Extremum problems for non-negative sine polynomials.

By
W. W. Rogosinski and
in Newcastie upon Tyne (England)
G. Szegó
in Stanford (California)

In various chapters of the theory of Fourier series and elsewhere nonnegative trigoriometrical polynomials
(0.1) $\quad T(\vartheta) \equiv \frac{1}{2} a_{0}+\left(a_{1} \cos \vartheta+b_{1} \sin \vartheta\right)+\ldots+\left(a_{n} \cos n \vartheta+b_{n \prime} \sin n \vartheta\right)$
play an important rôle. For instance, the non-negative character of the arithmetic means of the polynomials

$$
\begin{equation*}
\frac{1}{2}+\cos \vartheta+\ldots+\cos n \vartheta \tag{0.2}
\end{equation*}
$$

is the basic fact in Fejer's theory of summability of Fourier series. Similarly, certain sine polynomials, non-negative for $0 \leqq \vartheta \leqq \pi$ (in the range $\langle 0, \pi\rangle$), are frequently of importance. As an example we quote Gronwall's polynomials

$$
\begin{equation*}
\sin \vartheta+\frac{1}{2} \sin 2 \vartheta+\ldots+\frac{1}{n} \sin n \vartheta \tag{0.3}
\end{equation*}
$$

In 1915, L. Fejer and F. Riesz [2]¹) gave a parametric representation of fundamental importance for non-negative trigonometrical polynomials. By means of this representation, L. Fejer and others determined in

$$
\begin{equation*}
T(\vartheta) \leqq \frac{1}{2} a_{0}(n+1) ; a_{k}^{2}+b_{k}^{2} \leqq a_{0}^{2} \cos ^{2} \pi /\left(\left[\frac{n}{k}\right]+2\right) \tag{0.4}
\end{equation*}
$$

the maxima for such polynomials and for their coefficients, when the constant term $\frac{1}{2} a_{0}$ and the degree n are prescribed. It should be noted that Fejer's problem remains essentially the same if the subclass of non-negative cosine polynomials is considered ${ }^{2}$).

[^0]A completely new situation arises if one considers sine polynomials

$$
\begin{equation*}
\mathcal{S}(\vartheta) \equiv b_{1} \sin \vartheta+b_{2} \sin 2 \vartheta+\ldots+b_{n} \sin n \vartheta \quad . \quad\left(b_{n} \neq 0\right) \tag{0.5}
\end{equation*}
$$

of given degree n which are non-negative in the range $\langle 0, \pi\rangle$. It is the class of these polynomials we discuss in the present paper. Clearly $b_{1} \geqq 0$ and $b_{1}=0$ is only possible when $S(\vartheta)$ vanishes identically. We shall usually normalise by assuming that $b_{1}=1$.

First we determine the maximum of $S(\vartheta)$ for fixed ϑ in $\langle 0, \pi\rangle$, and find:
$(0.6)_{o} \quad S(\vartheta) \leqq \operatorname{Max}\left\{\begin{array}{l}\frac{1}{4 \sin ^{2} \vartheta}\{(n+2) \sin \vartheta-\sin (n+2) \vartheta\} \\ \frac{1}{4 \sin ^{3} \vartheta}-\sum_{0}^{(n-3) / 2}\{(k+3) \sin (k+1) \mathcal{G}-(k+1) \sin (k+3) \vartheta\}^{2} \\ 1(k+1)(k+3)\end{array}\right.$,
$(0.6)_{\mathrm{e}} \quad S(\vartheta) \leqq \operatorname{Max}^{\frac{1}{2} \frac{\cot \frac{1}{2} \vartheta}{\sin ^{2} \vartheta} \sum_{v}^{(n-2) / 2}}\left\{\begin{array}{l}\frac{\{(k+2) \sin (k+1) \vartheta-(k+1) \sin (k+2) \vartheta\}^{2}}{(k+1)(k+2)} \\ \frac{\tan \frac{1}{2} \vartheta}{2} \frac{\tan }{\sin ^{2} \vartheta^{-}} \sum_{0}^{(n-2) / 2} \frac{\{(k+2) \sin (k+1) \vartheta+(k+1) \sin (k+2) \vartheta\}^{2}}{(k+1)(k+2)},\end{array}\right.$
when n is odd or even, respectively. In particular, when $\vartheta=0$,

