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Abstract

Movement data are sensitive, because people’s whereabouts may allow re-

identification of individuals in a de-identified database and thus can poten-

tially reveal intimate personal traits, such as religious or sexual preferences.

In this thesis, we focus on a distributed setting in which movement data

from individual vehicles are collected and aggregated by a centralized sta-

tion. We propose a novel approach to privacy-preserving analytical process-

ing within such a distributed setting, and tackle the problem of obtaining

aggregated traffic information while preventing privacy leakage from data

collection and aggregation. We study and analyze three different solutions

based on the differential privacy model and on sketching techniques for effi-

cient data compression. Each solution achieves different a trade-off between

privacy protection and utility of the transformed data. Using real-life data,

we demonstrate the effectiveness of our approaches in terms of data utility

preserved by the data transformation, thus bringing empirical evidence to

the fact that the “privacy-by-design” paradigm in big data analysis has the

potential of delivering high data protection combined with high quality even

in massively distributed techno-social systems.
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Riassunto

I dati di mobilità sono da considerarsi dati sensibili, perché la conoscenza dei

luoghi visitati può permettere la re-identificazione degli individui anche in

un database privato degli identificatori, rivelando caratteristiche potenzial-

mente intime e personali, come la religione o le preferenze sessuali. In questa

tesi ci concentriamo su un ambiente distribuito in cui i movimenti di veicoli

sono raccolti e aggregati da una stazione centrale. Proponiamo infatti un

approccio per l’elaborazione di analisi che preservi la privacy in un ambiente

distribuito, affrontando cioè il problema di ottenere informazione aggregata

sul traffico evitando al contempo perdite di privacy dovute alle fasi di rac-

colta e di elaborazione. Analizziamo tre soluzioni diverse, tutte basate sul

modello della differential privacy e su tecniche di sketching per la compres-

sione dei dati. Ogni soluzione permette di ottenere un diverso bilanciamento

tra protezione della privacy individuale e utilità dei dati trasformati. Va-

lutiamo inoltre l’efficacia delle nostre soluzioni in termini di mantenimento

dell’utilità usando dati della vita reale, fornendo una dimostrazione empi-

rica del fatto che il paradigma di “privacy-by-design” nell’analisi di big data

riesce sia a fornire un’elevata protezione che a mantenere una buona qualità

dei dati, anche in sistemi sociali fortemente distribuiti.
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Introduction

Over the last few years, the technique of analysis and knowledge discovery,

that allow the extraction of valuable knowledge from databases, have become

increasingly central. These processes acquired great importance thanks to

the availability of a large and ever-growing quantity of data, that are usually

provided by users while using different kinds of services. These data are

more and more complex, and they are called big data, to summarize their

main intrinsic characteristics: the data are very large and have a very fine

level of detail, making it harder to perform analyses. In addition, data are

rarely available in a single or few centralized structures, but often they are

distributed among users, so it is necessary to find a way to gather them. On

the other hand, big data offer many new opportunities to understand our

society because they describe in detail the activities of the population.

Example of complex and big data are: the traces of the goods purchased

by people, stored by automatic payment systems; the query-logs, stored by

search engines; the information, held by social networks, about the personal

relationships as friendships, partnerships, etc...

Often in our society many decisions are taken based on the knowledge

represented in these datasets; therefore, sophisticated techniques for analysis

have been developed, to have the opportunity to gather, save and analyze

more and more complex data. These techniques are able to extract patterns,

models, profiles and general rules that describe the behavior of a community.

Indeed, through the analyses of personal data with sophisticated tools, we

have created new chances for understanding complex phenomena, such as

to comprehend the mobility in an urban area, and to foresee the diffusion

of an economic crisis or the spread of epidemics and viruses.

In this thesis we consider movement data describing the mobility be-

havior of a population in a territory. The widespread availability of low
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Introduction

cost GPS devices enables the collection of these data at a large scale. Un-

derstanding of the human mobility behavior in a city could be extremely

useful to improve the use of city space and accessibility of various places

and utilities, to manage the traffic network, and to reduce traffic jams.

Generalization and aggregation of individual movement data can provide an

overall description of traffic flows in a given time interval and their variation

over time. Intuitively, movement data of multiple individual devices can

be collected and aggregated by a central station. However, this centralized

setting entails two important problems: a) the amount of information to be

collected and processed may exceed the capacity of the storage and com-

putational resources; and b) the raw data describe the mobility behavior of

the individuals in such great detail that they could enable the inference of

very sensitive information related to the private personal sphere.

Some recent works [63, 41, 12] have investigated how to aggregate dis-

tributed mobility data efficiently. For instance, Andrienko et al. [12] propose

a method for generalization and aggregation of movement data that requires

all individual moving trajectories be transformed into aggregate flows be-

tween areas. Though these works consider releasing statistic information

instead of raw trajectories to the central station, there still may exist pri-

vacy leakage. For instance, the analyses of low-density aggregate traffic flows

(e.g., in rural areas) may still reveal the identity of the vehicles involved in

these flows.

In order to solve these problems, in this thesis we propose a privacy-

preserving distributed analytical processing framework for the aggregation

of movement data. We assume that on-board location devices in vehicles

continuously trace the positions of the vehicles and periodically send statis-

tical information about their movements to a central station. The central

station, which we call coordinator, will store the received statistical informa-

tion and compute a summary of the traffic conditions of the whole territory,

based on the information collected from individual vehicles. Since the co-

ordinator can be untrusted, we design privacy-preserving methods for each

individual participant vehicle that provide formal privacy guarantee, mean-

ing that the statistic information revealed to the coordinator will not be

swayed too much by whether or not a specific individual participant. The

basic idea behind our approach is that even radical forms of data random-

ization, capable of yielding strong protection of personal mobility data for
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each participant vehicle, can be adopted in our setting while still allowing a

correct reconstruction of aggregated traffic information on the coordinator

side. The results presented in this thesis show how the application of the

privacy-by-design paradigm in this complex system, characterized by highly

distributed big data, allow us to maintain under control the utility of data,

with the aim to perform important collective mobility analyses, while pro-

viding an high level of protection for each individual by using the differential

privacy model.

The Privacy-by-Design Paradigm

One of the most hot topics in the data privacy field has been Privacy-by-

Design. This concept was coined in the ‘90s by Ann Cavoukian, the Infor-

mation and Privacy Commissioner of Ontario, Canada. In brief, privacy-by-

design refers to the philosophy and approach of embedding privacy into the

design, operation and management of information processing technologies

and systems. This innovative paradigm is also introduced by the European

Commission in the proposal of the reform, on January 25, 2012, of the data

protection rules.

Privacy-by-design promises a quality leap in the conflict between data

protection and data utility. The principle of “by design” was applied to the

data mining domain in [60], where Monreale showed that higher protection

and quality can be better achieved in a goal-oriented approach. In such

an approach, the data mining process is designed with assumptions about:

(a) the sensitive personal data that are the subject of the analysis; (b) the

attack model, i.e., the purpose of a malicious party that has an interest

in discovering the sensitive data of certain individuals; (c) the category of

analytical queries that are to be answered with the data.

These assumptions are fundamental for the design of a privacy-preserving

framework for various reasons.

First of all, the techniques for privacy preservation strongly depend on the

nature of the data that we want to protect. For example, many proposed

methods are suitable for continuous variables but not for categorical vari-

ables, while other techniques employed to anonymize sequential data such

as tabular data are not appropriate for moving object datasets.

Second, a valid framework for privacy protection has to define the back-
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ground knowledge of the adversary, that strongly depends on the context

and on the kind of data. Different assumptions on the background knowl-

edge of an attacker entail different defense strategies. Clearly, the assump-

tion that the background knowledge of an adversary depends on the context

allows to realize frameworks that guarantee reasonable levels of privacy ac-

cording to the privacy expectation.

Finally, a privacy-preserving strategy should find an acceptable trade-off be-

tween data privacy on one side and data utility on the other side. In order

to reach this goal it is fundamental to take into account during the design

of the framework the analytical questions that are to be answered with the

transformed data. This means designing a transformation process capable

to preserve some data properties that are necessary to preserve the results

obtained by specific analytical and/or mining tasks.

In this thesis, we propose the use of the privacy-by-design paradigm in

a novel setting, where it is necessary to take into account other important

aspects that such as the data distribution and the communications from

the nodes and the central station. In particular, in a distributed context,

a suitable privacy-preserving framework must try to reduce the amount of

information to be transmitted. Clearly, to this end we can use summa-

rization techniques, but we have to pay attention because these techniques

can introduce further approximation on the data that could lead to a more

degradation on the data utility. As a consequence, the distributed setting

adds a novel challenge in the application of the privacy-by-design paradigm;

here, a valid privacy-aware framework has to keep under control the trade-

off among three important aspects: privacy protection, data quality and

performance of the overall system.

Contribution and Organization of the Thesis

The main question addressed in this thesis is the following:

How to design a privacy-preserving framework for distributed mobility

data analytics

• while guaranteeing high level of individual privacy

• while reducing the amount of information to be transmitted, and

• without sacrificing the quality of data utility?

12
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Transforming the data in such a way as to protect sensitive information

is increasingly hard but our belief is that the research results reported in this

thesis brings evidence to the fact that the “privacy-by-design” paradigm in

big data analytics has the potential of delivering high data protection com-

bined with high quality even in massively distributed techno-social systems.

With a clear analytical goal to realize, e.g., the continuous monitoring of

traffic flows, it is possible to design a privacy-preserving process that, as

in our study, solves the problem delivering results with a bounded (small)

quality-loss within a framework where the risk of privacy leakage is also

bounded (and very small). The validity of our privacy-preserving frame-

work is shown both by theoretical results and by a deep experimentation on

real-life data.

We have the following contributions. First, to protect individual privacy,

we propose three data transformation methods based on the well-known dif-

ferential privacy model; each solution is characterized by a different trade-off

between privacy and data utility. Second, to further reduce the amount of

information that each vehicle communicates to the central station, we pro-

pose to apply sketching techniques to the differentially private data to obtain

a compressed representation. The central station is able to reconstruct the

movement data represented by the sketched data that, although transformed

for guaranteeing privacy, preserve some important properties of the original

data that make them useful for mobility analyses. We validate the robust-

ness and efficiency of our privacy-preserving data aggregation methods by

extensive experiments on large, real GPS data.

The remainder of the thesis is organized as follows.

Chapter 1 and Chapter 2 discuss the most relevant research work re-

lated to the contribution of this thesis. Specifically, Chapter 1 presents an

overview of the work in literature on the individual privacy protection ad-

dressed by the data mining and the statistics community, while in Chapter 2

we describe the system architecture that we use in the work presented in this

thesis and the sketching algorithms that are used in our privacy-preserving

framework.

Chapter 3 introduces background information and definitions that are

very important for the deep understanding of the details of our framework

and states the problem addressed in this thesis.

Chapter 4 is the core of the thesis, in fact here we introduce a privacy-
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preserving framework for distributed mobility data analytics that guarantees

strong individual privacy protection, while preserving the quality of the

transformed data. This framework is based on the notion of differential

privacy that is a very strong privacy model.

In Chapter 5 we present and discuss experimental results obtained from

the application of our methods to real-world data.

Lastly, Chapter 5.4.4 concludes the thesis.

Part of the results of the studies described in this thesis are presented in

the following works:

Anna Monreale, Wendy Hui Wang, Francesca Pratesi, Salvatore Rinzi-

villo, Dino Pedreschi, Gennady L. Andrienko, and Natalia V. An-

drienko. Privacy-preserving Distributed Movement Data Aggregation.

Accepted for publication in AGILE, 2013.

Anna Monreale, Wendy Hui Wang, Francesca Pratesi, Salvatore Rinzi-

villo, Dino Pedreschi, Gennady L. Andrienko, and Natalia V. An-

drienko. Differential Privacy in Distributed Mobility Analytics. Sub-

mitted in PVLDB, 2013.
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Chapter 1

Privacy-Preserving Data

Publishing and Mining

In the last years, the importance of the privacy protection is rising thanks

to the availability of large amounts of data. These data collections can be

gathered from various channels. Typically, the data collector or data holder

releases these data to data miners and analysts who can conduct on them

statistical and data mining analyses. The published data collections could

contain personal information about users and their individual privacy could

be compromised during the analytical process.

In recent years, individual privacy has been one of the most discussed

jurisdictional issues in many countries. Citizens are increasingly concerned

about what companies and institutions do with their data, and ask for clear

positions and policies from both the governments and the data owners. De-

spite this increasing need, there is not a unified view on privacy laws across

countries. The European Union regulates privacy by Directive 95/46/EC

(Oct. 24, 1995) and Regulation (EC) No 45/2001 (December 18, 2000).

The European regulations, as well as other regulations such as the U.S. rules

on protected health information (from HIPAA), are based on the notion of

“non-identifiability”. The regulation on privacy in the EU was recently re-

vised by the comprehensive reform of the data protection rules proposed on

Jan. 25, 2012 by the European Commission, that is still under discussion.

The problem of protecting the individual privacy when disclosing informa-

tion is not trivial and this makes the problem scientifically attractive. It

has been studied extensively in two different communities: in data mining,

15



Privacy-Preserving Data Publishing and Mining

under the general umbrella of privacy-preserving data mining, and in statis-

tics, under the general umbrella of statistical disclosure control.

In this chapter we provide an overview of the most important results

achieved so far in the field of data privacy; we also present a very recent

model, called differential privacy, that will be one of the most important

notions in our work.

1.1 Anonymity by Randomization

Randomization methods are used to modify data to preserve the privacy

of sensitive information. These techniques try to “hide” information by

randomly perturbing the data [49].

The algorithms belonging to this group of techniques first of all modify the

data by using randomization techniques. Then, from the perturbed data

it is still possible to extract patterns and models. There are two kinds of

randomization: additive and multiplicative.

