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On some’sequences defined by recurrence.*
By J. ACZEL in Szeged.

1.1, We start from the well known fact‘), that the sequence
defined by the recurrence formula

t)) an‘_—_..'i'g_a':l. (a, and a, are arbitrary)
can be written in the form ’ e N
- a+2a 2 Iyt

2 a"=_L+_3__9+_3_(al~__a’) (— -2—) .

In fact, let us make an attempt with a,=a+ b2"-'. Substituting
this in (1), we obtain 2a+4-2b2"'=a -+ bz +a+b2"? 22°—2—1=0.

n—-1
The roots of this equation are 1 and ——i. Thus a-,,—-—fa—l—b(—- —;-) ,

2

: 2
and 'in parficular @,=a-6 and a,=a—~b2—. Thus a——:—_—‘l%—‘IQ—,
b——f—%—(al—ag) and this gives the result announced.

(2) implies that a, converges and lim a,,=gli32—02—.2)

I.2. This can be proved also without using the explicit form (2). -

Let a,<a,, then we have evidently a,<a;<...<a, ,<0,,=.. -,
dy=a=. >g%~ga2m;..., and ay_,<a,,. So both a,;_, and a,; are
convergent, Ay ,— 0, 0;—A; ea<A. But e<A is impossible, for

a2,+1=%(d2,_1+a2,) woud imply a=%(a+A)> a. Thus a=A=a=lima,,
I.3. The value of the limit a as a function x(a,, a,) of the initial
values a,, @, can be found as follows. It has to satisfy the functional
equation u(a,, a,) = u(a,, as), i.e. ‘u(al,ag)=y(a,,—;f(a,+a2)]. _
We might seek g in the form ‘ . . )
) B : e ) =aqx+qy @ta=1),

* The essenhally new parts of this paper are iI1.2 and lll. — The parts I

and (partly) IL I contain weilknown-results ‘which can be found in almost any book
on Finite Defferences. They serve here for better understanding of what follows.
1) Cf. e. g.E. Cesiro—G. KowaLewsKy, Elementares Lehrbuch der algebraischen
Analysis und der Infm:leszmalrechnung (Leipzig, 1904), p. 105.
2) (2) shows that the difference in the approximation a, of lim a, forms a geo-

metric sequence with the quotient qa—-%
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for the linearity of the process implies that of u and evndently u(a,a)=a.

. This glves .0, + g.a, = q1a2+(}2—‘1—‘¥“‘—, thus q1_1/3, q.==2/3,

#(a,, @)= ‘5 (0, +2a). | _ R
A more elementary proof is the following:
We multiply both sides of (1) by 2 and add a,,_1 to both sides.~
We get a,_,4-2a,=a,_,+ 24a,_,. Repeating the recurrenceéwe have finally
a,_ 1-}—2a ——al+2a2 This gives for n>oo: a-<4-2a=a,+2a,, thus
== 3 (01’\" 20") 3) . ‘ .
I. 4. Our results hold not only for the arithmetic mean, but also for any

(f ) -2i~f ) ) ( ];

function of f), e. g. for the geometric mean where f(t)=logt, the
harmonic mean where f(¢) = 1/¢ and the root-mean-power where f(f)=t~

) f (f(cn-—ﬁ) "Zf(cn-l) ), fe)= flc. ) ;_f(cn—l) ,

““quasi-arithmetic” mean‘ m(x, y)=f-} t is the inverse

hen

In fact, if ¢,=

- fle) =a,,.satisﬁes a, :—a-":ﬁ"—‘. Thus

¢, =f" [M ( fle)— f(%))( .)"‘1] ;

" ¢, converges and .lim c,,=f’1( . E.g., for the geometric mean

n-271 3
— ¢ 5. A
Vc,,_‘,c,,_l, we have c,,——[clcg( 2}( 7) ] , lime,=Ve .
} By .

L5
. _ : :
II. 1.-We generalize our problem as follows. Let -
{4) qn=p1gn—k A Poln it P 1an_2+pkya,._1' ;

PPt Pre 17+ Pre
@, a,...,a, are arbitrary; py,...,p,=0.)

" Let us tr_v, the methods of 1.1 and conjecture -

(5) | a, : a-4-b,27 b, z"_l AT o MY+t B
Substituting (5) in (4) we get : o
(Pitpat . PP =P —p 2~ —pyz—p, =0

As z=1 is a root, we can divide by (2—1) and get
©) (p1+p2+-"+pk—1+p_k)zk_']+(p1+p2+---+pk_—l)zk_2'i—"'+(pl+p2)z+px20- .
The roots of this equation are the numbeis z,, z,, . . ., Z,_; occurring in (5).
The constants in (5) are solutions of the _lineaf system
a,=a+ b2+ bzt b2 (i_==1,2,...‘,k).