$$
1+2 b_{2}+3 b_{3}+\ldots+n b_{n} \leqq\left\{\begin{array}{ll}
(n+1)(n+2)(n+3 / 24 & (n \text { odd }) \\
n(n+2)(n+4) / 24 & \cdots
\end{array}(n \text { even }) .\right.
$$

The determination of the maxima and minima for the coefficients b_{k} is rather involved ${ }^{8}$). We have computed them in the cases b_{2}, b_{3} and b_{n-1}, b_{n}. In other cases, in particular for b_{4} and b_{5}; we discuss relevant methods of determination. Our main results are:

$$
\left|b_{2}\right| \leqq\left\{\begin{array}{lc}
2 \cos 2 \pi /(n+3) & (n \text { odd }) \tag{0.7}\\
2 \cos \vartheta_{0} & (n \text { even })
\end{array}\right.
$$

where ϑ_{0} is the least positive root of

$$
\begin{equation*}
(n+4) \sin (n+2) \vartheta / 2+(n+2) \sin (n+4) \vartheta / 2=0 \tag{0.8}
\end{equation*}
$$

Next,

$$
\begin{equation*}
1-2 \cos \pi /\left(n^{\prime}+3\right) \leqq b_{3} \leqq 1+2 \cos 2 \pi /\left(n^{\prime}+3\right), \tag{0.9}
\end{equation*}
$$

$$
\begin{equation*}
1-2 \cos \vartheta_{1} \leqq b_{3} \leqq 1+2 \cos 2 \pi /\left(n^{\prime}+3\right) \tag{0.9}
\end{equation*}
$$

according to whether $n^{\prime}=\left[\frac{1}{2}(n-1)\right]$ is even or odd, respectively. Here ϑ_{1} is the least positive root of
$(0.10) . \quad\left(n^{\prime}+4\right) \cos \left(n^{\prime}+2\right) \vartheta / 2+\left(n^{\prime}+2\right) \cos \left(n^{\prime}+4\right) \vartheta / 2=0$:
${ }^{3}$) The estimate

$$
\left|b_{k}\right|=\frac{2}{\pi}\left|\int_{0}^{\pi} S(\vartheta) \sin \vartheta \frac{\sin k \vartheta}{\sin \vartheta} d \vartheta\right| \leqq k b_{1}=k
$$

is trivial.

Further
(0.11)

$$
\left|b_{n-1}\right| \leqq 1,-(n-2) /(n+2) \leqq b_{n-1} \leqq 1
$$

according to n being odd or even, respectively. Finally, in the same two cases,

$$
\begin{equation*}
-(n-1) /(n+3) \leqq b_{n} \leqq 1,\left|b_{n}\right| \leqq n /(n+2) . \tag{0.12}
\end{equation*}
$$

The introductory § 1 contains general remarks concerning various methods dealing with problems of our kind. In $\S 2$ we determine the maximum of $S(\vartheta)$, in $\S 3$ the extrema for b_{n-1} and b_{n}, in § 4 for b_{2}, and in §5 for the less simple case b_{3}. In $\S 6$ some formal properties of orthogonal polynomials are discussed which are useful in dealing with the general b_{k}. The last § 7 deals, in particular, with b_{4} and b_{5}.

§ 1. General remarks.