By using the additive random perturbation, the distorted dataset is ob-

tained drawing independently, from a probability distribution, a noise quan-

tity and adding it to each record of the original dataset.

The original record values cannot be easily guessed from the distorted data

as the variance of the noise distribution is assumed large enough. On the

contrary, the distribution of the original data can be easily recovered, sub-

tracting the noise distribution from the distribution of the perturbed dataset.

A typical assumption is that both distributions are known: the first one is

public and the second one is easily obtainable by analyzing the perturbed

data [3]. It is important to note that it is possible to reconstruct only the

distribution and not the values of individual records [7].

For privacy-preserving data mining, multiplicative random perturbation

techniques can be also used.

There are three macro-categories of multiplicative random perturbation [22]:

- rotation perturbation. It refers to the techniques based on the notion

of matrix rotation. This category does not include only traditional

rotations, but also all orthonormal perturbations. The property of

this kind of perturbation is its capability to keep the dimensionality of
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1.1 Anonymity by Randomization

dataset unchanged, while preserving both the distance between records

and the geometric shapes of data.

- projection perturbation. It refers to the technique of projecting a set of

data points from a high-dimensional space to a randomly chosen lower-

dimensional subspace, but it does not strictly guarantee the preser-

vation of distance/inner product, which may downgrade the model

accuracy.

- sketch-based approach. It aims at perturbing high-dimensional data

(and reducing them). It is very suitable to approximate inner queries

and dot-product estimation (see Section 2.2 for further details)

The main advantage of the randomization method is that it can be im-

plemented at data-collection time [4], because it is very simple and does not

require knowledge of the distribution of other records in the data for the

data transformation. This means that the data transformation process does

not need a trusted server containing all the original records.

The problem of the randomization (with the exception of sketches, which

can provide a uniform measure across different record [22]) is that it does

not consider the local density of the records and thus all records are han-

dled equally. Outlier records can be compared to records in denser regions

in the data and this can make an attack easier. Another weakness of a

randomization framework is that it does not provide guarantees in case of

re-identification attack conducted using public information. Indeed, if an

attacker has no background knowledge over the data, then the privacy can

be difficult to compromise; nevertheless, in [6], authors showed that the

randomization approach is unable to effectively guarantee privacy in high-

dimensional cases. Moreover, they provide an analysis revealing that the

use of public information makes this method vulnerable.

In [49] Kargupta et al. challenged the effectiveness of randomization

methods, showing that the original data matrix can be obtained from the

randomized data matrix using a random matrix-based spectral filtering tech-

nique.
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1.2 Differential Privacy

A recent model of randomization, though based on different assumptions, is

Differential Privacy. This is a privacy notion introduced in [35] by Dwork.

The key idea is that the privacy risks should not increase for a respondent

as a result of occurring in a statistical database; differential privacy ensure,

in fact, that the ability of an adversary to inflict harm should be essentially

the same, independently of whether any individual opts in to, or opts out

of, the dataset.

This privacy model is called ε-differential privacy, due to the level of

privacy guaranteed ε. It assures a record owner that any privacy breach will

not be a result of participating in the database since anything, or almost

nothing, that is learnable from the database with his record is also learn-

able from the one without his data. Moreover, in [35] is formally proved

that ε-differential privacy can provide a guarantee against adversaries with

arbitrary background knowledge. This strong guarantee is achieved by com-

parison with and without the record owner’s data in the published data.

It is important to note that the parameter ε is public [34].

The choice of ε is essentially a social question, even if some works (like

[54]) tried to suggest how to instantiate it in a practical example.

There are two popular mechanisms to achieve differential privacy: Laplace

mechanism that supports queries whose outputs are numerical [36] and ex-

ponential mechanism that works for any queries whose output spaces are

discrete [57]. The basic idea of the Laplace mechanism is to add noise to

aggregate queries (e.g., counts) or queries that can be reduced to simple

aggregates. The Laplace mechanism has been widely adopted in many ex-

isting works for various data applications. For instance, [82, 26] present

methods for minimizing the worst-case error of count queries; [14, 32] con-

sider the publication of data cubes; [45, 84] focus on publishing histograms;

and [58, 52] propose the methods of releasing data in a differential private

way for data mining. On the other hand, for the analysis whose outputs are

not real or make no sense after adding noise, the exponential mechanism

selects an output from the output domain, r ∈ R, by taking into considera-

tion its score of a given utility function q in a differentially private manner.

It has been applied for the publication of audition results [57], coresets [37],

18
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frequent patterns [18] and decision trees [39]. Recently much attention is

paid to distributed private data analysis. In this setting, n parties (each

holding some sensitive data) wish to compute some aggregate statistics over

all parties’ data with or without a centralized coordinator. [15, 19] prove

that when computing the sum of all parties’ inputs without a central coor-

dinator, any differentially-private multi-party protocol with a small number

of rounds and small number of messages must have large error. To the best

of our knowledge, Rastogi et al. [69] and Chan et al. [79] were the first ones

to consider the problem of privately aggregating sums over multiple time

periods. Both of them consider the untrusted coordinator, malicious coor-

dinator in particular, and use both encryption and differential privacy for

the design of privacy-preserving data aggregation methods. Compared with

their work, we focus on semi-honest coordinator, with the aim of designing

privacy-preserving techniques by adding meaningful noises to improve data

utility, which is an issue that is rarely discussed in both [69, 79]. We agree

that our methods can be further enforced against the malicious coordinator

by applying the encryption methods in [69, 79].

There are some works on publishing differentially private spatial data.

Chen et al. [24] propose to release a prefix tree of trajectories with injected

Laplace noise. Each node in the prefix tree contains a doublet in the form

of < tr(v), c(v) >,where tr(v) is the set of trajectories of the prefix v, and

c(v) is a version of |tr(v)| with Laplace noise. Compared with our system,

the prefix tree in [24] is data-dependent, i.e., it should have a different struc-

ture when the underlying database changes. In our work, the frequency

vector is data-independent. Cormode et al. present a solution to publish

differentially private spatial index (e.g., quadtrees and kd-trees) to provide

a private description of the data distribution [26]. Its main utility concern

is the accuracy of multi-dimensional range queries (e.g., how many individ-

uals fall within a given region). Therefore, the spatial index only stores the

count of a specific spatial decomposition. It does not store the movement

information (e.g., how many individuals move from location i to location j)

as in our work. In another paper, Cormode et al. [27] propose to publish a

contingency table of trajectory data. The contingency table can be indexed

by specific locations so that each cell in the table contains the number of

people who commute from the given source to the given destination. The

contingency table is very similar to our frequency vector structure. How-
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ever, [27] has a different focus from ours: we investigate how to publish

the frequency vector in a differential privacy way, while [27] addresses the

sparsity issue of the contingency table and presents a method of releasing a

compact summary of the contingency table with Laplace noise.

1.3 Anonymity by Indistinguishability

When the requirement of performing the data transformation at collection-

time is not necessary, a good choice is to apply methods that reduce the

probability of record identification by public information. In literature three

techniques have been proposed: k-anonymity, l-diversity and t-closeness.

k-anonymity. One approach to preserve privacy in data publishing is the

suppression of some of the data values, while releasing the remaining data

values exactly. However, suppressing only the identifying attributes is not

enough to protect privacy because other kinds of attributes, that are avail-

able in public database, such as age, zip-code and sex can be used in order

to accurately identify the records. This kind of attributes are known as

quasi-identifiers [80]. For example, in [81] it has been observed that for 87%

of the population in the United States, the combination of Zip Code, Gender

and Date of Birth corresponded to a unique person.

Therefore, it is evident that it is possible to use information derived from

different sources (e.g., by database cross-reference) to obtain additional

knowledge. We can define the linking attack as an attack in which an in-

truder (attacker) gains access to a database of personal data, in order to

make inferences on the basis of background knowledge which enables the

re-identification of the user(s).

The goal of k-anonymity is to guarantee that every individual object is hid-

den in a crowd of size k. A dataset satisfies the property of k-anonymity

if each released record has at least (k-1) other records also visible in the

release whose values are indistinct over the quasi-identifiers.

In k-anonymity techniques, methods such as generalization and suppression

are usually employed to reduce the granularity of representation of quasi-

identifiers. The first one generalizes the attribute values to a range in order

to reduce the granularity of representation (e.g., a city could be generalized

to its region). The method of suppression, instead, removes the value of an
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1.4 Anonymity in Mobility Data

attribute.

l-diversity. Unfortunately, the k-anonymity framework can, in some case,

be vulnerable. Suppose that we have a k-anonymous dataset containing

a group of k entries with the same value for the sensitive attributes. In

this case, although the data are k-anonymous, the value of the sensitive

attributes can be easily inferred (homogeneity attack). Another problem

happens when an attacker knows information useful to associate some quasi-

identifiers with some sensitive attributes. In this case the attacker can re-

duce the number of possible values of the sensitive attributes (background

knowledge attack).

In order to eliminate these weaknesses of the k-anonymity, the technique

of l-diversity was proposed [55]. The aim of l-diversity is to maintain the

diversity of sensitive attributes. In particular, the main idea of this method

is that every group of individuals that can be isolated by an attacker should

contain at least l well-represented values for a sensitive attribute.

t-closeness l-diversity is insufficient to prevent attacks when the overall

distribution is skewed. The attacker can know the global distribution of the

attributes and use it to infer the value of sensitive attributes. In this case,

the t-closeness [53] method can be used. This technique requires that the

distribution of a sensitive attribute in any equivalence class is close to the

distribution of the attribute in the overall table. The distance between the

two distributions should be no more than a threshold t.

1.4 Anonymity in Mobility Data

In Section 1.3 we have already said that, even in simple cases, suppressing

the identifier of individuals is not enough for privacy-preserving purposes.

One of the most effective methods that are studied in literature to ensure

privacy is k-anonymity; unfortunately, the traditional k-anonymity approach

focuses on relational tables.

A big problem of spatio-temporal data is that there is no longer a clear

distinction between qi (quasi-identifiers) and sa (sensitive attributes): a

hospital could be a qi for some users (e.g., for doctors and nurses this is the

workplace), while for all other users it is probably a sa. Therefore, protect-

21



Privacy-Preserving Data Publishing and Mining

ing private information in this context is a significant challenge.

Many existing works about anonymity of moving objects have been

mainly developed in the context of Location Based Services (LBS). LBS

refer to those information services that deliver differentiated information

based on the user’s location at the time of the request. Thus, the user loca-

tion information necessarily appears in a request sent to the service provider

[56]. Clearly, also in this context, the k-anonymity is applicable: each user

avoids providing his exact location sending to the service provider a gener-

alized area that includes his location and the location of other k − 1 users.

Although the idea is the same as in the tabular case, generally traditional

techniques used for tabular datasets cannot be directly applied to this kind

of data, so k-anonymity must be adjusted appropriately.

As written in Riboni et al. [71], a possible technique to enforce anonymity

in LBS is to generalize precise location data in a request to an area includ-

ing a set (called anonymity set [68]) of other potential issuers. However,

they observe that, since we cannot define quasi-identifiers exactly, a large

amount of context data must be generalized in order to enforce anonymity.

As a consequence, the granularity of generalized context data released to the

service provider could be too coarse to provide the service at an acceptable

quality level.

Riboni et al. proposed a combined approach to address the issue of privacy

in context awareness [70]. In particular, they use obfuscation of sensitive

information and anonymity, generalizing precise location data in a request

to an area including an anonymity set of other potential issuers. The key

idea is that if even users who did not issue any request are potential issuers

with respect to the attacker’s external knowledge, then they belong to the

anonymity set.

In [17], Bettini et al. introduce the concept of historical k-anonymity,

that is based on the spatio-temporal pattern definition (for example, the trip

from the home to the workplace), and on the spatio-temporal generalization.

Indeed, an attacker may guess that two requests have been issued by the

same user, simply relying on proximity of locations or on the fact that

requests from the same issuer may be correlated. Given the set of requests

issued by a certain user, it satisfies historical k-anonymity if there exist

k − 1 history of locations belonging to k − 1 different users such that they
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are location-time consistent, i.e., undistinguishable.

Another example of k-anonymity in spatial data can be found in Mascetti

et al. [56]. Here, if the attacker does not know the generalization function,

the generalized location is computed as the Minimum Bounding Rectangle

(MBR) of the locations of the users in this set at the time when the request

has been issued. Otherwise, the algorithm imposes the partitioning function

to be independent from the issuers location, iteratively restricting the areas

(then, the anonymity sets) until any of the blocks contains less than k users.

A good point is that, if the degree of anonymity desired by each user at the

time of a request is not known by the attacker, algorithms remain safe even

when different values of k are admitted.

The main weakness of such solutions (not only of these three works, but

also in general) is that the scenario assumes the existence of a Location-aware

Trusted Server (LTS); the LTS receives the LBS requests from the users,

it performs the appropriate generalization (also hiding explicitly identifying

values), and it forwards the generalized request to the target service provider.

A LTS is actually an anonymizer, and the use of anonymizers may not always

be practical. Even if it were trusted, as stated in [48], an anonymizer may

itself present security, performance, and privacy problems. For example, the

anonymizer represents a single-point-of-attack for hackers; furthermore, the

anonymizer may become a bottleneck because of the large number of users

to be served.

A survey of location privacy techniques that work in traditional client-

server architectures without any trusted components other than the client’s

mobile device can be found in the work of Jensen et al. [48]. For instance,

in [85] we can find iPDA, an example of query enlargement technique, i.e.

a technique where each client enlarges its exact position into a region be-

fore sending it to the server. iPDA uses a cloacking technique implemented

on the client side, and it is suitable for issuing repeated queries, as in case

of mobility data, because it enlarges the region at each request. In [50]

users generate several false position data (dummies) to be sent to service

providers along with the real position data. So, the service provider cannot

distinguish the true position data from the set of all the received position

data. The service provider creates service answers that respond to all the

received position data and sends them to the user, who selects the true re-

sponse. Lastly, in [40] we can find a kind of cryptographic transformation,
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which uses both a Voronoi and a grid partition. The user finds the cell that

contains him, and utilizes Private Information Retrieval to request all points

within the region; the server does not know which region was retrieved, as

if it received a number of requests equal to the total number of cells.

