On some ${ }^{\circ}$ sequences defined by recurrence.*

By J. Aczél in Szeged.

I. 1. We start from the well known fact ${ }^{1}$), that the sequence defined by the recurrence formula

$$
\begin{equation*}
a_{n}=\frac{a_{n-2}+a_{n-1}}{2} \quad\left(a_{1} \text { and } a_{2} \text { are arbitrary }\right) \tag{1}
\end{equation*}
$$

can be written in the form

$$
\begin{equation*}
a_{n}=\frac{a_{1}+2 a_{3}}{3}+\frac{2}{3}\left(a_{1}-a_{2}\right)\left(-\frac{1}{2}\right)^{n-1} \tag{2}
\end{equation*}
$$

In fact, let us make an attempt with $a_{n}=a+b z^{m-1}$. Substituting this in (1), we obtain $2 a+2 b z^{n-1}=a+b z^{n-3}+a+b z^{n-2} ; 2 z^{2}-z-1=0$. The roots of this equation are 1 and $-\frac{1}{2}$. Thus $a_{n}=a+b\left(-\frac{1}{2}\right)^{n-1}$, and in particular $a_{1}=a+b$ and $a_{2}=a-\frac{b}{2}$. Thus $a=\frac{a_{1}+2 a_{2}}{3}$, $b=\frac{2}{3}\left(a_{1}-a_{2}\right)$ and this gives the result announced.
(2) implies that a_{n} converges and $\lim a_{n}=\frac{a_{1}+2 a_{2}}{3} .{ }^{2}$)
I. 2. This can be proved also without using the explicit form (2). Let $a_{1} \leqq a_{3}$, then we have evidently $a_{1} \leqq a_{3} \leqq \ldots \leqq a_{2 j-1} \leqq a_{2 j+1} \leqq \ldots$, $a_{3} \geqq a_{4} \geqq \ldots \geqq a_{2 j} \geqq a_{2 j+2} \geqq \ldots$, and $a_{2 k-1} \leqq a_{2 i}$. So both $a_{2 j-1}$ and $a_{2 j}$ are convergent, $a_{2 j-1} \rightarrow \alpha, a_{2 j} \rightarrow A ; \alpha \leqq A$. But $\alpha<A$ is impossible, for $a_{2 j+1}=\frac{1}{2}\left(\dot{a}_{2 j-1}+a_{2 j}\right)$ woud imply $\alpha=\frac{1}{2}(\alpha+A)>\alpha$. Thus $\alpha=A=a=\lim a_{n}$.
I.3. The value of the limit a as a function $\mu\left(a_{1}, a_{3}\right)$ of the initial values a_{1}, a_{2} can' be found as follows. It has to satisfy the functional equation $\mu\left(a_{1}, a_{2}\right)=\mu\left(a_{2}, a_{3}\right)$; i. e. $\mu\left(a_{1}, a_{2}\right)=\mu\left(a_{2}, \frac{1}{2}\left(a_{1}+a_{2}\right)\right)$.

We might seek μ in the form

$$
\begin{equation*}
\dot{\mu}(x, y)=q_{1} x+q_{2} y \quad\left(q_{1}+q_{2}^{-}=1\right) \tag{3}
\end{equation*}
$$

* The essentially new parts of this paper are II. 2 and III. - The parts I and (partly) II. I contain wellknown-results which can be found in almost any book on Finite Defferences. They serve here for better understanding of what follows.

1) Cf.e. g. E. Cesàro-G. Kowalewski, Elementares Lehrbuch der algebraischen Analysis und der Infinitesimalrechnung (Leipzig, 1904), p. 105.
${ }^{2}$) (2) shows that the difference in the approximation a_{n} of lim a_{n} forms a geometric sequence with the quotient $\dot{q}=-\frac{1}{2}$.
for the linearity of the process implies that of μ and evidently $\mu(a, a)=a$. This gives $q_{1} a_{1}+\dot{q}_{2} a_{2}=q_{1} a_{2}+\dot{q}_{2} \frac{a_{1}+a_{3}}{2}$, thus $q_{1}=\dot{1} / 3, q_{2}=2 / 3$, $\mu\left(a_{1}, a_{2}\right)=\frac{1}{3}\left(a_{1}+2 a_{2}\right)$.