1. For given degree n and given $b_{1} \cdot(=1)$ we put

$$
\begin{equation*}
\underline{B}(k, n)=\operatorname{Min} b_{k}, \bar{B}(k, n)=\operatorname{Max} b_{k} . \tag{1.1}
\end{equation*}
$$

Now, if the sine polynomial $S(\vartheta)$ is positive in $\langle 0, \pi\rangle$, then so is $S(\pi-\vartheta)=\Sigma(-1)^{k-1} b_{k} \sin k \vartheta$. Hence.
(1.2) $\quad \underline{B}(k, n)=-\bar{B}(k, n) \quad(k$ even $)$.

Also

$$
\begin{equation*}
S^{*}(\vartheta)=\frac{1}{2}\{S(\vartheta)+S(\pi-\vartheta)\}=b_{1} \sin \vartheta+b_{3} \sin 3 \vartheta+\ldots \tag{i.3}
\end{equation*}
$$

is non-negative. If n is even, then S^{*} is of degree at most $n-1$. It follows that (1.4) $\quad \underline{B}(k, \dot{n})=\underline{B}(k, n-1), \quad \bar{B}(k, n)=\bar{B}(k, n-1) \quad$ (k odd, n even).

2 Let $0 \leqq \vartheta \leqq \pi$. Any non-negative sine polynomial can be written in the form

$$
\begin{equation*}
S(\vartheta)=\sin \vartheta \sum_{1}^{n} b_{k} \sin k \vartheta / \sin \vartheta=\sin \vartheta \dot{P}(\cos \vartheta) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
P(\cos \vartheta)=\frac{1}{2} a_{0}+a_{1} \cos \vartheta+\ldots+a_{n-1} \cos (n-1) \vartheta \tag{1.6}
\end{equation*}
$$

is a non-negative cosine polynomial of degree $n-1$; the converse is also true. Here

$$
\begin{equation*}
2 b_{k}=a_{k-1}-a_{k+1} \tag{1.7}
\end{equation*}
$$

where $a_{n}=a_{n+1}=0$. Now, according to L. Fejér and F. Riesz, any nonnegative trigonometrical polynomial $P(\cos \vartheta)$ admits of the parametric representation

$$
\begin{equation*}
P(\cos \vartheta)=\left|c_{0}+c_{1} e^{i \vartheta}+\ldots+c_{n-1} e^{i(n-1) \vartheta}\right|_{1}^{2}, \tag{1.8}
\end{equation*}
$$

where the c_{ν} are (arbitrary) real constants. Hence, by (1.7), $b_{k}=\Phi_{k}\left(c_{0} ; c_{1}, \ldots, c_{n-1}\right)$ is a certain quadratic form of the c_{ν}. In particular,
(1.9) $b_{1}=\Phi_{1}=\frac{1}{2}\left(a_{0}-a_{2}\right)=c_{0}^{2}+c_{1}^{2}+\ldots+c_{n-1}^{2}-\left(c_{0} c_{2}+c_{1} c_{3}+\ldots+c_{n-3} c_{n-1}\right)$
is' positive definite.
There are then, theoretically, two possibilities of computing $\underline{B}(k, n)$ and $\bar{B}(k, n)$:
(i) We can either form the characteristic equation
(1:10)

$$
\left|\Phi_{k}-\lambda \Phi_{1}\right|=0
$$

and obtain our quantities as the least and greatest roots of this equation.
(ii) Alternatively, we may form the system of linear equations in the c_{ν} corresponding to (1.10) and solve this system. This method works satisfactorily in the cases b_{n-1} and b_{n}.

In general, however; the method based on (1.10) is not easily adaptable. for obtaining explicit results, in particular when n is large.
3. We prefer to base our actual discussion on the following theorem of Lukács [4, pp. 4-5] ${ }^{4}$):