Although the LBS context is very relevant to the problem of anonymity

in spatio-temporal data, there is another kind of problem to be considered:

anonymity in a static Moving Objects Databases (MOD). The main differ-

ence is the fact that LBS consider data points (requests) as continuously

arriving, and thus they provide on-line anonymity; instead, in MOD con-

text the information about the whole history of trajectories is available,

thus we can use more effective (and off-line) methods. Another difference is

in the goal of these two contexts: in LBS we must provide the service, so

learning the user’s exact position is not a requisite, and the data can also

be forgotten once that the service was provided (we can say that LBS is

service-centric); whereas in MOD we must preserve not only the anonymity

of the individuals, but also the quality of the data (for this reason we say

that MOD is data-centric) [1].

We provide a quick overview on works which tackle the problem of k-

anonymity of moving objects by the perspective of privacy aware publishing.

In [61], Monreale et al. focus on the choice of granularity of the spatial

generalization and especially on the research for a method of division of

the territory into sub-areas, that depends directly on the input trajectory

dataset. The privacy-by-design concept (see Introduction) is widely used in

this work.

In [59], Monreale et al. introduce a new privacy notion, called c-safety,

which provides an upper bound c to the probability of inferring that a given

person, observed in a sequence of non-sensitive places, has also stopped in

any sensitive location. They also implement an algorithm, called CAST,

which finds the best trajectory grouping in the dataset, constructing a c-

safe version of the input dataset.

In [64], Nergiz et al. use a grouping based approach in order to obtain

cluster trajectories, but they publish a reconstructed MOD, instead of a

generalized one. Indeed, they claim that the use of MBR discloses uncon-

trolled information about the exact location of the points, so they apply a

reconstruction approach (previously studied in the string alignment prob-
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lem), which releases atomic trajectories sampled randomly from the area

covered by anonymized trajectories.

In [86], Yarovoy et al. deeply analyze the problem of quasi-identifiers in mo-

bility data: they show that the anonymization groups may not be disjoint,

thus there may exist objects that can be identified explicitly by combining

different anonymization groups. They suggest that qi may be provided di-

rectly by personal settings or found by means of statistical data analysis.

In [2], Abul et al. propose the notion of (k, δ)-anonymity for moving ob-

ject databases, where δ represents the possible location imprecision. This is

an innovative concept of k-anonymity based on co-localization, which takes

advantage of the inherent uncertainty of the whereabouts of the moving ob-

jects. The authors also proposed an approach, called Never Walk Alone,

based on trajectory clustering and spatial translation, and they present its

improvement, Wait for Me, in [1]. This method is very similar to the previ-

ous one, but it is based on EDR distance [23] (instead of Euclidean distance),

which is time-tolerant, so Wait for Me can recognize similar trajectories even

if they are (slightly) shifted in time.

Finally, in [33], Domingo Ferrer and Trujillo-Rasua show a solution based

on perturbation and micro-aggregation: this method k-anonymizes each lo-

cation independently, using the whole set of trajectories. Particularly, the

algorithm creates clusters of locations (close in time and in space) in such a

way that the locations in each group belong to k different trajectories. The

result of this transformation is that the probability that a location of a true

trajectory appears in its anonymized version is at most 1
k , while guarantee-

ing that the anonymized trajectories are suitable for range query for every

value of k.

1.5 Secure Multi-Party Computation

A Secure Multi-party Computation (SMC) problem [87, 44] deals with com-

puting a certain function on multiple inputs, in a distributed network. The

problem in this case is to compute any probabilistic function on inputs that

are distributed among the participants in the network while ensuring inde-

pendence of the inputs, correctness of the computation, and that no more

information is revealed to participants in the computation, which can be

computed from a single participant or a coalition of participants.
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As noted in [44], a trivial centralized solution would be to assume a trusted

center exists, and that all users send their inputs to this trusted center for

the computation of their respective outputs. A preferable option is a dis-

tributed solution where trust is distributed.

SMC is often used in distributed environment, but regrettably it allows only

some kinds of computations.

One of the first techniques is shown in [21], where participants can share

secrets, even if one third of the participants deviate from the protocol (that

is based on not leaking secret information and on sending the correct mes-

sages).

A more recent solution can be found in [42], where Gilburd et al. propose a

new privacy model, k-privacy, for real-world large-scale distributed systems.

They use a relaxed privacy model implementing efficient cryptographically

secure primitives that do not require all-to-all communications.

Another example is the work of Sanil et al. [78], where they implement a

privacy-preserving algorithm of computing regression coefficients, that per-

mits (honest or semi-honest) agencies to obtain the global regression equa-

tion as well as to perform rudimentary goodness-of-fit diagnostics without

revealing their data.
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Chapter 2

Sketching in Distributed

Stream Systems

In this chapter we provide a description of the system architecture that we

will use in our work, and we introduce the sketches, that are (quite recently

developed) data structures for summarizing large data streams.

2.1 Distributed Stream System Architecture

We consider a system architecture as the one described in [30]. In particular,

we assume a distributed-computing environment comprising a collection of

k (trusted) remote sites (nodes) and a designated (unnecessarily trusted)

coordinator site. A representation of our system is shown in Figure 2.1.

Streams of data updates arrive continuously at remote sites, while the

coordinator site is responsible for generating answers to periodic user queries

posed over the unions of remotely-observed streams across all sites. Each

remote site exchanges messages only with the coordinator, providing it with

state information on its (locally observed) streams. There is no communi-

cation between remote sites.

In this general distributed streaming model, each update at remote site j

is a triple of the form <i,v,±1>, denoting an insertion (+1) or deletion (-1)

of element v ∈ [Ui] in the fi,j frequency distribution. All frequency distribu-

tion vectors fi,j change dynamically over time; handling delete operations

allows us to effectively handle tracking over sliding windows of the streams,

by issuing implicit delete operations for expired stream items no longer in
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Figure 2.1: System representation

the window of interest at remote site).

It is important to observe that each of the dimensions of this problem

(continuous and distributed) induce specific technical bottlenecks. Fortu-

nately, for the first problem, when tracking statistical properties of large-

scale systems, answers that are precise to the last decimal are typically not

needed; instead, approximate query answers (with reasonable guarantees on

the error) are often sufficient, since we are typically looking for indicators

or patterns, rather than precisely-defined events. Concerning the challenge

of being in a distributed environment, we must try to reduce as much as

possible the amount of communications.

2.2 Sketching of Streams

When data sets reach considerable size, it may be necessary to transform

data into a more compact form. If we are satisfied with an approximated

answer for a problem, synopses of a massive data set [25] (like samples, his-

tograms, walvelets and sketches) are solutions to be considered: they capture

vital proprieties of the original data while occupying much less space. In

particular, sketches are relatively recent tools (most of the algorithms have

been presented in the years 2000s [25]), but they allow to receive an accu-

rate estimate of the answer. Moreover, they are particularly appropriate for

streaming data.
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Sketches are essentially a kind of linear transformation of the input.

There are two kind of sketches: frequency based sketches, concerned with

summarizing the frequency distribution of a data set, and sketches for dis-

tinct value queries, that count the number of distinct values in a given set.

We focus on the first category, because frequency based sketch are suitable

for a very large number of queries, like finding the most frequent items,

estimating the size of joins between relations, approximating range queries,

and, above all, extracting precise estimates of individual frequencies of items.

All the considered sketches have parametric size, depending on the val-

ues that are chosen by the user. Typically, α indicates the accuracy (i.e.

the approximation error), and γ represents the probability of exceeding the

accuracy bounds.

Note that, in order to decrease the error of the estimator, the size of the

sketch vector has to be increased.

As already mentioned in Section 1.1, the main strenght of this technique is

its use of the parameters α and γ: each user can specify a different accuracy

(security) level, and therefore he use a different sketch size.

Let U be the domain, and consequently |U| the domain size. We can

think about data input as a vector of size M = |U|. In the following, we use

this notation and we denote by f [i] the frequency of i-th item, and f̃ [i] the

approximated frequency of that item. Furthermore, we use C for the sketch

vector.

2.2.1 AGMS Sketch

The AGMS sketch was first presented, in a very primitive appearance, in

the work of Alon et al. [10], with the aim to estimate the sum of the squares

of the frequencies. With AGMS sketches, a data structure is mapped on a

(hopefully much) smaller vector.

The sketch consists of an array C of r counters. We need a hash function

gi, which maps U uniformly onto {−1,+1}. This function must be four-wise

independent, i.e. it must appear independent when considering sets of four

items together; as written in [25], a family of four-wise independent hash
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functions is given by h(x) = ax3 + bx2 +cx+dmod p for a, b, c and d chosen

uniformly from [p] with p prime (for more details see [76, 74]). The sketch

is built as follows.

∀j, 1 ≤ j ≤ |C|, C[j] =
M∑
i=1

f [i] ∗ gj [i]

AGMS sketch was designed to estimate (self-)join, so there are not many

works that use this kind of sketches to estimate the single items. To the

best of our knowledge, [5] is one of them. Aggarwal and Yu explain how to

estimate any individual value.

Let Eki = C[j]∗gi[j]. We compute |C| values of Ek (one for each component

of the sketch) and then we compute the mean of these Ek (because the

expected contribution to the error is zero [25]).

Therefore:

f̃ [i] = E[Ek]

Setting r = O( 1
α2 log 1

γ ) ensures that the estimation of f [i] has error at

most α · n with probability at least 1− γ.

A great strength of the AGMS sketch is that it allows cancellations, i.e.

negative frequencies. Some drawbacks are the strong independent guaran-

tees for the hash function, and the fact that each update affects all entries,

so its complexity is O(N), where N is the sketch size. An improvement of

this sketch is Fast-AGMS proposed by Cormode and Garofalakis [30]; Fast-

AGMS requires time sublinear at the cost of introducing a second (pair-wise

independent) hash function set.

2.2.2 Count-Min Sketch

Count-Min has been introduced for the first time by Cormode and Muthukr-

ishnan in [31].

Subsequently, it was thoroughly studied [28, 29, 25] because of its simplicity.

The sketch consists of an array C of d × w counters and for each of the d

rows a pair-wise independent hash function hj , that maps items onto [w].

Each item is mapped onto d entries in the array, by adding to the previous
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value with the new item. So each position of the sketch vector is:

C[j, k] =
∑

1≤i≤M :hj(i)=k

f [i]

Given a sketch representation of a vector we can estimate the original value

of each component of the vector by the following function:

f̃ [i] = min
1≤j≤d

C[j, hj(i)]

Multiple keys may hash to the same bucket and thus the count of a bucket

may overestimate (if frequencies are always positive) the true size of a key.

For this reason the estimation procedure returns the minimum value of the

counters a key is hashed to.

The estimation of each component j is affected by an error, but it is

shown that the overestimate is less than n/w, where n is the number of

components. So, setting d = log 1
γ and w = O( 1

α) ensures that the estimation

of f [i] has error of at most α · n with probability at least 1− γ.

The advantages of Count-Min sketch are that it requires only pairwise in-

dependent hash functions and that its update time is significantly sublinear.

The main disadvantage is that it requires only positive values.

2.2.3 Count Sketch

The Count sketch [20, 25, 29] has the same structure of the Count-Min

sketch, but it requires an additional pair-wise independent hash function

family. One of these is required for the choice of the bucket (exactly as in

the Count-Min sketch), while the other one is required to encode the value

of item, like in the AGMS sketch. The sketch is defined by:

C[j, k] =
∑

1≤i≤M :hj(i)=k

gj [i] ∗ f [i]

The estimate of i-th item is:

f̃ [i] = median
1≤j≤d

C[j, hj(i)] ∗ gj [i]

The median is chosen, instead of the mean, since it is less sensitive to

extreme values [20]. A good comparison between some kinds of sketch and
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between estimators (mean, median or minimum) can be found in the works

of Rusu and Dobra [73, 75].

The dimensions of sketch are d = O(log 1
γ ) and w = O( 1

α2 ). The error of

estimation of f [i] is at most α ·
√
F2, where F2 is the sum of the squares of

the frequencies
∑M

i=1 f [i]2, with probability at least 1− γ.

The advantages of Count sketch are its update time and the ability to

handle negative values. The main disadvantage is that it requires two sets

of hash functions.
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Chapter 3

Reference Model

In this chapter we define the basic concepts useful for describing the problem

and our proposed solutions. We introduce the key concept of mobility data,

how we represent them and how they are used in our framework. Then, we

provide the formal definitions of Differential Privacy; finally, we describe our

privacy model.

3.1 Movement Data Representation

The starting point of our work is to define the concept of trajectory:

Definition 3.1.1 (Trajectory). A Trajectory or spatio-temporal sequence is

a sequence of triplets T =< l1, t1 >, . . . , < ln, tn >, where ti (i = 1 . . . n)

denotes a timestamp such that ∀1≤i<n ti < ti+1 and li = 〈xi, yi〉 are points

in R2.

Intuitively, each pair 〈li, ti〉 indicates that the object is in the position

li = 〈xi, yi〉 at time ti.

In a time interval τ , each moving object can have multiple trajectories. We

do not require that each trajectory is complete, i.e., locations may be missing

at some timestamps. We allow the re-occurrence of some sub-trajectories

(i.e., the object may move between locations li and lj back and forth for

multiple times). For example, a vehicle can have two trajectories: T1 =

{< 〈a, b〉, t1 >,< 〈b, c〉, t2 >,< 〈c, a〉, t3 >} and T2 = {< 〈a, b〉, t4 >,<

〈c, d〉, t5 >}.
We assume that the territory is subdivided in cells C = {c1, c2, . . . , cp}

which compose a partition of the territory. For this partition we can use an
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existing division of the territory (e.g., census sectors, road segments, etc.)

or we can determine a data-driven partition as discussed in Section 5.2.