A more elementary proof is the following:
We multiply both sides of (1) by 2 and add a_{n-1} to both sides. We get $a_{n-1}+2 a_{n}=a_{n-2}+2 a_{n-1}$. Repeating the recurrencese have finally $a_{n-1}+2 a_{n}=a_{1}+2 a_{2}$. This gives for $n \rightarrow \infty: a+2 a=a_{1}+2 a_{2}$, thus $\left.a=\frac{1}{3}\left(a_{1}+2 a_{2}\right) .^{3}\right)$

1. 4. Our results hold not only for the arithmetic mean, but also for any "quasi-arithmetic" mean' $m(x, y)=f^{-1}\left(\frac{f(x)+f(y)}{2}\right) \quad\left(f^{-1}\right.$ is the inverse function of f), e. g. for the geometric mean where $f(t)=\log t$, the harmonic mean where $f(t)=1 / t$ and the root-mean-power where $f(t)=t^{n}$. In fact, if $c_{n}=f^{-1}\left(\frac{f\left(c_{n-2}\right)+f\left(c_{n-1}\right)}{2}\right), f\left(c_{n}\right)=\frac{f\left(c_{n-2}\right)+f\left(c_{n-1}\right)}{2}$, hen $f\left(c_{n}\right)=a_{n}$ satisfies $a_{n}=\frac{a_{n-2}+a_{n-1}}{2}$. Thus

$$
c_{n}=f^{-1}\left[\frac{f\left(c_{1}\right)+2 f\left(c_{2}\right)}{3}+\frac{2}{3}\left(f\left(c_{1}\right)-f\left(c_{2}\right)\right)\left(-\frac{1}{2}\right)^{n-1}\right]
$$

c_{n} converges and $\lim c_{n}=f^{-1}\left(\frac{f\left(c_{1}\right)+2 f\left(c_{2}\right)}{3}\right)$. E. g., for the geometric mean $c_{n}=\sqrt{c_{n-2} c_{n-1}}$, we have $c_{n}=\left[c_{1} c_{2}^{2}\left(\frac{c_{2}}{c_{1}}\right)^{\left(-\frac{1}{2}\right)^{n-2}}\right]^{\frac{1}{3}}, \lim c_{n}=\sqrt[3]{c_{1} c_{2}^{2}}$.
11. 1. We generalize our problem as follows. Let

$$
\begin{equation*}
a_{n}=\frac{p_{1} a_{n-k}+p_{2} a_{n-k+1}+\ldots+p_{k-1} a_{n-2}+p_{k} a_{n-1}}{p_{1}+p_{2}+\ldots+p_{k-1}+p_{k}} \tag{4}
\end{equation*}
$$

$\left(a_{1}, a_{2}, \ldots, a_{k}\right.$ are arbitrary; $p_{1}, \ldots, p_{k} \geqq 0$.)
Let us try the methods of 1.1 and conjecture

$$
\begin{equation*}
a_{n}=a+b_{1} z_{1}^{m-1}+b_{2} z_{2}^{n-1}+\ldots+b_{k-1} z_{k-1}^{n-1} \tag{5}
\end{equation*}
$$

Substituting (5) in (4) we get

$$
\left(p_{1}+p_{2}+\ldots+p_{k-1}+p_{k}\right) 2^{k}-p_{k} z^{k-1}-p_{k-1} z^{k-2}-\ldots-p_{2} z-p_{1}=0
$$

As $z=1$ is a root, we can divide by $(z-1)$ and get
(6) $\left(p_{1}+p_{2}+\ldots+p_{k-1}+p_{k}\right) z^{k-1}+\left(p_{1}+p_{2}+\ldots+p_{k-1}\right) z^{k-2}+\ldots+\left(p_{1}+p_{2}\right) z+p_{1}=0$.

The roots of this equation are the numbers $z_{1}, \bar{z}_{2}, \ldots, z_{k-1}$ occurring in (5).
The constants in (5) are solutions of the linear system

$$
a_{i}=a+b_{1} z_{1}^{i-1}+b_{2} z_{2}^{i-1}+\ldots+b_{k-1} z_{k-1}^{i-1} \quad(i=1,2, \ldots, k)
$$

${ }^{\text {s) }}$) It was St. Fenyŏ who called the author's attention to the problem I. 3.

Multiplying the i-th equation by $p_{1}+p_{2}+\ldots+\dot{p}_{i}$ and adding all equations we get

$$
\begin{aligned}
& p_{1} a_{1}+\left(p_{1}+p_{2}\right) a_{2}+\ldots+\left(p_{1}+p_{2}+\ldots+p_{k}\right) a_{k}= \\
& =a\left[p_{1}+\left(p_{1}+p_{2}\right)+\ldots+\left(p_{1}+p_{2}+\ldots+p_{k}\right)\right]+ \\
& +b_{1}\left[p_{1}+\left(p_{1}+p_{2}\right) z_{1}+\ldots+\left(p_{1}+p_{2}+\ldots+p_{k}\right) z_{1}^{k-1}\right]+\ldots+ \\
& +b_{k-1}\left[p_{1}+\left(p_{1}+p_{2}\right) z_{k-1}+\ldots+\left(p_{1}+p_{2}+\ldots+p_{k}\right) z_{k-1}^{k-1}\right] .
\end{aligned}
$$