Any polynomial $P(x)$ of degree $\widehat{P}=N$, which is non-negative in $\langle-1,1\rangle$, can be represented in the form
(1.11)。

$$
\begin{equation*}
P(x)=A^{2}(x)+\left(1-x^{2}\right) B^{2}(x) ; \widehat{A} \leqq \frac{N}{2}, \widehat{B} \leqq \frac{N-2}{2} \tag{1.11}
\end{equation*}
$$

according to N being even or odd.
Now, by (1.5), if we put $x=\cos \vartheta$,

$$
\begin{equation*}
S(\vartheta)=\sin \vartheta P(x)=\left(1-x^{2}\right)^{1 / 2} P(x), \tag{1.12}
\end{equation*}
$$

where $P(x)$ is a non-negative polynomial of degree $N=n-1$ in $\langle-1,1\rangle$. It is clear that, when N is even, say, we can restrict P to range over polynomials of the type A^{2} or $\left(1-x^{2}\right) B^{2} . \operatorname{Max} S(\vartheta)$ is then the greater (not smaller) maximum obtained in the two cases. A similar remark applies to $\underline{B}(k, n)$ and $\bar{B}(k, n)$, and to the case when N is odd.
4. We have

$$
\begin{equation*}
P(x)=\sum_{1}^{n} b_{k} \sin k \vartheta / \sin \vartheta=\sum_{1}^{n} b_{k} U_{k-1}(x) \tag{1.13}
\end{equation*}
$$

Here
(1.14) $\quad U_{k}(x)=\dot{U}_{k}(\cos \vartheta)=\sin (k+1) \vartheta / \sin \dot{\vartheta}=2^{k} x^{k}+A_{k} x^{k-2}+\ldots$
is the familiar Tchebychev polynomial of the second kind. The polynomials
${ }^{4}$) This theorem can also be derived from the results of Fejér and Riesz.
$\sqrt{\frac{2}{\pi}} U_{k}$ form an orthonormal system with the weight function $\left(1-x^{2}\right)^{1 / 2}$ over the range $\langle-1,1\rangle$. It follows that

$$
\begin{equation*}
\int_{-1}^{1} x^{k} U_{k}(x)\left(1-x^{2}\right)^{1 / 2} d \dot{x}=\pi 2^{-(k+1)} . \tag{1.15}
\end{equation*}
$$

Also

$$
\begin{equation*}
b_{k}=\frac{2}{\pi} \int_{-1}^{1} P(x) U_{k-1}(x)\left(1-x^{2}\right)^{1 / 2} d x \tag{1.16}
\end{equation*}
$$

We shall als̀o require orthogonal polynomials over $\langle-1,1\rangle$ corresponding to the weight functions $w(x)=\left(1-x^{2}\right)^{1 / 2}$ and $w(x)=(1-x)\left(1-x^{2}\right)^{1 / 2}$. The former are ${ }^{5}$)

$$
\begin{equation*}
V_{k}(x)=\left(x^{2}-1\right)^{-1}\left[\frac{U_{k+2}(x)}{k+3}-\frac{U_{k}(x)}{k+1}\right]=\frac{2^{k+2}}{k+3} x^{k}+\ldots, \tag{1.17}
\end{equation*}
$$

so that, by (1.15),

$$
\text { 18) } \begin{align*}
\int_{-1}^{1} V_{k}^{2}(x)\left(1-x^{2}\right)^{3 / 2} d x & =\int_{-1}^{1}\left(\frac{U_{k}(x)}{k+1}-\frac{U_{k+2}(x)}{k+3}\right)\left(\frac{2^{k+2}}{k+3} x^{k}+\ldots\right)\left(1-x^{2}\right)^{1 / 2} d x \tag{1.18}\\
& =\frac{2 \pi}{(k+1)(k+3)} .
\end{align*}
$$

Similarly, when $w(x)=(1-x)\left(1-x^{2}\right)^{1 / 2}$, we have the orthogonal polynomials

$$
\begin{equation*}
W_{k}(x)=(x-1)^{-1}\left(\frac{U_{k+1}(x)}{k+2}-\frac{U_{k}(x)}{k+1}\right)=\frac{2^{k+1}}{k+2} x^{k}+\ldots \tag{1.19}
\end{equation*}
$$

with

$$
\begin{equation*}
\int_{-1}^{1} W_{k}^{2}(x)(1-x)\left(1-x^{2}\right)^{1 / 2} d x=\pi(k+1)(k+2) \tag{1.20}
\end{equation*}
$$