During a travel a user goes from a cell to another cell. We use g to denote

the function that applies the spatial generalization to a trajectory. Given

a trajectory T this function generates the generalized trajectory g(T ), i.e.

a sequence of moves with temporal annotations, where a move is a pair

(lci , lcj ), which indicates that the moving object moves from the cell ci to

the adjacent cell cj . Note that lci denotes the pair of spatial coordinates

representing the the centroid of the cell ci; in other words lci = 〈xci , yci〉.
The temporal annotated move is the quadruple (lci , lcj , tci , tcj ) where lci is

the location of the origin, lcj is the location of the destination and the tci , tcj
are the time information associate to lci and lcj . As a consequence, we define

a generalized trajectory as follows.

Definition 3.1.2 (Generalized Trajectory). Let T = 〈l1, t1〉, . . . , 〈ln, tn〉 be

a trajectory. Let C = {c1, c2, . . . , cp} be the set of the cells that compose

the territory partition. A generalized version of T is a sequence of temporal

annotated moves

Tg = {< lc1 , lc2 , tc1 , tc2 >< lc2 , lc3 , tc2 , tc3 > . . . < lcm−1 , lcm , tcm−1 , tcm >}

where m <= n.

More details on the generalization of trajectories are given in Section

4.2.1.

Now, we show how a generalized trajectory can be represented by a fre-

quency distribution vector. First, we define the function Move Frequency

(MF ) that, given a generalized trajectory Tg, a move (lci , lcj ) and a time

interval τ , computes how many times the move appears in Tg by consider-

ing the temporal constraint. More formally, we define the Move Frequency

function as follows.

Definition 3.1.3 (Move Frequency). Let Tg be a generalized trajectory and

let (lci , lcj ) be a move. Let τ be a temporal interval. The Move Frequency

function is defined as:

MF (Tg, (lci , lcj ), τ) = |{(lci , lcj , ti, tj) ∈ Tg|ti ∈ τ ∧ tj ∈ τ}|.

For any move (lci , lcj ), MF (Tg, (lci , lcj ), τ) can be any non-negative in-

teger. For instance, given a trajectory T = {< (a, b), t1 >,< (c, d), t2 >,
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< (a, b), t3 >,< (e, f), t4 >} and assuming (c, d) and (e, f) locations are both

positioned in the cell c2, the generalized trajectory is Tg = {< lc1 , lc2 , t1, t2 >,

< lc2 , lc1 , t2, t3 >,< lc1 , lc2 , t3, t4 >} and, e.g., MF (Tg, (lc1 , lc2), [t1, t4]) = 2.

This function can be easily extended to take into consideration a set of

generalized trajectories T G . In this case, the information computed by the

function represents the total number of movements from the cell ci to the

cell cj in a time interval in the set of trajectories.

Definition 3.1.4 (Global Move Frequency). Let T G be a set of generalized

trajectories and let (ci, cj) be a move. Let τ be a time interval. The Global

Move Frequency function is defined as:

GMF (T G , (ci, cj), τ) =
∑
∀Tg∈T G

MF (Tg, (ci, cj), τ).

The number of movements between two cells computed by either the

function MF or GMF describes the amount of traffic flow between the two

cells in a specific time interval. This information can be represented by a

frequency distribution vector.

Definition 3.1.5 (Vector of Moves). Let C = {c1, c2, . . . , cp} be the set

of the cells that compose the territory partition. The vector of moves M

with s = |{(ci, cj)|ci is adjacent to cj}| positions is the vector containing all

possible moves. The element M [z] = (lci , lcj ) is the move from the cell ci to

the adjacent cell cj.

Now we are ready to define the frequency vector.

Definition 3.1.6 (Frequency Vector). Let C = {c1, c2, . . . , cp} be the of the

cells that compose the territory partition and let M be the vector of moves.

Given a set of generalized trajectories in a time interval τ T G. The corre-

sponding frequency vector is the vector f with size s = |{(ci, cj)|ci is adjacent
to cj}| where each f [i] = GMF (T G ,M [i], τ).

The definition of frequency vector of a trajectory set is straightforward;

it requires to compute the function GMF instead of MF .

Clearly, the frequency vector of a generalized trajectory is the local data

vector computed by a node by using the local function MF .
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Note that the above definitions are based on the assumption that consec-

utive locations can be in the same cell or in adjacent cells. In some cases (for

example, because of GPS problems) this fact could not be true. We have to

choose what to do in case of these illegal moves (moves that are not present

in the Frequency Vector); a reasonable solution is to try to reconstruct the

missing part of the trajectories, e.g. by interpolation.

3.2 System Architecture

We use as reference architecture the distributed system described in Section

2.1. In our scenario, we want to allow analysts to better understand the

mobility behaviour in a city or territory, to monitor the traffic of vehicles,

and to take advantage of this knowledge to improve the infrastructure man-

agement enabling them, for example, to reduce traffic jams

The coordinator is responsible for computing the aggregation of movement

data on a territory by combining the information received by each node.

In order to obtain the aggregation of the movement data in the central-

ized setting, we need to generalize all the trajectories by using the cells of

a partition of the territory. In our distributed setting we assume that the

partition of the territory, i.e., the set of cells C = {c1, . . . , cp} used for the

generalization, is both known by all the nodes and the coordinator.

In a given time interval, each node, that represents a vehicle that moves

in this territory, collects a set of spatio-temporal points; these points com-

pose one or more trajectories (Definition 3.1.1). The node generalizes these

locations (Definition 3.1.2), and computes the frequency vector (Definition

3.1.3), thus contributing to the computation of the global frequency vector

(Definition 3.1.4) representing the movement data aggregation.

Formally, each remote node Vj (with j ∈ {1, . . . , k}) observes local up-

date streams that incrementally render a distinct frequency distribution vec-

tor fVj over data elements; that is, fVj [v] denotes the frequency of the ele-

ment v observed locally at remote node Vj . Then, the coordinator computes

the global frequency distribution vector F =
∑k

j=1 f
Vj .
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3.3 Differential Privacy Model

In Section 1.2 we introduced Differential Privacy and we provided an intu-

itive definition of it.

Let a database D include a private data record di about an individual i.

By querying the database, it is possible to obtain certain information I(D)

about all data and information I(D-di) about the data without the record di.

The difference between I(D) and I(D-di) may enable to infer some private

information about the individual i. Hence, it must be guaranteed that I(D)

and I(D-di) do not significantly differ for any individual i.

The formal definition [35] is the following. We recall that the parameter

ε specifies the level of privacy guaranteed.

Definition 3.3.1 (ε-differential privacy). A privacy mechanism A gives ε-

differential privacy if for any dataset D1 and D2 differing on at most one

record, and for any possible output D′ of A we have

Pr[A(D1) = D′] ≤ eε × Pr[A(D2) = D′]

where the probability is taken over the randomness of A.

The fundamental concept of this technique is the global sensitivity of a

function mapping underlying datasets to (vectors of) reals.

Intuitively the global sensitivity represents how much the result of a

query can change when it is performed on the dataset or on a dataset close

to it.

Definition 3.3.2 (Global Sensitivity). For any function f : D → Rd, the

sensitivity of f is

∆f = maxD1,D2 ||f(D1)− f(D2)||1

for all D1, D2 differing in at most one record.

The mechanism of Differential Privacy works by adding appropriately

chosen random noise to the answer a=f(D), where f is the query function

and D is the database. We already said in Section 1.2 that the Laplace

mechanism is especially used when data are real, so in this work we focus

on it. Instead of returning the true answer, we return f(D) + Lap(∆f
ε ).
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Figure 3.1: Probability Density Function as the scale changes

Note that decreasing ε, a publicly known parameter, flattens out the Lap(∆f
ε )

curve; when ε is fixed, functions f with high sensitivity yield again flatter

curves.

The magnitude of the noise drawn from a Laplace distribution with the

probability density function p(x|λ) = 1
2λe
−|x|/λ, where λ is the scale factor,

depends on both the global sensitivity of f and the desired privacy level

ε (i.e. λ = ∆f
ε ). In general, when λ increases, the curve becomes flatter,

thus the peak is lower but the spread is greater (see Figure 3.1). This yields

higher expected noise magnitudes.

Formally the following result holds.

Theorem 3.3.1. [35, 36] For any function f : D → Rd over an arbi-

trary domain D, the mechanism A A(D) = f(D) + Laplace(∆f/ε) gives

ε-differential privacy.

A relaxed version of differential privacy allows claiming the same privacy

level as Definition 3.3.1 in the case there is a small amount of privacy loss

(due to a variation in the output distribution for the privacy mechanism A).
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This is discussed in [13] and its definition is the following:

Definition 3.3.3 ((ε, δ)-differential privacy). A privacy mechanism A gives

ε-differential privacy if for any dataset D1 and D2 differing on at most one

record, and for any possible output D′ of A we have

Pr[A(D1) = D′] ≤ eε × Pr[A(D2) = D′] + δ

where the probability is taken over the randomness of A.

Note that, if δ = 0, (ε, 0)-differential privacy is ε-differential privacy.

3.4 Privacy Model

We consider as sensitive information any information from which the typical

mobility behavior of a user may be inferred. This information is considered

sensitive for two main reasons: 1) typical movements can be used to identify

the drivers who drive specific vehicles even when a simple de-identification

of the individual in the system is applied; and 2) the places visited by a

driver could identify specific sensitive areas such as clinics, hospitals and

routine locations such as the user’s home and workplace.

In our setting, we assume that each node in our system is honest; in other

words we do not consider attacks at the node level. We also assume that

the coordinator is untrusted. There are two types of untrusted coordina-

tors: (i) semi-honest coordinator who will try to infer the sensitive mobility

information from the inputs of nodes, but otherwise follows the protocol

correctly, and (ii) malicious coordinator who may have arbitrary auxiliary

information to help break the protocol. For example, the coordinator may

be able to obtain real mobility statistic information from other sources, such

as from public datasets on the web, or through personal knowledge about

a specific participant [79]. In this paper, we focus on designing a privacy-

preserving technique to defend against a semi-honest coordinator. With this

weaker assumption about the coordinator’s reliability, we aim at designing

privacy-preserving techniques that can provide meaningful data utility.

Unfortunately, releasing frequency of moves instead of raw trajectory

data to the coordinator is not privacy-preserving, as the intruder may still

infer the sensitive typical movement information of the driver. As an ex-

ample, the attacker could learn the driver’s most frequent move; this infor-

mation can be very sensitive because such move usually corresponds to a
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user’s transportation between home and work place. Therefore, our goal is

to compute a distributed aggregation of movement data for a comprehensive

exploration of them while preserving privacy. In particular, we aim to find

effective privacy mechanisms to protect the frequency information associ-

ated to each move. For this purpose, we use the Differential Privacy, the

paradigm formally described in Section 3.3.

Our problem can be defined formally as the following.

Definition 3.4.1 (Problem Definition). Given a set of cells C = {c1, . . . , cp}
and a set V = {V1, . . . Vk} of vehicles, the privacy-preserving distributed

movement data aggregation problem (DMAP) consists in computing, in a

specific time interval τ , the

f τDMAP (V ) = [f1, f2, . . . , fs]

(where fi = GMF (T G ,M [i], τ) and s = |{(ci, cj)|ci is adjacent to cj}|) while

preserving privacy. Here, T G is the set of generalized trajectories related to

the k vehicles V in the time interval τ and M is the vector of moves defined

on the set of cells C.
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Chapter 4

Privacy-Aware Distributed

Mobility Data Analytics

In this chapter, we provide a detailed description of three privacy-aware

data transformation methods we propose to protect the individual privacy of

each user participating to our distributed analytical process. Each solution

is characterized by a different trade-off between privacy and data utility.

Moreover, we formally study the privacy guarantees of the various methods.

4.1 Approach Overview

In this thesis, we propose different privacy-preserving solutions based on dif-

ferential privacy, which is a strong privacy model independent of the back-

ground knowledge of an adversary. Each of our solutions is characterized by

a different trade-off between privacy and data utility. In the following, we

describe the key ideas of these three solutions, including the computation

by each node and by the coordinator respectively. The node computation

mainly involves transforming data to achieve the desired privacy guarantee.

We present three privacy-preserving data transformation approaches. The

first one, named UniversalNoise, is based on the classical ε-differential pri-

vacy. It can provide strong privacy guarantees but high loss of data utility,

due to the generation of negative flows and noise of very high magnitude.

These two issues are managed in the second solution, named BoundedNoise,

by relaxing the privacy guarantee to (ε, δ)-differential privacy, where δ mea-

sures the privacy loss. We will show that: (1) the BoundedNoise approach
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can improve data utility significantly, and (2) in some cases, the Bounded-

Noise approach may provide a low level of guaranteed privacy in practice.

Indeed we can show that sometimes the privacy loss can be high. As a con-

sequence, we propose a third solution named BalancedNoise that tries to

maintain the balance between privacy and utility under control by setting

appropriate values of ε and δ. The mechanism allows the nodes to specify

the level of privacy ε and the maximum privacy loss δ and find the best

solution that is capable to minimize the noise magnitude and the possible

negative flows, so that it can achieve good utility. Besides the design of the

privacy-preserving data transformation methods, we also design sketching

approaches to reduce the communication between nodes and the coordina-

tor. In Chapter 5 we will validate our theoretical analyses with an extensive

set of experiments on large, real mobility data.