© 8) It was St. FeNYG who called the author's attention to the problem L 3.
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Multiplying the i-th equation by p,p,+-.. +p, and adding all equatlons

we get

-

pa+(pi+pas+-. . -+(p1+P2+-'- . +pl:)ak=
=a[p+(ptp)+.. FHptp+ - PN
+olp+ (o +p)a+. (o tpt o P
+oalp+ (o +p) 2+ (P04 )2

As 2(,2,,...,2,_, are roots of (6), the coefficients of b;, b,,..., b,_, are O;
thus

— D010+ (D, P) A+ ... (D Pt D) O —
P (pp)+ (o Pt )
_Pat ()t A (Pt Pda
: kpi+ (k= VD) pot.. 4200+ D

The coefficients of the equation (6) are positive and decreasing

and thus by a well known theorem of ENEsTROM and KAKEYA*) all its

roots 2,,2,,...,%_, are of ‘an absolute value less than 1. This implies

that if n>oco, all members on the right of (5) tend to O except a®);
thus a, converges and

p1a1+(p1 +p2)ao+ A tpet . +pk)ak -

» HOFD) (Pt R) T

lfeg a=@..+a_ ..+ .. +a,_,+a.)k then ' )

a,+-2at.. .+ (k- 1)a,_,+ka, __al+20:,—{— +(k——1)aL l-i—ka,L
124, . Fk—D)+k. k(k+1)i2

IL. 2. The convergence of a, can dgam be proved also directly. We

give the proof not only for arithmetic means, not even-only for quasi-arith-
metic ones, but for any sequence defined by a,=m(a,_;, Gu_zsz,--.. Qur)

lima,=—a=

where we postulate only that the mesn -m(x,, x,,. .., X;) be 3) reflexive.

m(x, x,...,x)=x, b) strictly increasing, c) con!muoas The first 1wo
propertles 1mp1y also d) internity: ‘
min (X, Xa,. .., X) SM(Xy, Xoy « - ., %)< MAX (X1, Xobo ooy K)o -
To prove the convergence of a,, consider ;
an_ mln (an—k! n—k+17 LI ) ﬂ 1) and A == max (an——L) n k+1y 2+ ) an—l),;

clearly @,<a,<'A, Using d) and the fact, that if we drop one of the
numbers the minimum of the rem?inder can not be smaller, we get

1) G. ExesTrOM, Hiérledning af en allmidn formel for antalet pensionidrer som
vid en godtycklig’ tldpunkt forefinnas -inom en sluten pensionskassa, Ofversigt af”
Kongl. Svenska Vetenskaps-Akademien Firhandlingar, 50 (1893) pp. 405- 415; Re-
marque sur un théoréme relatif aux racines de l'équation ol tous les coefficients )
sont réels et positifs, Tohdku Math. Journal, 18 (1920), pp. 34-36. S. Kakeva, On
the limits of the roots -of an algebraic equation with positive coeffxc:ents, Ibzdem, 2:

. (1912), pp. -40—142.

5) We have counted throughout 1II. 1. as if (6) had only simple roots, but also
the presence of multiple roots makes no difficulty-as also nizn> 0 with n > if |2} <1.
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. e, = min (Q,_;, Qu_ys1y. . A1) = N
=Min [@ gy Qors1r- + 01y m(b,,_,_.,a,,_m,. c @)= )
=Min [@, ;, Qs> -+ oy Qpe1y Q] = MIN(Q,_piqy e oy Ougy Q) = Cpis
thus e, increases. One sees similarly that A, decreases. Thus e, and A,
are both convergent: e,~a, A, +A;e<A. Bugg< A is.impossible, because
if a,=a, is the smallest among a,_;, @,_441,-..,a,_; and a,=A; is the ™
greatest among @;_, @;_t41,---,@,_,, then by b) R
=i (A, o s Ar) =C=M(Q;_, Q;_ps1, 0,03, Ay a,'H....,‘a,.'_l)g
=m(a;, ..., ¢,A; ... ).
If n>o0, also j~oo and by ¢) we would have e =m (e, a,..,q, A, @,...,¢) > a.
- This is-impossible and therefore e=A, which completes our proof.

The weighted aritmethic mean m (x,,..., %) =(2.p:x,){ 2'p} satisfies
a) b), ¢) and-this assures the convergence of the sequence (4).

The result of II. 2 holds also if in the recurrence formula
a,=m(a,_,,...,a,,) the mean value function m iS not the same for
every n,supposed that either only a finite number of mean value func-
. tions vary, or if in the infinity of/ m-s there is only a finite* number of
functions which*do not occur infinitely many times.

Also the analogues of . 3 and of 1. 4 can be constructed similarly

as those of 1. 1 in 1. 1. We leave the details to the.reader.

III. We ‘point out the interesting fact, that the theorem of ENESTROM
-and KAKEYA*) is a consequence of Il: 2 (and equivalent to it).
* . In fact, every equation with positive decreasing coefficients can be
written in the form (py+ Py =+ ... + P+ P2+ (PrFPot o D) P2
+... 4+ (p+p:)2+p=0. It is immediate that z==1 can not saisfy
our equation and so-the theorem is proved if we show that the sequence
w,=2" converges. Of course, itis enough to show that the real part and
_the imaginary part of w, are both-convergent. If we multipiy the equation’
by 2—1 we get (pl+po+ APt P 2= =P = P B 2= =0
P2 g2, lz"" o LA
Ditpt+ . p o _’ Leo
DWW, + Dy n—k+1‘|' W,
= pitpettp . The
parts of w, satisfy evidently the same recurrence formula, thus, by
H. 2 they are convergent. This completes our proof of f{he theorem of -
;,NESTROM and KakevA. (I1. 2 holds only for real numbers, therefore we
could not apply it directly to w,.) E
The well known direct proof?) of the theorem of ENESTROM and
KAKEYA is of course shorter than that one given above in Il. 2 and 1I, but
there is perhaps some interest in the fact, that such seemingly distant
domains as the theory of mean_ values and the theory of algebraic
equations are so closely connected.

or what is the same zm

real and the imaginary
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