5. Our problem is of the general type of determining the extrema of a quotient

$$
\begin{equation*}
\int_{a}^{\beta} u^{2}(x) h(x) w(x) d x: \int_{a}^{\beta} u^{2}(x) w(x) d x \tag{1.21}
\end{equation*}
$$

where $w(x)$ is a given weight function and $h(x)$ a given polynomial; $u(x)$ is an arbitrary polynomial of given degree whose coefficients vary through all real values not all zerof).

In the cases b_{2} and b_{3} we shall have $h(x)=x$. This is the so called 'problem of the centroid', first treated by. Tchebychev.

[^1]Its solution is as follows: [Cf. 4, Theorem 7.72.1, p. 183; we follow (apart from slight changes) the notation of 4.]

Let $w(x)$ be a given weight function over $\langle\alpha, \beta\rangle$ and the $p_{k}(x)$ be the orthonormal polynomials associated with it. Let $f(x)$ run through all polynomials of given degree N and non-negative in $\langle\alpha, \beta\rangle$. Finally, let \bar{M} and \underline{M} be the maximum and minimum of the quotient

$$
\begin{equation*}
\int_{\alpha}^{\beta} f(x) \dot{x} w(x) d x: \int_{\cdot \alpha}^{\beta} f(x) \dot{w}(x) d x \tag{1.22}
\end{equation*}
$$

If $N=2 m$, then \bar{M} is the greatest and \underline{M} is the least zero of $p_{m+1}(x)$. If $N=2 m+1$, then \bar{M} is the greatest zero of $p_{m+2}(\alpha) p_{m+1}(x)-p_{m+1}(\alpha) p_{m+2}(x)$, and \underline{M} is the least zero of $p_{m+2}(\beta) p_{m+1}(x)-p_{m+1}(\beta) p_{m+2}(x)$.

We note that extremum problems of our type are normally treated by the Gauss-Jacobi method of mechanical quadrature. We use instead, in $\S \S 6$ and 7 , certain formal identities for orthogonal polynomials associated with $w(x)$ and $h(x) w(x)$.

§ 2. The maximum of $S(\vartheta)$.

1. First, let n be odd, so that the degree $N=n-1$ of $P(x)$, in (1.13), is even. By (1.11) e, we may assume $P=A^{2}$ or $P=\left(1-x^{2}\right) B^{2}$. The maximum of $S(\vartheta)$ is then the greater of the two maxima obtained in each case.
(i) Let $P=\dot{A^{2}}$ and $A(x)=\sum_{0}^{h} \alpha_{k} U_{k}(x)$, where $h=\frac{1}{2}(n-1)$. Since the $\sqrt{\frac{2}{\pi}} U_{k^{*}}$ are orthonormal with weight $\left(1-x^{2}\right)^{2 / 2}$, we have, by (1.16),

$$
\begin{equation*}
b_{1}=\frac{2}{\pi} \int_{-1}^{1} A^{2}(x)\left(1-x^{2}\right)^{1_{2} / 2} d x=\sum_{0}^{h} \alpha_{k}^{2}=1 . \tag{2.1}
\end{equation*}
$$

Hence, by Cauchy's inequality,

$$
\begin{align*}
P(x) & \leqq \sum \alpha_{k}^{2} \cdot \sum U_{k}^{2}(x)=\sum U_{k}^{2}(\dot{x})= \\
& =\sum\left(\frac{\sin (k+1) \vartheta}{\sin \vartheta}\right)^{2}=\sum_{0}^{h} \frac{1-\cos 2(k+1) \vartheta}{2 \sin ^{2} \vartheta}= \tag{2.2}\\
& =\frac{1}{2 \sin ^{2} \vartheta}\left[\frac{n+1}{2}+\frac{1}{2}-\frac{\sin (n+2) \vartheta}{2 \sin \vartheta}\right],
\end{align*}
$$