4.2 Privacy-Aware Node Computation

We assume that each node represents a vehicle that moves in a specific

territory. Each vehicle in a given time interval observes sequences of spatio-

temporal points (trajectories) and computes the corresponding frequency

vector that is to be sent to the coordinator. The node computation is com-

posed of two main steps, described in Algorithm 1: (a) the computation

of a privacy-preserving frequency vector and (b) the vector sketching that

compresses the information to be communicated with the coordinator.

Algorithm 1: NodeComputation(ε, τ , M , TG, w, d)

Data: A privacy budget ε, a time interval τ , the vector of the moves

M , a set of trajectories TG, the sketch dimensions w and d

Result: The sketch vector representing the privacy-preserving

frequency vector sk(f̃Vj )

// Privacy-Preserving Computation (Sec. 4.2.1-4.2.3);

f̃Vj = PrivacyTransformation(ε,M, TG, τ);

// Data Compression (Sec. 4.2.4);

sk(f̃Vj ) = SketchingAlgorithm(f̃Vj , w, d);

return sk(f̃Vj );

The first step, described in detail in Algorithm 2, is the challenging step
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Algorithm 2: PrivacyTransformation(ε, M , TG, τ)

Input: A privacy budget ε, a time interval τ , the vector of the moves

M , a set of trajectories TG

Output: The privacy-preserving frequency vector f̃Vj

forall observed trajectory T ∈ TG do
// Trajectory Generalization (Sec. 4.2.1);

Tg = TrajectoryGeneralization(M,T );

// Update of the Frequency Vector fVj (Sec. 4.2.2);

forall move (lci , lcj ) ∈ Tg do
n = MF (Tg, (lci , lcj ), τ);

fVj [(lci , lcj )]+ = n;

// Transformation for achieving DP (Sec. 4.2.3);

f̃Vj = AchievingDP (fVj , ε, TG);

return f̃Vj ;

because it has to transform data to achieve privacy without destroying too

much of the data utility. It is composed of three phases: (1) trajectory

generalization; (2) frequency vector construction; and (3) frequency vector

transformation to achieve differential privacy. We describe the details of

these three phases in Section 4.2.1 - 4.2.3 respectively, and discuss the details

of the vector sketching step in Section 4.2.4.

4.2.1 Trajectory Generalization

Given a specific division of the territory, a trajectory is generalized in the

following way. We apply a place-based division of the trajectory into seg-

ments. The area c1 containing its first point l1 is found. Then, the second

and following points of the trajectory are checked for being inside c1 until

we find a point li not contained in c1. For this point li, the containing area

c2 is found.

The trajectory segment from the first point to the i-th point is repre-

sented by the vector (c1, c2). Then, the procedure is repeated: the points

starting from li+1 are checked for containment in c2 until finding a point lk

outside c2, the area c3 containing lk is found, and so forth up to the last

point of the trajectory.

In the result, the trajectory is represented by the sequence of moves
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(c1, c2, t1, t2)(c2, c3, t2, t3) . . . (cm−1, cm, tm−1, tm). Here, in a specific quadru-

ple, ti is the time moment of the last position in ci and tj is the time moment

of the last position in cj . There may also be cases when all points of a trajec-

tory are contained in one and the same area c1. If this is the case, the whole

trajectory is represented by the sequence {c1}. Since globally we want to

compute aggregation of moves, we discard this kind of trajectories. More-

over, as most of the methods for analysis of trajectories are suited to work

with positions specified as points, the areas {c1, c2, . . . , cm} are replaced, for

practical purposes, by the sequence lc1 , lc2 , . . . , lcm consisting of the centroids

of the areas {c1, c2, . . . , cm}.

4.2.2 Frequency Vector Construction

After the generalization of a trajectory, the node computes the Move Fre-

quency function (Definition 3.1.3) for each move (lci , lcj ) in that trajectory

and updates its frequency vector fVj associated to the current time interval

τ . Intuitively, the vehicle populates the frequency vector fVj according to

the generalized trajectory observed. Therefore, at the end of the time inter-

val τ , the element fVj [i] contains the number of times that the vehicle Vj

moved from m to n in the given time interval τ , if M [i] = (m,n).

4.2.3 Privacy-preserving Vector Transformation

As we stated in Section 3.4, if a node sends the original frequency vector

without any data transformation to the coordinator, the intruder may still

be able to infer the sensitive typical movements of the vehicle represented

by the node. Clearly, the generalization step can help to protect the pri-

vacy of drivers but it depends on the density of the area. Specifically, if

the area is not so dense, the attacker could identify a few candidates of the

locations that the driver has been to. In this case, the privacy is at high risk

to be breached, though it is possible to use some precaution by obtaining a

suitable tessellation of the territory taking into account the density of areas

(see Section 5.2 for more details). An attacker could also infer if during

a trip a user went from a location a to a location b and how many times.

The questions are, how can we hide the event that the user moved from a

location a to a location b during a trip in the time interval τ? And how can

we hide the real count of moves in that time window? To answer these ques-

44



4.2.3 Privacy-preserving Vector Transformation

tions, we propose three solutions based on a rigorous privacy model named

ε-differential privacy (Section 3.3). Each solution provides a different bal-

ance between privacy and data utility.

4.2.3.1 Computation of Sensitivity

The key point of the entire differential privacy model is the definition of the

sensitivity. Recall that in our setting each trajectory is transformed into a

generalized one and a vehicle can go from cell a to cell b more than once

during a trajectory. Therefore, the frequency count of each move can be any

arbitrary non-negative integer number. We also recall that the frequency

count of move (la, lb) by node nj is equal to

f =
∑
∀Tgi

MF (Tgi , (lca , lcb), τ),

where Tgi is one of the generalized trajectories of nj in the time interval

τ and lca and lcb denote the pair of spatial coordinates representing the

centroids of the cells that la and lb locate in respectively.

If we only want to hide the real value of single moves, we treat the flow of

each move separately; in this case, adding or removing a single movement

from a to b influences the count of the move (a, b) (and thus the response

to an hypothetical query performed on the data containing that element or

not) exactly by 1. Therefore, in this move-based reasoning, the sensitivity

is set to 1. On the other hand, we might look for greater protection, and

then a possible solution is to reason in terms of moves in a trajectory (we

call this approach trajectory-based reasoning). In particular, we want to

capture the following case: how does the move frequency count (for any

single user) change if an entire trajectory (for that user) is present or not in

the data? Obviously, the sensitivity of a move frequency count depends on

the occurrence of that move in each user trajectory. In a time interval τ for

a given vehicle (node) we can have different trips or trajectories (we have a

trajectory when the user starts from a location and stops at another). We

argue that adding or deleting one trajectory of nj can affect the count of

move (la, lb) by at most max
i=1,...,q

(MF (Tgi , (lca , lcb), τ)). Therefore, let q be the

number of trajectories and τ be the time interval, then the sensitivity of
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move (lca , lcb) is:

∆f = max
i=1,...,q

MF (Tgi , (lca , lcb), τ). (4.1)

Note that the frequency count f of move (lca , lcb) always satisfies that

f ≥ ∆f , as f =
∑

i=1,...,q
(MF (Tgi , (lca , lcb), τ)).

Given the sensitivity (either fixed to 1 or computed by Equation 4.1) we

can define a differential private mechanism in various ways. In the following,

we generically refer to the method Compute Sensitivity, thus indicating that

sensitivity can be indifferently a move-based sensitivity or a trajectory-based

sensitivity. We present three solutions, each one corresponding to a different

implementation of the function AchievingDP in Algorithm 2.

4.2.3.2 UniversalNoise Approach

Our first approach, named UniversalNoise, is based on the classic ε-differential

privacy model. In particular, at the end of the time interval τ , before send-

ing the frequency vector to the coordinator, each node adds the Laplace

noise Lap(∆f
ε ), where ∆f is defined as explained in Section 4.2.3.1, to each

element in the frequency vector the value in that position of the vector.

At the end of this step the node transforms fVj into f̃Vj . This process is

described in Algorithm 3.

Algorithm 3: UniversalNoise(fVj , ε, TG)

Input: A frequency vector fVj , a privacy budget ε, a set of

trajectories TG

Output: The privacy-preserving frequency vector f̃Vj

forall vector element fVj [k] do
// Compute Sensitivity (Sec. 4.2.3.1);

∆f = ComputeSensitivity(T G,M [k]) //M = moves-vector of fVj;

noise = Laplace(∆f
ε );

f̃Vj [k] = fVj [k] + noise;

return f̃Vj ;

Privacy Analysis. We are ready to show that Algorithm 2 with the privacy

transformation presented just now satisfies ε-differential privacy.
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Theorem 4.2.1. Given the total privacy budget ε, for each frequency value

x, UniversalNoise approach ensures ε-differential privacy.

The correctness of Theorem 4.2.1 is straightforward due to how the noise

is added according to the Laplace mechanism [36].

4.2.3.3 BoundedNoise Approach

The UniversalNoise approach has a few weaknesses. First, it could lead to

the destruction of the data utility because of the added noise that, although

with small probability, can reach arbitrary magnitude. Second, adding

noise drawn from the Laplace distribution could generate negative frequency

counts of moves, which does not make sense in our setting. To fix these two

problems, we propose the second approach, named BoundedNoise approach,

that bounds the noise drawn from the Laplace distribution. In particular,

for each value x of the vector fVj , we draw the noise from Lap(∆f
ε ) bounded

to the interval [−x, x]. In other words, for any original frequency fVj [i] = x,

its perturbed version after adding noise should be in the interval [0, 2x]. By

doing this, we reduce the amounts of utility loss due to adding noise, as

described in Algorithm 4.

Algorithm 4: BoundedNoise(fVj , ε, TG)

Input: A frequency vector fVj , a privacy budget ε, a set of

trajectories TG

Output: The privacy-preserving frequency vector f̃Vj

forall vector element fVj [k] do
// Compute Sensitivity (Sec. 4.2.3.1);

∆f = ComputeSensitivity(T G,M [k]) //M = moves-vector of fVj;

noise = Laplace(∆f
ε );

while (noise > fVj [k]) or (noise < −fVj [k]) do

noise = Laplace(∆f
ε );

f̃Vj [k] = fVj [k] + noise;

return f̃Vj ;

We are aware that using a truncated version of the Laplace distribution

may lead to privacy leakage. In the following we show that the BoundedNoise

approach satisfies (ε, δ)-differential privacy, where δ measures the privacy

loss.
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Privacy Analysis. As pointed out in [51], differential privacy must be

applied with caution. The privacy protection provided by differential privacy

relates to the data generating mechanism and deterministic aggregate level

background knowledge. We observe that bounding the Laplace noise will

lead to some privacy leakage on some values. For instance, from the noisy

frequency values that are large, the attacker can infer that these values

should not be transformed from small ones. To analyze the privacy leakage

of our BoundedNoise approach, we first explain the concept of statistical

distance [13]. Formally, given two distributions X and Y , the statistical

distance between X and Y over a set U is defined as

d(X,Y ) = max
S∈U

(Pr[X ∈ S]− Pr[Y ∈ S]).

[13] also shows the relationship between (ε, δ)-differential privacy and

the statistical distance.

Lemma 4.2.1. [13] Given two probabilistic functions F and G with the

same input domain, where F is (ε, δ1)-differentially private. If for all possible

inputs x we have that the statistical distance on the output distributions of

F and G is:

d(F (x), G(x)) ≤ δ2,

then G is (ε, δ1 + (eε + 1)δ2)-differentially private.

Let F and F ′ be the frequency distribution before and after adding

Laplace noise. We can show that the statistical distance between F and F ′

can be bounded as follows:

Lemma 4.2.2. [13] Given an (ε, δ)-differentially private function F with

F (x) = f(x) + R for a deterministic function f and a random variable

R. Then for all x, the statistical distance between F and its throughput-

respecting variant F ′ with the bound b on R is at most

d(F (x)− F ′(x)) ≤ Pr[|R| > b].

[13] has the following lemma to bound the probability Pr[|R| > b].

Lemma 4.2.3. [13] Given a function F with F (x) = f(x) +Lap(∆f
ε ) for a

deterministic function f , the probability that the Laplacian noise Lap(∆f
ε )

applied to f is larger than b is bounded by:

Pr(|Lap(∆f

ε
)| > b) ≤ 2(∆f)2

b2ε2
.
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This upper bound is not tight. For instance, when ∆f = 1, b = 1, and

ε = 1, the bound 2(∆f)2

x2ε2
= 2. Therefore, we improve the bound by the

following theorem.

Lemma 4.2.4. Given a function F with F (x) = f(x) + Lap(∆f
ε ) for a

deterministic function f , and a Laplace distribution with zero-mean, the

probability that the Laplacian noise Lap(∆f
ε ) applied to f is larger than b is

bounded by:

Pr

(∣∣∣Lap(∆f

ε

)∣∣∣ > b

)
≤ e

−bε
∆f .

Proof. Let λ = ∆f
ε . The probability density function is p(x) = 1

2λe
(−|x|/λ)

and the cumulative distribution function is

D(x) =
1

2
(1 + sgn(x)(1− e

−|x|
λ )).

Therefore,

Pr

(∣∣∣Lap(∆f

ε

)∣∣∣ > b

)
=

∫ ∞
b

1

2λ
e−
|x|
λ dx (4.2)

=
1

2λ

(∫ ∞
0

e−
|x|
λ dx−

∫ b

0
e−
|x|
λ dx

)
= D(∞)−D(b)

= e−
b
λ .

Our analysis shows that e
−bε
∆f ≤ 2(∆f)2

b2ε2
, i.e., our bound is tighter than

that in [13]. We stress that in our approach, the bound b of each frequency

value x is not fixed. Indeed, b = x. Therefore, each frequency value x has

different amounts of privacy leakage. Our approach thus achieves different

degree of (ε, δ)-differentially privacy guarantee on each frequency value x.

Theorem 4.2.2 shows more details.

Theorem 4.2.2. Given the privacy budget ε, for each frequency value x,

BoundedNoise approach ensures
(
ε, (eε + 1)e

−xε
∆f
)
-differentially privacy.

