrho + n \varepsilon.$

In the ring \overline{R} we add and multiply in the following way with regard to $m\varepsilon = \alpha$ (if m, α are zero, this says nothing):

$$(\varrho + n\varepsilon) + (\varrho' + n'\varepsilon) = \varrho + \varrho' + (n+n')\varepsilon.$$

$$(\gamma + n\varepsilon) (\varrho' + n'\varepsilon) = \varrho \varphi' + n\varrho' + n'\varrho + nn'\varepsilon.$$

We prove that \overline{R} has no divisors of zero.

If m = 0, that is, only the zero element satisfies (1) then assume (3) $(\rho + n\varepsilon) (\rho' + n'\varepsilon) = 0.$

Hence $\varrho \varrho' + n \varrho' + n' \varrho = 0$ and $n n' \varepsilon = 0$. The latter implies either n = 0 or n' = 0; suppose n = 0, say. Thus $\varrho \varrho' + n' \varrho = 0$.

a) If also n' = 0, then $\varrho \varrho' = 0$, consequently, $\varrho = 0$ or $\varrho' = 0$, that is, either $\varrho + n\varepsilon = 0$ or $\varrho' + n'\varepsilon = 0$.

b) If $n' \neq 0$, we show $\varrho = 0$. Indeed, if $\varrho \neq 0$, then $\varrho \varrho' = n'(-\varrho) (\neq 0)$, $\varrho \varrho'^2 = n'(-\varrho) \varrho'$, hence $(-\varrho')^2 = n'(-\varrho)$, this contradicts the hypothesis.

Consequently one of the factors in (3) must be zero.

Finally let us consider the case m > 1 and p = 0. Since $m\varepsilon = \alpha$, the elements of \overline{R} are of the form $\varrho + n\varepsilon$ with $0 \le n \le m - 1$. Supposing (4) $(\varrho + n\varepsilon) (\varrho' + n'\varepsilon) = 0$ $(0 \le n, n' \le m - 1)$ we shall prove that one of the factors must be zero. We have by (4)

with regard to $m\varepsilon = \alpha$

$$m(\varrho + n\varepsilon) m(\varrho' + n'\varepsilon) = (m\varrho + n\alpha) (m\varrho' + n'\alpha) = 0.$$

Since both factors belong to R, one of them is zero. Assume, for example, $m\varrho + n\dot{\alpha}$. Then

 $m\varrho \alpha + n\alpha^2 = m\varrho \alpha + nm\alpha = m(\varrho \alpha + n\alpha) = 0$ implies, p being zero, that

(5) $\varrho \,\dot{a} + n \,a = 0,$

$$^{2}\alpha + n \varrho \alpha = (\varrho^{2} + n \varrho) \alpha = 0,$$

hence, by $\alpha \neq 0$, $\varrho^2 + n\varrho = 0$, that is

$$(-\varrho)^2 = n(-\varrho)$$
 $(0 \le n \le m-1).$

This is a contradiction to the minimality of *m*. Therefore $\varrho = 0$ and n = 0, that is, $\varrho + n\varepsilon = 0$ which proves our statement.

In order to prove property 3 in the theorem, let us consider an extension \overline{R} (with the unit element ε_1 and without divisors of zero) of R. Condition (1) i. e. $\alpha^2 = m\alpha = m\varepsilon_1 \alpha$, implies $\alpha = m\varepsilon_1$, lf m > 0, m is the least positive integer with this property, for if we had $\alpha = m_1\varepsilon_1$ with $0 < m_1 < m$, then $\alpha^2 = m_1\varepsilon_1 \alpha = m_1 \alpha$ would contradict the minimality of m in (1). The equation $\alpha = m\varepsilon_1$ defines the same rules of counting in the set $\overline{R_1}$ of all elements of the form $\rho + n\varepsilon_1$ ($\rho \in R$, n an integer) as the rules in \overline{R} . Hence the one-to-one correspondence defined by $\varepsilon_1 \leftrightarrow \varepsilon$ is an isomorphism between $\overline{R_1}$ and R. If \overline{R} is also a minimal extension, then $\overline{R} = \overline{R_1} \approx \overline{R}$ which implies the uniqueness of the extension. Finally, it is clear that R is an ideal in \overline{R} . Furthermore it is easy

to see that $\overline{R}/R \approx I/(d)$. In fact, in case d = 1, $\overline{R}/R \approx 0$ which shows that it is unnecessary to extend. In the case m = 0 if p = 0, $\overline{R}/R \approx I$, and if p > 1, $\overline{R}/R \approx I/(p)$. Finally, in the case m > 1 and p = 0, $\overline{R}/R \approx I/(m)$.

(Received August 24, 1950.)