As $z_{1}, z_{2}, \ldots, z_{k-1}$ are roots of (6), the coefficients of $b_{1}, b_{2}, \ldots, b_{k-1}$ are 0 ; thus

$$
\begin{aligned}
a & =\frac{p_{1} a_{1}+\left(p_{1}+p_{2}\right) a_{2}+\ldots+\left(p_{1}+p_{2}+\ldots+p_{k}\right) a_{k}}{p_{1}+\left(p_{1}+p_{2}\right)+\ldots+\left(p_{1}+p_{2}+\ldots+p_{k}\right)}= \\
& =\frac{p_{1} a_{1}+\left(p_{1}+p_{2}\right) a_{2}+\ldots+\left(p_{1}+p_{2}+\ldots+p_{k}\right) a_{k}}{k p_{1}+(k-1) p_{2}+\ldots+2 p_{k-1}+p_{k}} .
\end{aligned}
$$

The coefficients of the equation (6) are positive and decreasing and thus by a well known theorem of Eneström and Kakeya ${ }^{4}$) all its roots $z_{1}, z_{2}, \ldots, z_{k-1}$ are of an absolute value less than 1 . This implies that if $n \rightarrow \infty$, all members on the right of (5) tend to 0 except a^{5}); thus a_{n} converges and

$$
\lim a_{n}=\alpha=\frac{p_{1} a_{1}+\left(p_{1}+p_{2}\right) a_{2}+\ldots+\left(p_{1}+p_{2}+\ldots+p_{k}\right) a_{k}}{p_{1}+\left(p_{1}+p_{2}\right)+\ldots+\left(p_{1}+p_{3}+\ldots+p_{k}\right)}
$$

If e.g. $\quad a_{n}=\left(a_{n-k}+a_{n-k+1}+\ldots+a_{n-2}+a_{n-1}\right) / k$, then $\lim a_{n}=\frac{a_{1}+2 a_{2}+\ldots+(k-1) a_{k-1}+k a_{k}}{1+2+\ldots+(k-1)+k}=\frac{a_{1}+2 a_{3}+\ldots+(k-1) a_{k-1}+k a_{k}}{k(k+1) / 2}$.
II. 2. The convergence of a_{n} can again be proved also directly. We give the proof not only for arithmetic means, not even only for quasi-arithmetic ones, but for any sequence defined by $a_{n}=m\left(a_{n-k}, a_{n-k+1}, \ldots, a_{n-1}\right)$. where we postulate only that the mean $m\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a) reflexive: $m(x, x, \ldots, x)=x$, b) strictly increasing, c) continuous. The first two properties imply also d) internity:

$$
\min \left(x_{1}, x_{2}, \ldots, x_{k}\right) \leqq m\left(x_{1}, x_{2}, \ldots, x_{k}\right) \leqq \max \left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

To prove the convergence of a_{n}, consider

$$
\alpha_{n}=\min \left(a_{n-k}, a_{n-k+1}, \ldots, a_{n-1}\right) . \text { and } A_{n}=\max \left(a_{n-k}, a_{n-k+1}, \ldots, a_{n-1}\right)
$$

clearly $\alpha_{n} \leqq \alpha_{n} \leqq A_{n}$. Using d) and the fact, that if we drop one of the numbers the minimum of the remainder can not be smaller, we get

[^0]\[

$$
\begin{gathered}
\alpha_{n}=\min \left(a_{n-k}, a_{n-k+1}, \ldots, a_{n-1}\right)= \\
=\min \left[a_{n-k}, a_{n-k+1}, \ldots, a_{n-1}, m\left(a_{n-k}, a_{n-k+1}, \ldots, a_{n-1}\right)\right]= \\
=\min \left[a_{n-k}, a_{n-k+1}, \ldots, a_{n-1}, a_{n}\right] \leqq \min \left(a_{n-k+1}, \ldots, a_{n-1}, a_{n}\right)=\dot{\alpha}_{n+1}
\end{gathered}
$$
\]

thus α_{n} increases. One sees similarly that A_{n} decreases. Thus α_{n} and A_{n} are both convergent: $\alpha_{n} \rightarrow \alpha, A_{n} \rightarrow A ; \alpha \leqq A$. But $\alpha<A$ is impossible, because if $a_{j}=\alpha_{n}$ is the smallest among $a_{n-k}, a_{n-k+1}, \ldots, a_{n-1}$ and $a_{i}=A_{j}$ is the greatest among $a_{j-k}, a_{j-k+1}, \ldots, a_{j-1}$, then by b)

