On the extension of rings without divisors of zero.

By J, .SZENDREI in.Szeged.

 \cdot It is known that any ring R can be imbedded in another ring \overline{R} with unit element. But this extension may contain divisors of zero, although the original does not contain any. The following question has been arisen by. T. SzELE: If the original ring contains no divisors of zero, is it possible to find an extension \overline{R} with unit element containing no divisors of zero?¹) The question is'— to our knowledge — unsolved in general so-far: The subject of this paper is to solve this problem.

It is well-known that in the case of commutative rings such an extension is always possible. In this case *R* is an integral domain and so R can be imbedded in a field of quotients. MALCEV²), however, has shown that this does not hold in the noncommutative case.

We shall prove the following

... T h e d r e m : *Let R be an arbitrary ring without divisors of zero.'* Then there exists one and only one ring \overline{R} having the following prop*erties: _ ; • . ' '*

1. R contains a unit element, • .

2. *R contains no divisors of zero,*

3. \overline{R} is a minimal extension of R, that is, there is no proper sub*ring of R which contains R and which possesses a unit element³).*

. This problem is an instance of the' question of • the existence of ring extensions satisfying certain requirements. Another is the following problem, raised by .L. R**EDEI** and unsolved so far : Is there an extension of a given finite ring conserving the the invariants of its additive group?

. ^S) A. MALCEV, On the immersion of an- algebraic ring into a field, *Math. Annalen*, 113 (1937), 686-691.

3) In general, i. e. without condition 2, there exist more than one minimal extensions. For instance, the ring R of even integers has the following minimal extensions with a unit element:

. 1. the ring of all integers, \cdot

- 2. the ring of the elements of the from $\rho + n\varepsilon$ ($\rho \varepsilon R$ *, n* an integer), sum and product being defined .'by ,

$$
(\varrho+n\varepsilon)+(\varrho'+n'\varepsilon)=\varrho+\varrho'+(n+n')\varepsilon,
$$

$$
(\varrho+n\epsilon)(\varrho'+n'\epsilon)=\varrho\varrho'+n\varrho'+n'\varrho+n\pi'\epsilon.
$$

Of these only the first extension has no divisors of zero: Hence, • property 3 alone does not imply the uniqueness of the extension.

232 **J. Szendrei**

Moreover, we shall see that R is an ideal in \overline{R} and \overline{R} is iso*morphic to one of the homomorphic images of the ring I of all integers (that is, either to* \overline{I} *or to one of the residue class rings I|(d)).*

First we make the following remarks.

All elements (40) of the additive group of R have the same prime order $p(\neq 1)$ where p is either a positive prime number or zero. In fact, if not all elements have infinite order there exists an element. α (\neq 0) of prime order *p*. Then, for every element ξ (\neq 0) of *R*, $\alpha p \cdot \xi = \alpha \cdot p \xi = 0$. Hence, by $\alpha \neq 0$, R having no divisors of zero, we have $p\xi = 0$.

If there exist an integer m and an element $\alpha+0$ in R such that (1) $\alpha^2 = m\alpha$,

then on account of $(-\alpha)^2 = (-m)(-\alpha)$ there exists even a positive m satisfying (1). Among the latter ones there is a least one which we shall denote henceforth by m , and at the same time let $\alpha \in R$ be for the future an element (40) satisfying (1) with this minimal m. If there are no such m and α (\neq 0), we shall put $m = 0$ and $\alpha = 0$. We note that not only m, but also α is uniquely determined. Indeed, if $\alpha \neq 0$, it follows from (1) that $\alpha^2 \xi = m \alpha \xi$ for every, element ξ of R , hence $\alpha \xi = m$ If $\beta=0$ is another element satisfying (1) with the same m, then we get similarly $\beta \xi = m \xi$. Hence $(\alpha - \beta)\xi = 0$ and supposing $\xi = 0$, we have $\alpha = \beta$, as stated.

• Now we are going to prove the theorem.

If $d=(p, m)=1$, then this implies the existence of an m' with $mm' \equiv 1 \pmod{p}$. Let us consider the element $\beta = m' \alpha (\neq 0)$ of *R*. Then by

$$
\beta^2 = (m' \, a)^2 = m'^2 \, a^2 = m'^2 \, m \, a = m' \, a = \beta.
$$

 β is a unit element in R. For ξ denoting an arbitrary element in R we have $\xi \beta^2 = \xi \beta$, hence $\xi \beta = \xi$. Likewise it may be shown that Consequently it is unnecessary to extend the ring.

Henceforth we suppose $d+1$.

 \degree Let us consider the set \overline{S} of the equivalence classes of all symbols of the form (ρ, n) $(\rho \in R, n$ integer) with regard to the equivalence relation $(\varrho, n) \sim (\varrho', n')$ defined by

 $n - n' = td$ $\rho' - \rho = ta$ (*t* integer). We define addition and multiplication in \overline{S} by the rules

$$
(e, n) + (e', n') = (e + e', n + n'),(e, n) (e', n') = (e e' + n e' + n' e, nn').
$$

It is clear that \overline{S} is a ring with $(0, 1)$ as unit element. The correspondence $(e, 0) \leftrightarrow e$ defines an isomorphism between a subring of S

;

Extension of rings. 233

and the ring.*R*. Since *R* and \overline{S} have no elements in common and \overline{S} contains a subring isomorphic to R , the well-known theorem of imbedding leads us to a ring \overline{R} which contains R and which is isomorphic to \overline{S} such that under this isomorphism we have \cdot (e, 0) \Leftrightarrow e.