so that by (1.12)

$$
\begin{equation*}
S(\vartheta) \leq \frac{1}{4 \sin ^{2} \vartheta}\{(n+2) \sin \vartheta-\sin (n+2) \vartheta\} \tag{2.3}
\end{equation*}
$$

which is the first inequality $(0.6)_{0}$.
Clearly, equality in (2.2) and hence in (2.3) can be attained.
(ii) Let $P=\left(1-x^{2}\right) B^{2}$ and $B(x)=\sum_{0}^{n} \beta_{k} V_{k}(x)$, where $h=\frac{1}{2}(n-3)$. Then, by (1.18),

$$
\begin{equation*}
\dot{b}_{1}=\frac{2}{\pi} \int_{-1}^{1} B^{2}(x)\left(1-x^{2}\right)^{0 / 2} d x=4 \sum_{0}^{n} \frac{\beta_{k}^{2}}{(k+1)(k+3)}=1 . \tag{2.4}
\end{equation*}
$$

Hence

$$
\text { 5) } B^{2}(x) \leqq \sum \frac{\beta_{k}^{2}}{(k+1)(k+3)} \cdot \sum(k+1)(k+3) V_{k}^{2}(x)=\frac{1}{4} \sum_{0}^{h}(k+1)(k+3) V_{k}^{2}(x)
$$ which is equivalent to the second inequality $(0.6)_{0}$.

2. If n is even we have the two cases $P(x)=(1 \pm x) C^{2}(x)$. It suffices to consider the case of the factor $1-x$, the two cases changing into each other on replacing x by $-x$, that is ϑ by $\pi-\vartheta$.

Putting $C(x)=\sum_{0}^{h} \gamma_{k} W_{k}(x)$, where $h=\frac{1}{2}(n-2)$, we have, by (1.20), (2. 6) $\quad b_{1}=\frac{2}{\pi} \int_{-1}^{1} C^{2}(x)(1-x)\left(1-x^{2}\right)^{1 / 2} d x=2 \sum_{0}^{k} \frac{\gamma_{k}^{2}}{(k+1)(k+2)}=1$. Hence

$$
\begin{equation*}
C^{2}(x) \leqq \frac{1}{2} \sum_{0}^{n}(k+1)(k+2) W_{k}^{2}(x) \tag{2.7}
\end{equation*}
$$

which is equivalent to the first inequality $(0.6)_{\mathrm{e}}$. The second is obtained on changing ϑ into $\pi ー \vartheta$.

§ 3. The extrema of b_{n} and b_{n-1}.

1. Let n be odd. Again we have two cases:
(i) Let $P(x)=A^{2}(x)$ where $A(x)=\sum_{0}^{h} \alpha_{k} U_{k}(x)$ and $h=\frac{1}{2}(n-1)$. By (1.14), $P(x)=\alpha_{n}^{2} 2^{2 h} x^{2 h}+\ldots$ Hence, using (1.15) and (1.16),

$$
\text { (3. i) } \begin{aligned}
b_{n}=\frac{2}{\pi} \int_{-1}^{1} P(x) U_{n-1}^{2}(x)\left(1-x^{2}\right)^{1 / 2} d x & =\frac{2}{\pi} \alpha_{h}^{2} 2^{2, h} \int_{-1}^{1} x^{2 h} U_{2 h}(x)\left(1-x^{2}\right)^{1 / 2} d x= \\
& =\frac{2}{\pi} \alpha_{h}^{2} 2^{2 h} \pi 2^{-(2 h+1)}=a_{h}^{2} \leqq 1
\end{aligned}
$$

by (2.1). Also $b_{n} \geqq 0$.
(ii) Let $P(x)=\left(1-x^{2}\right) B^{2}(x)=\left(1-x^{2}\right)\left\{\sum_{0}^{n} \beta_{k} V_{k}(x)\right\}^{2}$ where $h=\frac{1}{2}(n-3)$. Then, by (1.17),

$$
\begin{equation*}
\check{P}(x)=-\beta_{h}^{2} \frac{2^{2(h+2)}}{(h+3)^{2}} x^{2 / h+2}+\ldots \tag{3.2}
\end{equation*}
$$