$$
\begin{aligned}
& \alpha_{n}=\min \left(a_{n-k}, \ldots, a_{n-1}\right)=a_{j}=m\left(a_{j-k}, a_{j-k+1}, \ldots, a_{j-1}, a_{i}, a_{i+1} \ldots, a_{j-1}\right) \geqq \\
& \geqq m\left(a_{j}, a_{j}, \ldots, a_{j}, A_{j}, \alpha_{j}, \ldots, \alpha_{j}\right) .
\end{aligned}
$$

If $n \rightarrow \infty$, also $j \rightarrow \infty$ and by c) we would have $\alpha \geqq m(\alpha, \alpha, \ldots, a, A, \alpha, \ldots, \alpha)>\alpha$. This is impossible and therefore $\alpha=\dot{A}$, which completes our proof.

The weighted aritmethic mean $m\left(x_{1}, \ldots, x_{k}\right)=\left(\sum p_{i} x_{\mathrm{i}}\right) / \sum p_{i}$ 'satisfies a), b), c) and this assures the convergence of the sequence (4).

The result of II. 2 holds also if in the recurrence formula $a_{n}=m\left(a_{n-1}, \ldots, a_{n-k}\right)$ the mean value function m is not the same for every n, supposed that either only a finite number of mean value functions vary, or if in the infinity of ${ }^{7} m$-s there is only a finite 'number of functions which 'do not occur infínitely many times.

Also the analogues of I. 3 and of I. 4 can be constructed similarly as those of I. 1 in II. 1. We leave the details to the reader.
III. We point out the interesting fact, that the theorem of Eneström and Kakeya ${ }^{4}$) is a consequence of II: 2 (and equivalent to it).
; In fact, every equation with positive decreasing coefficients can be written in the form $\left(p_{1}+p_{2}+\ldots+p_{k-1}+p_{k}\right) z^{k-1}+\left(p_{1}+p_{2}+\ldots+p_{k-1}\right) z^{k-2}+$ $+\cdots+\left(p_{1}+p_{2}\right) z+p_{1}=0$. It is immediate that $z=1$ can not satisfy our equation and so the theorem is proved if we show that the sequence $w_{n}=z^{n}$ converges. Of course, it is enough to show that the real part and the imaginary part of w_{n} are both convergent. If we muitiply the equation by $z-1$ we. get $\left(p_{1}+p_{2}+\ldots+p_{k-1}+p_{k}\right) z^{k}-p_{k} z^{k-1}-p_{k-1} z^{k-2}-\ldots-p_{2} z-p_{1}=0$ or what is the same $z^{n}=\frac{p_{1} z^{n-k}+p_{2} 2^{n-k+1}+\ldots+p_{k-1} z^{n-2}+p_{k} z^{n-1}}{p_{1}+p_{2}+\ldots+p_{k-i}+p_{k}}$, i. e. $w_{n}=\frac{p_{1} w_{n-k}+p_{2} w_{n-k+1}+\ldots+p_{k} w_{n-1}}{p_{1}+p_{2}+\ldots+p_{k}}$. The real and the imaginary parts of w_{n} satisfy evidently the same recurrence formula, thus, by II. 2 they are convergent. This completes our proof of the theorem of Eneström and Kakeya. (II. 2 holds only for real numbers, therefore we could not apply it directly to w_{n}.)

The well known direct proof ${ }^{4}$) of the theorem of Eneström and Kakeya is of course shorter than that one given above in II. 2 and III, but there is perhaps some interest in the fact, that such seemingly distant domains as the theory of mean values and the theory of algebraic equations are so closely connected.

[^0]: 4) G. Eneströnc, Härledning af en allmän formel för antalet pensionärer sons vid en godtycklig tidpunkt förefinnas inom en sluten pensionskassa, Ofversigt af. Kongl. Svenska Vetenskaps-Akademien Förhandlingar, 50 (1893), pp. 405-415; Remarque sur un théorème relatif aux racines de l'équation où tous les coefficients sont réels et positifs, Tohôku Math. Journal, 18 (1920), pp. 34-36. S. Kareya, On the limits of the roots of an algebraic equation with positive coefficients, Ibidem, 2: (1912), pp. 40-142.

 5, We have counted throughout II. 1. as if (6) had only simple roots, but also the presence óf multiple roots makes no difficulty as also $n^{j} z^{n} \rightarrow 0$ with $n \rightarrow \infty$ if $|z|<1$.