. Suppose we have under the same isomorphism

 $(0, 1) \leftrightarrow \varepsilon$

with $\epsilon \in \overline{R}$, then we have in general

(2) $(\rho, n) \leftrightarrow \rho \leftarrow n \varepsilon.$

In the ring \overline{R} we add and multiply in the following way with regard to $m\epsilon = \alpha$ (if m, α are zero, this says nothing):

$$
(\varrho+n\varepsilon)+(\varrho'+n'\varepsilon)=\varrho+\varrho'+(n+n')\varepsilon.
$$

$$
(\gamma+n\varepsilon)(\varrho'+n'\varepsilon)=\varrho\varrho'+n\varrho'+n'\varrho+n\pi'\varepsilon.
$$

We prove that \overline{R} has no divisors of zero.

If $m = 0$, that is, only the zero element satisfies (1) then assume (3) $(\rho + n\varepsilon) (\rho' + n'\varepsilon) = 0.$

Hence $\varrho \varrho' + n \varrho' + n' \varrho = 0$ and $n n' \varepsilon = 0$. The latter implies either $n = 0$ or $n' = 0$; suppose $n = 0$, say. Thus $\rho \rho' + n' \rho = 0$.

a) If also $n' = 0$, then $\varrho \varrho' = 0$, consequently. $\varrho = 0$ or. $\varrho' = 0$, that is, either $\rho + n\varepsilon = 0$ or $\rho' + n'\varepsilon = 0$.

b) If $n' \neq 0$, we show $\rho = 0$. Indeed, if $\rho \neq 0$, then $\rho \rho' = n'(-\rho) \, (+0)$, $\varrho \varrho'^2 = n'(-\varrho) \varrho'$, hence $(-\varrho')^2 = n'(-\varrho)$, this contradicts the hypothesis.

Consequently .one of the factors in (3) must be zero.

Finally^{-let} us consider the case $m>1$ and $p=0$. Since $m\epsilon = \alpha$, the elements of \overline{R} are of the form $\rho + n\varepsilon$ with $0 \le n \le m-1$. Supposing (4) $(e + n\varepsilon) (e' + n'\varepsilon) = 0$ $(0 \le n, n' \le m-1)$ we shall prove that one of the factors must be zero. We have by (4)

with regard to $m \epsilon = \alpha$

$$
m(\varrho+n\varepsilon) m(\varrho'+n'\varepsilon) = (m\varrho+n\alpha) (m\varrho'+n'\alpha) = 0.
$$

Since both factors belong to *R,* one of them is zero. Assume, for example, $m\rho + n\alpha$. Then : 1999 - 1999 - 1999

$$
m\varrho\alpha + n\alpha^2 = m\varrho\alpha + nm\alpha = m(\varrho\alpha + n\alpha) = 0
$$

s. p being zero, that

 $implic$ \mathbb{R} , and the set of the set

$$
\varrho\alpha+n\alpha=0,
$$

$$
\varrho^2 a + n \varrho a = (\varrho^2 + n \varrho) a = 0,
$$

hence, by $\alpha=0$, $\alpha^2+n\rho=0$, that is

$$
(-\varrho)^2 = n(-\varrho) \qquad \qquad (0 \le n \le m-1).
$$

This is a contradiction to the minimality of m. Therefore $\rho = 0$ and $n = 0$, that is, $\rho + n\varepsilon = 0$ which proves our statement.

In order to prove property 3 in the theorem, let us consider an extension R (with the unit element ε_i and without divisors of zero) of *R*. Condition (1) i. e. $\alpha^2 = m\alpha = m\epsilon_1\alpha$, implies $\alpha = m\epsilon_1$, If $m > 0$, *m* is the least positive integer with this property, for if we had $\alpha = m_1 \epsilon$. with $0 < m_1 < m$, then $\alpha^2 = m_1 \varepsilon_1 \alpha = m_1 \alpha$ would contradict the minimality of *m* in (1). The equation $\alpha = m\epsilon_1$ defines the same rules of counting in the set \overline{R}_1 of all elements of the form $\rho + n\epsilon_1$ ($\rho \in R$, n an integer) as the rules in \overline{R} . Hence the one-to-one correspondence defined by $\cdot \varepsilon_1 \leftrightarrow \varepsilon$ is an isomorphism between \overline{R}_1 and *R*. If \overline{R} is also a minimal extension, then $\overline{R}=\overline{R}z\overline{R}$ which implies the uniqueness of the extension. Finally, it is clear that R is an ideal in \overline{R} Furthermore it is easy

to see that $\overline{R}/R \approx I/(d)$. In fact, in case $d=1$, $\overline{R}/R \approx 0$ which shows that it is unnecessary to extend. In the case $m = 0$ if $p = 0$, $\overline{R}/R = I$, and if $p>1$, $\overline{R}R \approx I/(p)$. Finally, in the case $m > 1$ and $p = 0$, $\overline{R}/R \approx I/(m)$.

(Received August 24, 1950.)