Note that the frequency vectors with Laplace noise (without truncation)

satisfy (ε, 0)-differentially privacy.

The correctness of Theorem 4.2.2 can be easily proven by Lemma 4.2.1

and Lemma 4.2.4. Note that the frequency vectors with Laplace noise (with-

out truncation) satisfies (ε, 0)-differentially privacy. It is easy to verify that
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the privacy loss, measured as δ = (eε+1)e
−xε
∆f , can be high. More details are

as following. Recall that for any frequency count x, x ≥ ∆f always holds.

Next we discuss by cases that x = ∆f and x > ∆f . For the former case

that x = ∆f , δ = (1 + e−ε) > 1, i.e., the privacy loss is always grater than

1. For the latter case that x > ∆f , δ = e

(
1− x

∆f

)
ε
+ e

−xε
∆f . In this case, δ > 1

holds when x < ln(eε+1)∆f
ε . In other words, smaller frequency counts have

a higher probability to get larger amounts of privacy loss. The situation

improves a lot when the x value increases. As an example considering x = 6

with ε = 0.3 and sensitivity ∆f = 1 the privacy loss becomes δ = 0.16.

Although this approach is very promising for the data utility it could be not

suitable for situations where very low values of frequency are frequent. As a

consequence, below we present our third solution capable to better manage

the very important trade-off between privacy and utility.

4.2.3.4 BalancedNoise Approach

As discussed above, the UniversalNoise approach may provide a strong pri-

vacy guarantee but poor data utility, while the BoundedNoise approach can

improve data utility but with a possible high privacy loss. Our third ap-

proach, named BalancedNoise, tries to address the trade-off issue between

privacy and data utility. The BalancedNoise approach, described in Algo-

rithm 5, allows the user to set the desirable values for the two parameters,

the privacy budget threshold ε and the privacy loss threshold δ. In other

words, we find the smallest interval [−b, b] such that the following inequality

holds:

(eε + 1)e
−bε
∆f ≤ δ.

Note that e
−bε
∆f is the privacy loss we found in Lemma 4.2.4. This implies

that

b ≥ −∆f

ε
ln

δ

eε + 1
.

After finding the interval, for each value x of the frequency vector, the

node draws the noise from Lap(∆f
ε ) bounding the noise value to the interval

[−b, b], where b = −∆f
ε ln δ

eε+1 . Note that this solution limits as much as

possible the generation of noise with values of too high magnitude while

it does not completely solves the problem of the negative flows. Clearly,

the possibility to compute the minimum interval that better fits the user
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privacy requirements also helps to limit the negative flows (as confirmed by

our experiments reported in Section 5.4.3).

Privacy Analysis. Similar to the BoundedNoise approach, the Balanced-

Noise approach described in Algorithm 5 satisfies (ε, δ)-differential privacy.

Algorithm 5: BalancedNoise(fVj , ε, TG, )

Input: A frequency vector fVj , a privacy budget ε, a set of

trajectories TG, the privacy loss δ

Output: The privacy-preserving frequency vector f̃Vj

Compute b = −∆f
ε ln δ

eε+1 ;

forall vector element fVj [k] do
// Compute Sensitivity (Sec. 4.2.3.1);

∆f = ComputeSensitivity(T G,M [k]) //M = moves-vector of fVj;

noise = Laplace(∆f
ε );

while (noise > b) or (noise < −b) do

noise = Laplace(∆f
ε );

f̃Vj [k] = fVj [k] + noise;

return f̃Vj ;

4.2.4 Vector Sketching for Compact Communications

In a distributed system an important issue to be considered is the amount

of data that needs to be communicated. In fact, real life systems usually

involve thousands of vehicles (nodes) that are located in any place of the

territory. Each vehicle has to send to the coordinator the information con-

tained in its frequency vector that has a size depending on the number of

cells that represent the partitions of the territory. The number of cells in

a territory can be very huge and this can lead to large frequency vectors.

Therefore, the system has to be able to handle not only a very large num-

ber of nodes but also huge amounts of informations to be communicated.

These considerations make the optimization of communicated information

necessary.

We propose the application of sketching methods that allow us to apply a

good compression of the information to be communicated. In particular, we

propose the application of AGMS, Count-Min or Count sketch algorithms,

introduced in Section 2.2. In Chapter 5 we empirically study the effect of
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the data compression obtained with each one of these algorithms on the

data utility in order to identify the best one for our final goal, that is to

find a good trade-off between privacy and utility of the mobility analysis. In

general, these algorithms map a frequency vector f onto a more compressed

vector. The general pseudocode of this step is described in Algorithm 6;

each method differs from the others in implementation details, due to the

structure of the sketch, as formerly described.

Algorithm 6: SketchingAlgorithm(f̃Vj ,w,d)

Input: A differential-private frequency vector f̃Vj , the number of

columns w, the number of rows d

Output: The sketched frequency vector sk(f̃Vj )

generate hash functions;

forall vector element f̃Vj [k] do

update sk(f̃Vj );

return sk(f̃Vj );

Adding this data summarization step (the last step in Algorithm 1) does

not change the privacy guarantee provided by the above methods. This

is due to the fact that the sketching function only accesses a differentially

private frequency vector, not the underlying database. As proven by Hay

et al. [45], a post-processing of differentially private results remains differ-

entially private. Therefore, also the whole Algorithm 1 with the sketching

step maintains the same privacy guarantee of Algorithm 2.

4.3 Coordinator Computation

The computation of the coordinator is composed of two main phases: 1)

computation of the set of moves and 2) computation of the aggregation of

global movements.

Move Vector Computation. The coordinator in an initial setup phase

has to send to the nodes the vector of moves (Definition 3.1.5). The compu-

tation of this vector depends on the set of cells that represent the partition

of the territory. This partition can be a simple grid or a more sophisticated

territory subdivision such as Voronoi tessellation. The sharing of vector of

moves is a requirement of the whole process because each node has to use
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the same data structure to allow for the correct computation of the global

flows on the coordinator’s part.

Global Flow Computation. The coordinator has to compute the global

vector that corresponds to the global aggregation of movement data in a

given time interval τ by composing all the local frequency vectors. It re-

ceives the sketched vector sk(f̃Vj ) from each node; then it reconstructs each

frequency vector from the sketched vector, by using the estimation described

in Section 2.2. Finally, the coordinator computes the global frequency vec-

tor by summing the estimate vectors component by component. Clearly

the estimated global vector is an approximated version of the global vector

obtained by summing the local frequency vectors after the privacy transfor-

mation only.
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Chapter 5

Evaluation on Real Big Data

This chapter shows the empirical results we obtained applying our ap-

proaches on a large dataset of real GPS vehicles traces, collected by Octo

Telematics. We have evaluated the three methods presented in Chapter 4,

from the point of view of both data utility and privacy-preservation, and we

empirically show how the trade-off between these two goals changes in the

different proposals, by confirming the theoretical results.

In particular, in this chapter: first, we describe some characteristics of

the selected trajectories and of the tessellation; second, we introduce the

utility measures analyzed; and finally, we show how our methods behave

with respect to these measures.

5.1 Dataset Description

For our experiments we used GPS vehicles traces collected in a period from

1st May to 31st May 2011. In our simulation, the coordinator collects the

frequency vectors (FV) from all the vehicles to determine the Global Fre-

quency Vector (GFV), i.e. the sum all the trajectories crossing any link, at

the end of each day. Thus we defined a series of time intervals τi, where

each τi spans over a single day. Note that we conducted experiments on

data by considering different time intervals τ : 4 hours, one day and 2 days.

Since the results we found in terms of data utility are very similar, in the

following we only report the results concerning τ equal to one day, i.e. the

25th May 2011.

The GPS traces were collected in the geographical areas around Pisa. We
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randomly selected around 4, 200 vehicles out of a total of about 49, 000 ve-

hicles. This led to the generation of around 15, 700 trips (trajectories) in

the selected day. Furthermore, we use a territory tessellation of about 2, 400

cells; so, considering as possible moves only pairs of adjacent cells we obtain

frequency vectors containing about 15, 900 positions (moves).

Concerning the frequency vectors constructed by all users (vehicles), we have

that the majority (about 99%) of the moves are zero (this fact implies that

vectors are very sparse), while the effective distribution of the non-zero ele-

ments of all users is reported in Figure 5.1. We observe that a high number

of these moves consists of very low flows. Indeed, the mean of non-zero

moves is 1.13 and the median is 1. This fact is reasonable because taking

a time window of one day, a typical user visits few places: we have chosen

a working day, therefore trips shall be mostly from home to workplace and

vice versa.
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Figure 5.1: Percentage of moves that have a certain flow

Note that all the considered trajectories have at least one move and as a

consequence at least one non-zero value in the frequency vector; trajectories

that did not satisfy this requirement were discarded in a preprocessing phase.

This is not a limitation, because in our framework these cases are discarded

by the node during the Trajectory Generalization step, as stated in Section

4.2.1.

5.2 Spatial Tessellation

The generalization and aggregation of movement data is based on space

partitioning. Arbitrary territory divisions, such as administrative districts
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or regular grids, do not reflect the spatial distribution of the data. The

resulting aggregations may not convey the essential spatial and quantitative

properties of the traffic flows over the territory. Our method for territory

partitioning extends the data-driven method suggested in paper [12]. Using

a given sample of points (which may be, for example, randomly selected

from a historical set of movement data), the original method finds spatial

clusters of points that can be enclosed by circles with a user-chosen radius.

The centroids of the clusters are then taken as generating seeds for Voronoi

tessellation of the territory. We have modified the method so that dense

point clusters can be subdivided into smaller clusters, so that the sizes of

the resulting Voronoi polygons vary depending on the point density: large

polygons in data-sparse areas and small polygons in data-dense areas. The

method requires the user to set 3 parameters: maximal radius R, mini-

mal radius r, and minimal number of points N allowing a cluster to be

subdivided. In our experiments, we used a tessellation with 2661 polygons

obtained with R = 10km, r = 500m, N = 80.

5.3 Utility Measures

To assess the information loss incurred to achieve privacy and to reduce the

amount of information to be transmitted, we study how much data utility

is preserved after the transformations. Since the coordinator reconstructs

the flows among the zones of the tessellation, we can represent such data as

a directed graph, where the nodes represent the zones and an edge between

two nodes represent the flows from one zone to the other. This graph-

based model allows us to analytically evaluate the resulting aggregations by

means of some network-based statistics, described below. The models can

also be exploited for different application scenarios and for each of them

we can evaluate the quality of results after the transformations, since these

mobility analyses can be performed on the transformed data too.

5.3.1 Network-based Measures

In order to assess the utility of the data collected by the coordinator we study

how the distributions of general network-based measures are preserved. In

particular we have considered the following measures:
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Flow per Link : this measure evaluates the volume of flow in each move

(edge of the network), i.e., traffic between two adjacent zones (we

simply sum the traffic flows for each edge).

Flow per Zone: this measure evaluates the volume of flow in each zone

(node), i.e., for each zone we sum the flows of all the incoming and

outgoing flows in that zone.

Node Degree: [8, 66] this measure considers the distinct number of ori-

gins and destinations for each zone, thus focusing on the topological

properties of the resulting graph, i.e, for each zone of the territory we

compute the edges (with some traffic) incident to it.

Clustering Coefficient : [66] given a node the clustering coefficient is defined

as the probability that two randomly selected neighbors are connected

to each other. Formally,

CCci =
# pairs of neighbors connected by edges

# pairs of neighbors
.

Node Betweenness: [38] this function is a measure of a node’s centrality in

a network. It computes the number of shortest paths from all nodes

to all others that pass through that node. Formally,

NBTci =
∑

∀ (cj , ck),
cj 6= ci 6= ck

# shortest path between cj and ck pass through ci
# shortest path between cj and ck

.

Note that usually Node Betweenness values have high correlation with

Node Degree, i.e., to a higher Node Degree corresponds a higher Node

Betweenness value.

Edge Betweenness: [43] this function provides similar information to the

previous one, but considering the edge instead of the node. In other

words, it measures the edge’s centrality in a network, taking into

account the fraction of shortest paths between two nodes that pass

through an edge, over all pairs of vertices.

5.3.2 Mobility Application Scenarios

The reconstructed GVF enables a traffic manager to evaluate the traffic

condition by monitoring the status of the road network. We explored a vi-
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sualization approach where the measures Flow per Link and Flow per Zone

are rendered on a map. In particular, in Figure 5.2 (left) the Flow per Link

are presented as arrows whose thickness is proportional to the amount of

traffic on that link. The Flow per Zone (Figure 5.2 (right)) are rendered

with a circle whose radius is proportional to the median value of all the

zones and the color indicates if the flow is above (red) or below (cyan) the

median. These two graphical representations allow to easily identify the

portions of the road network with critical traffic conditions. These visu-

alizations, when performed on the values obtained after the privacy (and

sketching) transformations and compared with the original ones, allow us

to qualitatively evaluate the trade-off between data privacy and data util-

ity. Moreover, they provide examples of mobility analyses that can be done,

even with the private data.

Figure 5.2: Traffic and density analysis for original data

The transformed data has also been used to study the aggregation of

zones on the basis of their relative mobility, according to the approach pre-

sented in [72]. Starting from the graph-based model of flows, we apply

a community discovery algorithm on the data to determine the groups of

nodes strongly connected by high flows. We call such aggregation of zones

as Mobility Borders to stress the definition of a boundary derived from mo-

bility data. Mobility Borders have the aim to determine groups of regions

such that the inner movements within a group are more frequent than the

movements towards the other groups. In other words, this problem consists

in finding areas with a dense exchange of travelers between them and a low
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exchange of travelers across this set of areas, and this can then be reduced to

the problem of finding clusters of nodes that are densely connected internally

and sparsely connected with the rest of the network. The result of Mobility

Borders can be rendered visually by joining the geometries of the zones into

a larger polygon according to the group they belong to. Figure 5.3 shows

an example of this kind of analysis.