Hence, as in (3.1), since $n-1=2 h+2$,
$b_{n}=-\frac{2}{\pi} \beta_{h}^{2} \frac{2^{2(h+2)}}{(h+3)^{2}} \pi 2^{-(2 h+3)}=-\frac{4 \beta_{h}^{2}}{(h+3)^{2}} \geq-\frac{(h+1)(h+3)}{(h+3)^{2}}=-\frac{n-1}{n+3}$, by (2.4). Also $b_{n} \leqq 0$. This establishes (0.12), when n is odd.
2. If n is even, we may take

$$
P(x)=(1-x) C^{2}(x)=(1-x)\left\{\sum_{0}^{h} \gamma_{k} W_{k}(x)\right\}^{2} \quad \text { where } h=\frac{1}{2}(n-2)
$$

By (1.19),

$$
\begin{equation*}
P(x)=-\gamma_{h}^{2} \frac{2^{2(h+1)}}{(h+2)^{2}} x^{2 h+1}+\ldots \tag{3.4}
\end{equation*}
$$

and we find, as above, using (2.6),
$b_{n}=-\frac{2}{\pi} \gamma_{h}^{2} \frac{2^{2(h+1)}}{(h+2)^{2}} \pi 2^{-2(h+1)}=-\frac{2 \gamma_{h}^{2}}{(h+2)^{2}} \geq-\frac{(h+1)(h+2)}{(h+2)^{2}}=-\frac{n}{n+2}$, which establishes (0.12), when n is even.
3. For b_{n-1} we may assume that n is odd, since for even n the case reduces, by (1.4), to that of the last coefficient. Again, we have our two cases.
(i) We take

$$
\begin{align*}
P(x) & =\left(\sum_{0}^{h} \alpha_{k} U_{k}(x)\right)^{2}=\left(\alpha_{h} 2^{h} x^{h}+\alpha_{h-1} 2^{h-1} x^{h-1}+\ldots\right)^{2}= \tag{3.6}\\
& =2^{2 h} \alpha_{h}^{2} x^{2 h}+2^{2 h} \alpha_{h} \alpha_{h-1} x^{2 h-1}+\ldots ; h=\frac{1}{2}(n-1)
\end{align*}
$$

Hence, by (1.16) and (2.1),

$$
\begin{align*}
\dot{b}_{n-1} & =\frac{2}{\pi} \int_{-1}^{1} P(x) U_{2 h-1}(x)\left(1-x^{2}\right)^{1 / 2} d x= \tag{3.7}\\
& =\frac{2}{\pi} 2^{2 h} \alpha_{h} \alpha_{h-1} \pi 2^{-2 h}=2 \alpha_{h} \alpha_{h-1} \leqq \alpha_{h}^{2}+\alpha_{h-1}^{2} \leqq 1
\end{align*}
$$

(ii) We take

$$
\begin{align*}
P(x) & =\left(1-x^{2}\right)\left(\sum_{0}^{h} \beta_{k} V_{k}(x)\right)^{2}=\left(1-x^{2}\right)\left[\frac{2^{h+2}}{h+3} \beta_{h} x^{h}+\frac{2^{h+1}}{h+2} \beta_{h-1} x^{h-1}+\ldots\right]^{2}= \\
& =-\frac{2^{2(h+2)}}{(h+3)^{2}} \beta_{h}^{2} x^{2 h+2}-\frac{2^{2(h+2)} \beta_{h} \beta_{h-1}^{\prime}-x^{2 h+1}+\ldots ; h=\frac{n-3}{2}}{(h+3)(h+2)} . \tag{3.8}
\end{align*}
$$