To analytically evaluate the goodness of the resulting clusters, we consider

two measures adapted from information retrieval research field: precision

and recall. With precision we measure the ratio of zones in the same group

in the original data that stay in the same group in the transformed one.

The recall measures the contribution of several original groups to a group

coming from transformed data.

Figure 5.3: Mobility Borders results for original data

5.4 Analytical evaluation

We now discuss the experiments conducted on the real-world data described

above. To evaluate the data quality after the transformation we compare the

transformed flows with the original ones. According to the utility measures

defined in Section 5.3, for each measure we compare the resulting statistics

for each node and edge of the graph-model resulting from transformed data

with the graph yielding from the original data.

We can use the scatter plots to highlight the differences between the

transformed data and the original ones; in these plots we also report the
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fitted regression line and its slope, to have a further indication of the quality

of the correlation.

To present the results more formally for different comparisons of parameters

and utility measures, we adopt the Pearson Correlation Coefficient (PCC)

to represent analytically the amount of data perturbation introduced. The

coefficient ranges from -1 to 1: it tends to 1 when the data points are

close to the regression line; it tends to -1 when there is probably a reverse

correlation with regards to the regression line found; finally, it tends to zero

when the data points are scattered away from the line, i.e., there is no linear

correlation between the variables.

5.4.1 Impact of Sensitivity on Privacy Transformations

Now, we discuss and evaluate the impact of the sensitivity on the data

utility and privacy protection. In general, by increasing the sensitivity we

should have a better protection (as stated in Section 4.2.3); this is because

the scale factor increases when the sensitivity augments (see Section 3.3).

Clearly, this leads to the generation of noise of a higher magnitude. This

result is confirmed experimentally, even though the difference is not very

marked (see Table 5.1). The fact that the difference is small depends on the

characteristics of the dataset: several moves are equal to 1, therefore the

sensitivity is often equal to 1, also considering the trajectory-based reasoning.

average minimum maximum

move-based sensitivity 2.01656 0.0108814 9.85709

trajectory-based sensitivity 2.03846 0.0194095 10.1975

Table 5.1: Noise by varying the sensitivity, over 124, 772 values.

However, it is also important to take into account another aspect. In

the UniversalNoise approach, considering the move-based sensitivity (i.e, a

sensitivity always equal to 1), there is a substantial drop in the data utility,

because given a node the privacy transformation adds a noise quantity to

each edge, i.e., to each element of the frequency vector. The data utility

improves a lot when we consider the trajectory-based sensitivity which does

not add any noise value to edges where no flow is present. These edges have

sensitivity equal to 0 as defined in Equation 4.1 in Section 4.2.3.1. This

approach does not generate any privacy leak, because we do not consider as
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sensitive information the fact that a user did not travel along a certain edge.

In other words, our focus is on protecting the real movements because some

sensitive inferences could be hidden among those.

Figure 5.4 shows the scatter plots for the Flow per Link measure (Figure

5.4(a)&(b)) and the Flow per Zone measure (Figure 5.4(c)&(d)). Here, we

compare what happens when we apply the move-based sensitivity or the

trajectory-based sensitivity. We observe that though we chose large ε (in

the figure ε is equal to 0.9), i.e., less privacy, the correlation in the case of

move-based sensitivity (Figure 5.4(a)&(c)) is inexistent.
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Figure 5.4: Correlations of Flow per Link and Flow per Zone by varying

sensitivity in UniversalNoise

In Figure 5.5 are reported the visualizations of Flow per Link in the first

row and the visualizations of Flow per Zone in the second row. Note that
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Figures 5.5(a)&(d) illustrate the visualizations for the original data; Figures

5.5(b)&(e) show the visualizations for the perturbed data by Universal-

Noise and the move-based sensitivity ; and lastly, Figure 5.5(c)&(f) depict

the results for the perturbed data by UniversalNoise and the trajectory-

based sensitivity. Clearly, with the correlations obtained through the use of

move-based sensitivity, the visualizations introduced in Section 5.3.2 are not

meaningful.

Figure 5.5: Visualizations of Flow per Link and Flow per Zone by varying

sensitivity in UniversalNoise

Finally, with the purpose to find some property which is preserved, we

compute the PCC of all the network-based measures presented above. Un-

fortunately, when we use the move-based sensitivity (Figure 5.6 (left)), the

correlations are extremely low, therefore we can argue that there is no simi-

larity between the original and the perturbed values. However, the correla-

tions obtained using the trajectory-based sensitivity (Figure 5.6 (right)) are

promising: this case will be discussed in detail in Section 5.4.3.

Note that this difference in terms of data utility between move-based sensi-

tivity and trajectory-based sensitivity does not appear in the BoundedNoise

method, because in that method the perturbed flow always lies between 0

and the double of the original flow (so the zero-moves are never altered),

while it resurfaces again in the BalancedNoise approach.
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Figure 5.6: Correlations of network-based measures by varying sensitivity

in UniversalNoise

5.4.2 Privacy and Utility of BoundedNoise Approach

In this section we show our evaluation of the BoundedNoise approach in

terms of both privacy guarantee and data utility. Our experiments on real

data confirm the theoretical results, described in Section 4.2.3.3, concerning

the privacy loss related to the BoundedNoise approach. Indeed, we observed

that usually in a time interval of one day each user has a high set of moves

with low value in its frequency vector, because typical users go from an area

to another only few times during the day. This implies that the application

of the BoundedNoise method may lead to a too high privacy loss, due to

unacceptable δ values. We might have privacy leaks if the δ values is greater

than 1, and using the move-based sensitivity this happens in 99% of cases.

Unfortunately, also using the trajectory-based sensitivity the situation does

not highly improve: in Figure 5.7 (left) we plot the percentage of cases

where we have a resulting δ higher than 1, which is unreasonable for privacy

protection. We divided the events edge by edge, depending on the sensitivity

value; especially, for each sensitivity value, we plot (with respect to the total

number of edges that have that sensitivity) the percentage of cases where

the flow is equal to the sensitivity and the percentage of cases where the

flow is greater than the sensitivity value, but less than the ratio explained

in the theoretical analysis. As the sensitivity increases, the percentage of the

first case tends to decrease because it is likely that in these circumstances a
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Figure 5.7: Study of the privacy loss in BoundedNoise

user has many trajectories, and therefore the flow on the edge in the whole

time window is greater than one in a single trajectory. Note that the peak

at sensitivity equal to 10 corresponds to only two people who actually have

gone through an edge 10 times in a single trajectory. In Figure 5.7 (right),

we also noted that when we increase the time interval τ the privacy loss

decreases and this supports our hypothesis that this naive approach can

give a good trade-off between privacy and data utility in scenarios where

it is reasonable to have a wide time window, for example one week, and in

contexts which are characterized by high frequencies of items.

In addition, enlarging the time window, the frequencies of the moves increase

and this is confirmed by the study shown in Figure 5.8, where we can see

the percentage of the moves with value 1 with respect to the total non-

zero moves, selecting time windows of one day, two days and one week

(respectively: red, green and blue points).
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Figure 5.9: Correlation of network-based measures in BoundedNoise

However, the utility provided by BoundedNoise method is very good, as

showed in Figure 5.9, where it is reported the PCC for each network-based

measure computed on the for different values of ε. The two plots in this

figure show that the values of the PCC obtained after the application of the

BoundedNoise with either the trajectory-based sensitivity or the move-based

sensitivity are substantially equivalent. For this reason in the following pic-

tures we show the other analyses only with respect to the results regarding

the utility obtained by the trajectory-based sensitivity. Note that the results

obtained by move-based sensitivity are very similar. In Figure 5.10 we com-
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Figure 5.10: Correlations of Flow per Link and Flow per Zone in Bounded-

Noise, with ε = 0.01
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pare the values of each edge (left) and of each node (right) before and after

the privacy-transformation; while in Figure 5.11 we have rendered the Flow

per Link measure and the Flow per Zone measure on the map. We chose to

show these results of a very low epsilon (ε = 0.01) with the aim to emphasize

the very good quality of mobility analysis that an analyst can obtain even

if the data are transformed by using a very low ε value.

Figure 5.11: Visualization of Flow per Link and Flow per Zone in Bound-

edNoise, with ε = 0.01

5.4.3 Data Utility for UniversalNoise and BalancedNoise

Approches

In this section we analyze the two transformation methods UniversalNoise

and BalancedNoise, respectively presented in Section 4.2.3.2 and Section

4.2.3.4. We have already explained in Section 5.4.1 that the UniversalNoise

approach does not give good results when the move-based sensitivity is used,

so now we will analyze the case in which each vehicle uses the trajectory-

based sensitivity. In order to provide a fair comparison, the same sensitivity

is also used in the analysis of the BalancedNoise method; we do not present

the results for the move-based sensitivity because in terms of data utility
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they are very similar to those obtained by using trajectory-based sensitivity

and in terms of privacy the last one offers better protection.

First of all, we want to conclude the study started in the Section 5.4.1

(in Figure 5.4) by showing the scatter plots of the Flow per Link measure for

other two transformations, namely ε = 0.5
(
Figure 5.12 (left)

)
and ε = 0.2(

Figure 5.12 (right)
)
. The scatter plots highlight the differences between

the two transformations, where the more protective transformation (ε = 0.2)

perturbs the data the most, since the data points tend to go far from the

fitting line.
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Figure 5.12: Correlations of Flow per Link after UniversalNoise

Furthermore, we want to point out that the intuition that Balanced-

Noise helps to limit the negative flow values is further confirmed by our

experiments, as highlighted in Table 5.2, which shows the negative noise

obtained in the global frequency vector. We fixed ε = 0.5, but this behavior

is maintained for every other ε. The first line simply reports the number of

negative noise values obtained, while the second line presents the average

of these values. As one can see, both the number and the size of the noise

values obtained decrease with an increase of δ.

UniversalNoise
BalancedNoise

δ=0.05 δ=0.1 δ=0.2 δ=0.3 δ=0.5

number 1,407 1,334 1,227 1,032 957 743

average -3.178 -2.632 -2.223 -1.756 -1.657 -1.097

Table 5.2: Negative noise obtained with various executions, for ε = 0.5.
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After these remarks, we describe the results obtained on the basis of the

measures introduced in the Section 5.3.

Network-based Measures Distributions. To assess the validity of

the transformation approach, we compare the private data with the original

data by varying the transformation parameters. The comparison is per-

formed with two approaches by varying the values of ε and δ: we compare

the resulting cumulative distribution of the utility measures and the linear

correlations by means of the PCC. In the figures from Figure 5.13 to Fig-

ure 5.17 (on the left sides) we report, for each utility measure, the resulting

distributions for ε = 0.1, 0.2, . . . , 0.9 and for the original data. From such

plots it is possible to estimate the best parameters that yield a good trade-off

between data protection and data utility. Furthermore, in the same figures

(on the right sides) we report the distributions for original data, for data

perturbed with the UniversalNoise method (using ε equal to 0.2 and 0.3)

and for the data perturbed with the BalancedNoise technique, by fixing ε

to 0.2 and by varying δ between 0.05 and 0.2. These comparisons are im-

portant in order to show how you can get the same quality decreasing ε and

increasing δ, then to show, in the practice, how the BalancedNoise allows to

manage the balance between privacy and data quality.
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Figure 5.13: Flow per Link Distributions

For example, for the Flow per Link measure (Figure 5.13(a)), we can notice

a clear discontinuity for ε = 0.2 and ε = 0.1, suggesting that a good value for

ε would be 0.3. However, it is interesting to note how the δ parameter may

contribute to increase data utility. In fact, considering a more protective
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value for ε, say ε = 0.2, it is possible increase δ to augment the resulting

data utility. In Figure 5.13(b), for instance, we can see how the distributions

tend to be similar to the curve for ε = 0.3 when we increase δ. In particular,

when δ = 0.2 the curve is very similar to ε = 0.3 even with a difference on

the tails of the two curves.
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Figure 5.14: Flow per Zone Distributions

Similar results can be observed for Flow per Zone measure (Figure 5.14),

where the candidate value for ε is again 0.3. Also in this case, the δ param-

eter contributes to enhance the data protection by lowering the value for ε

to 0.2 and increasing δ to 0.2.
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Figure 5.15: Clustering Coefficient Distributions

70



5.4.3 Data Utility for UniversalNoise and BalancedNoise Approches

The Clustering Coefficient measure is very robust even for low values of ε

(Figure 5.15): we can appreciate a different distribution only when ε = 0.1.

This property confirms that the privacy transformation may perturb the

local weight of edges but in general it preserves the topology of the graph.
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Figure 5.16: Betweenness Distributions

Another evidence of this phenomenon is given by the two measures of be-

tweenness (Figure 5.16), where we can appreciate how the different param-

eters yield similar distribution. This means, for example, that the number

of relevant edges within the graph is maintained across different transfor-

mations.

This is evident also from the distribution of the Node Degree measure (Fig-

ure 5.17), where we can notice how the number of neighbors for each node

tend to diminish when ε becomes smaller. We can relate this property to

71



Evaluation on Real Big Data

the pruning of some graph components that, however, are not relevant for

the connectivity of the graph.
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Figure 5.17: Node Degree Distributions

Network-based Measures Correlations. Besides the general distri-

butions of the utility measures, we also want to determine how each compo-

nent of the graph is transformed locally. Figure 5.18 shows, for each utility

measure, the resulting PCC for different combination of δ and ε. Even at

this level of details, it is possible to identify the most promising ε values for

the transformations. In particular, let us consider the Flow per Link correla-

tion in Figure 5.18(a). As already observed for the cumulative distribution,

the correlation index decreases considerably when ε is less than 0.3. Fixed a

minimum PCC threshold, we can start reasoning about the relation between

ε and δ. Fixed a minimum value of 0.77 for PCC, we can reach a comparable

quality result even if we decrease ε by increasing the value of δ. From the

figure we can infer that the data utility provided by ε = 0.3 is equivalent

to the data utility for ε = 0.2 and δ = 0.2. Similarly, fixed a value for ε,

say ε = 0.3, by increasing δ it is possible to increase the data quality of the

reconstructed flows. The relation between the two parameters enables the

data owner to define the most suitable trade-off between data protection and

data utility. The discussion for the choice of the correct ε parameter is even

more crucial for the betweenness quality measures. Figures 5.18(e) & (f)

evince that the PCC drops when the threshold is below ε = 0.3. However,

when δ is increased the quality measure performance raises.
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Figure 5.18: Distribution of the Pearson Correlation of the various network-

based measures after the privacy transformation
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Mobility Application. We also present the results obtained by these

approaches with regard to mobility applications. In particular, we show

that these analyses, that require the use of mobility data, can be done even

using the perturbed data from the UniversalNoise and the BalancedNoise

methods, which, as we have just shown, offer good guarantees on the utility.

Figures 5.19-5.22 show the reconstructed map for different parameters

for privacy preservation. In particular, in Figure 5.19 and Figure 5.20 we

display the results of the application of the UniversalNoise approach. As

one can see, comparing the original map (a) with the maps obtained after

the privacy transformation, we can observe that for ε = 0.5 (b) we have

high quality results, but even with low values of ε, e.g. ε = 0.3 (c) and

ε = 0.2 (d), it is still possible to reason about traffic condition since the

major flows for links are sufficiently preserved. As we have already seen

Figure 5.19: Comparison of traffic analysis with UniversalNoise
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5.4.3 Data Utility for UniversalNoise and BalancedNoise Approches

in different occasions, the Flow per Zone measure is more robust to data

transformation, since the randomization is performed on the edge level and,

hence, in the same zone different perturbations on incident edges tend to

compensate each others; this property is further confirmed by these images,

where the use of ε = 0.2 allows to achieve a very good analysis.

Figure 5.20: Comparison of density analysis with UniversalNoise

From Figure 5.21 and Figure 5.22 we can notice the influence of the

δ parameter on the transformed flows. In fact, fixed a value ε = 0.2 (re-

ported in the figures at top-right position) the overall quality of the maps

can be improved by increasing the second parameter of the BalancedNoise

approach. In particular, it is evident how the resulting maps for δ = 0.1 (c)

and δ = 0.2 (d) present a topology similar to the original data.

Clustering Application. Besides, we present our results with regard

to the clustering analysis and Mobility Borders. Figure 5.23 shows a visual

comparison between the resulting aggregations for different combinations of
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Figure 5.21: Comparison of traffic analysis with BalancedNoise

ε and δ and the aggregation resulting from the original data. The borders

yielding from the original data are rendered as thicker lines to facilitate the

comparison. The resulting borders for the transformed data are rendered

by colors: zones in the same group are filled with the same color. The

map shows the influence of the two parameters for the transformation, in

particular we show the resulting maps for ε = 0.2 and δ = 0.2. We can

observe that the Mobility Borders results are very robust to data pertur-

bation, since the majority of the zones are preserved even for low values of

ε. However, it is possible to identify small variation on central zones of the

map with a higher density of links and connections. In general, the zones

grouped for the original data tend to stay in the same group also for the

transformed data. In some cases, it happens that an original group is split

across two or three distinct new groups. As explained in Section 5.3.2, to

analytically evaluate such behavior, we consider precision and recall. The

resulting values for the two measures are showed in Figure 5.24. We can

see that the precision (Figure 5.24(left)) remains very high for any value
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Figure 5.22: Comparison of density analysis with BalancedNoise

Figure 5.23: Mobility Borders results for ε = 0.2 and 〈ε = 0.2, δ = 0.2〉
compared with results from original data

of ε, i.e., zones in the same group in the transformed data are in the same

group also in the original one, for the motivations discussed above. Recall

(Figure 5.24(right)), instead, tends to decrease for ε < 0.3, i.e., each zone

of a group is no longer labeled as belonging to it, but the overall result is

increased by augmenting δ to 0.2 or 0.3.

77



Evaluation on Real Big Data

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Epsilon

Precision with UniversalNoise and BalancedNoise

δ=0
δ=0.05
δ=0.1
δ=0.2
δ=0.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
ec

al
l

Epsilon

Recall with UniversalNoise and BalancedNoise

δ=0
δ=0.05
δ=0.1
δ=0.2
δ=0.3

Figure 5.24: Quantitative measure for Mobility Borders

Spatial Distribution of the errors. We also studied the impact of

the parameters of the privacy transformation in more detail by analyzing

the spatial distributions of the errors, expressed as the logarithms of the

ratios of the aggregated traffic values obtained from transformed data to

those obtained from the original data. The use of the logarithms allowed us

to reduce the impact of local outliers. The study was done using the results

of 99 runs for all combinations of the values of ε from 0.1 to 0.9 with the

step 0.1 and the values of delta 0.01, 0.02, 0.025, 0.03, 0.05, and up to the

value 0.2 with the step 0.025. The corresponding 99 spatial distributions of

the errors were clustered by similarity using the k-means methods. We ex-

perimented with different k and found that, starting from k = 9, increasing

the value of k just subdivides small clusters into yet smaller ones, mostly

singletons. There is one large cluster (Cluster 7) consisting of 68 distribu-

tions that preserves when k increases. This cluster consists of the spatial

distributions with the best (i.e., lowest) values of the errors.

The area-wise median errors for this cluster are shown in the map in Figure

5.25 (left) by color-coding. Light yellow corresponds to values close to 0,

shades of orange and red represent overestimates and shades of blue un-

derestimates. The color legend is shown on the right of Figure 5.25. The

prevalence of light yellow and light shades of orange means that the absolute

values of the errors in cluster 7 are quite low. There are only a few high

overestimates occurring in areas with low traffic density. Cluster 7 includes

all spatial distributions for values of ε = 0.4 and higher and values of delta

from 0.01 to 0.05 and almost all spatial distributions for epsilon 0.6 and
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higher irrespective of the value of δ. Hence, starting from ε = 0.6, δ has no

impact on the data quality. For comparison, the map on the right of Fig-

ure 5.25 represents the errors in another cluster, which includes the spatial

situations for ε = 0.2. Very high overestimates occur almost everywhere.

For ε = 0.1, the overestimates are even higher. This study clarifies what

combinations of the parameter values should be used to obtain good results

in terms of utility of the transformed data.

Figure 5.25: Comparison of the spatial distributions of the errors for different

value combinations of ε and δ.

5.4.4 Evaluation of Sketching Transformations

Up to this point, we focused our study only on one step of our general

approach described in Chapter 4, i.e., on the privacy-preserving transforma-

tion. Now, we want to investigate the fourth step, i.e., the sketching of the

frequency vectors (Section 4.2.4). We tried to apply three types of sketches:

AGMS (Section 2.2.1), Count-Min (Section 2.2.2) and Count (Section 2.2.3)

sketches. Each kind of sketch was run with different combinations of pa-

rameters α and γ, i.e., different sizes. For the generation of hash functions,

required by the different methods, we have relied on the implementation of

Rusu and Dobra, available at [77].

We analyzed again the Pearson correlation, and we report in Figure 5.26 the

values obtained for all network-based measures, starting by the use of the

UniversalNoise approach with ε = 0.5. Each cluster represents the size of

the sketches (in Table 5.3-5.5 we show the exact parameters used) and each

bar represents the kind of sketch (red means no sketch, i.e., the correlation
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between the differentially private global frequency vector and the original

one). We stress that, in our experiments, the frequency vectors have about

15,900 elements. We investigate the results, for each kind of sketch, in the

following.
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Figure 5.26: Comparison of correlation of network-based measures after the

sketching transformation

AGMS sketch. Among the sketches that we considered, AGMS sketches

are the most simple sketches, but they are the slowest (we recall they require

linear time on the sketch size) and the ones that give worse results. As one

can see, the correlation values are very low for all the measures except for

the Flow per Link and for the Edge Betweenness. However, other measures

strictly related to these two (respectively, Flow per Zone and Node Between-

ness) are extremely different, therefore we can argue that these correlations

are not very indicative. This fact is confirmed by the scatter plot reported

in Figure 5.27 (a), where we can see that the values are completely not cor-

related.

We believe that AGMS sketches are not suitable to reduce communication

while maintaining good data quality, at least in our particular setting. We

must consider, however, that they have been designed for different goals,

such as the estimate of the sum of the squares of the frequencies rather than
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for the estimation of the single frequencies. Only in recent years they have

been used for this aim.

α γ size

AGMS3k 0.03162 0.05 3,000

AGMS5k 0.03162 0.01 5,000

AGMS10k 0.03162 0.00005 10,000

Table 5.3: AGMS sketch size for different values of α and γ.

Count-Min sketch. The Count-Min sketches provide amazing results

with regard to the correlations: PCC values of all measures are very close

to 1. However, by further investigating, we realized that these results are

only apparent: in Figure 5.27 (b) we show an example to explain the reason

of these correlations. The estimated values are very compact around the

regression line, but the latter is quite far away from optimal values, thus

we can say that some kind of correlation with the original values exists,

but there is an overestimation of the flows. The reason for this behavior is

that Count-Min requires only positive values as input, so each vehicle must

perform a preprocessing phase in which it sets to 0 all the negative values

obtained at the end of the privacy-preserving step. Hence, a lot of values

are flattened upwards and there is no longer any compensation between

positive and negative values. Indeed, we have seen that when there is not

the problem of managing negative values (as in the case of BoundedNoise)

the Count-Min is the method that performs better.

α γ Columns (w) Rows (d) w × d
CM3k 0.002 0.05 1,000 3 3,000

CM5k 0.0008 0.01 2,500 2 5,000

CM10k 0.0008 0.02 2,500 4 10,000

Table 5.4: Count-Min sketch size for different values of α and γ.

Count sketch. We can see how the Count sketch transformation pre-

serve the PCC for the two measures Flow per Link and Flow per Zone. The

former measures are well preserved since the sketch framework has been

proposed for the compression of large arrays like those considered in this

application. To the same extent, the second measure is well preserved when

higher compression rates are reached. In Figure 5.27 we show that the val-
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ues of Flow per Link are not so sparse, and there is no strange behavior.

Moreover, this scatter plot is very similar to the one obtained by comparing

the differential private and the original values, so this means that the data

compression introduced a small approximation with respect to the private

data. It is interesting to note how the topological properties of the graph,

like Clustering Coefficient and Node Degree, are ruined after the compres-

sion. The measures of betweenness are well preserved even if they suffer for

high rates of compression. In conclusion, we can state these sketches give

good results and they can be used while preserving the utility.

α γ Columns (w) Rows (d) w × d
C3k 0.03162 0.05 1,000 3 3,000

C5k 0.03162 0.01 1,000 5 5,000

C10k 0.03162 0.00005 1,000 10 10,000

Table 5.5: Count sketch size for different values of α and γ.
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Figure 5.27: Correlation of Flow per Link after the sketching transformation

by varying the kind of sketch
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The issue of protecting privacy while releasing personal data is scientifically

interesting and has been thoroughly studied particularly in the context of

relational data. Unfortunately, only a few studies have addressed this issue

in the context complex and big data, like spatio-temporal data, even if, as

of today, we have an ever-growing diffusion of this kind of data. This new

form of data are semantically rich and this makes difficult to find an effi-

cient privacy transformation; moreover often traditional privacy-preserving

techniques for relational databases are inadequate.

In this thesis we have studied the problem of protecting individual pri-

vacy in a distributed system where the goal is analyzing movement data. The

data distribution makes the problem of the privacy protection more challeng-

ing. We have proposed the application of the privacy-by-design paradigm in

the design and developing of three privacy transformation methods. They

are based on the well-known (but seldom used for mobility data) notion of

differential privacy that provides very effective data protection guarantees.

Each solution is characterized by a different trade-off between privacy and

data utility. In particular in our framework each vehicle, before sending the

information about its movements within a time interval, applies a transfor-

mation to the data to achieve privacy and then it can create a summarization

of the private data (by using a sketching algorithm) to reduce the amount

of information to be transmitted.

This thesis presents two main contributions: (a) a framework that allows

making available mobility data, while guaranteeing individual privacy for the

people which the data refer to, through the application of one of the three

possible methods, each one with a different guarantee; and (b) a framework

that allows evaluating the proposed algorithms from the point of view of

achievable utility after the privacy-preserving process. The goal reached by
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our framework is double: on one hand, it allows us to provide a good level

of privacy-protection; on the other hand, it allows to maintain a reasonable

quality of the data, so that private data could be used for further analyses.

Specifically, it gives us the opportunity to obtain private data that preserve

peculiar features, as to guarantee a good quality of the analyses which can

be performed on these data. For this purpose, the evaluation framework

we have proposed presents: (1) functions that enable to verify if any basic

statistics of the data are preserved; (2) quantitative measures that enable

to verify the quality of private data; and (3) examples of analyses that can

be performed on private data, compared to the ones carried out directly on

the original data.

We have validated the robustness and efficiency of our privacy-preserving

data aggregation methods by extensive experiments on large, real GPS data

and our finding is that the proposed privacy-preserving techniques could

achieve good results in terms of utility, preserving some meaningful proper-

ties of original data and keeping them usable for many analyses and appli-

cations.

Clearly, the proposed privacy-preserving framework is only one of the

possible ways to address the issue we studied. As an example, different

variants on the computation of the sensitivity in differential privacy are

worth considering, to protect privacy on a different level. Additionally,

future investigations could be directed to explore other methods to achieve

differential privacy; as an example, it would be interesting to understand

the impact of the use of the geometric mechanism instead of the Laplace

one to achieve differential privacy.
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