Hence, by (2.4),

$$
\begin{align*}
b_{n-1} & =-\frac{2}{\pi} \frac{2^{2(h+2)} \beta_{h} \beta_{h-1}}{(h+3)(h+2)} \cdot \pi 2^{-2 h}=-\frac{8 \beta_{h} \beta_{h-1}}{(h+3)(h+2)} \geqq \tag{3.9}\\
& \geqq-4 \frac{\beta_{h-1}^{2}+\beta_{h}^{2}}{(h+3)(h+2)}>-4\left[\frac{\beta_{h-1}^{2}}{h(h+2)}+\frac{\beta_{h}^{2}}{(h+1)(h+3)}\right] \geqq-1
\end{align*}
$$

This completes the proof of (0.11) when n is odd. When n is even; (0.11) follows from the first formula (0.12) on replacing n by $n-1$.

§ 4. The extrema for b_{2}.

By (1.2); it suffices to determine $\bar{B}(2, n)$. Since $U_{1}(x)=2 x$ we have

$$
\begin{equation*}
b_{2}: b_{1}=2 \int_{-1}^{1} x P(x)\left(1-x^{2}\right)^{1 / 2} d x: \int_{-1}^{1} P(x)\left(1-x^{2}\right)^{1 / 2} d x, \tag{4.1}
\end{equation*}
$$

which is a special case of the problem of the centroid (1.2:). If n is odd, $\widehat{P}=n-1$ is even, and $\bar{B}(2, n)$ is twice the greatest zero of

$$
U_{\frac{n+1}{2}}(x)=\frac{\sin \frac{n+3}{2} \vartheta}{\sin \vartheta} \text {, i. e. } \bar{B}(2, n)=2 \cos \frac{2 \pi}{n+3} .
$$

If n is even, then $\bar{B}(2, n)=2 \cos \vartheta_{0}$, where $x_{0}=\cos \vartheta_{0}$ is the greatest root of

$$
\begin{equation*}
U_{\frac{n+2}{2}}^{2}(-1) U_{\frac{n}{2}}(x)-U_{\frac{n}{2}}(-1) U_{\frac{n+2}{2}}(x)=0, \tag{4.2}
\end{equation*}
$$

which is equivalent to (0.8).

§ 5. The extrema for b_{3}.

By (1.3) and (1.4) we may assume that n is odd and that $P(x)=Q\left(x^{2}\right)$ where $\widehat{Q}=n^{\prime}=\frac{1}{2}(n-1)$. Since $U_{2}(x)=4 x^{2}-1$ we have. (5. 1) $b_{3}: b_{1}=\int_{0}^{1}(4 t-1) Q(t)(1-t)^{1 / 2} t^{-1 / 2} d t: \int_{0}^{1} Q(t)(1-t)^{1 / 2} t^{-1 / 2} d t=4 T-1$,
say. Thus our problem is again a special case of the problem of the centroid.
Now the $p_{k}(t)=U_{2 k}(V \bar{t})$ are, plainly, orthogonal polynomials over $\langle 0, \mathrm{l}\rangle$ associated with the weight function $(1-t)^{1 / 2} t^{1 / 2}$.

If $n^{\prime}=2 m$, then $p_{m+1}(t)=U_{n^{\prime}+2}(\sqrt{t})$ and hence
(5. 2) $\quad \operatorname{Max} T=\cos ^{2} \frac{\pi}{n^{\prime}+3}, \quad \operatorname{Min} T=\cos ^{2}\left(\frac{\pi}{2} \frac{n^{\prime}+2}{n^{\prime}+3}\right)=\sin ^{2} \frac{\pi}{2\left(n^{\prime}+3\right)}$,

$$
\begin{equation*}
\bar{B}(3, n)=1+2 \cos \frac{2 \pi}{n^{\prime}+3}, \underline{B}(3, n)=1-2 \cos \frac{\pi}{n^{\prime}+3} . \tag{5.3}
\end{equation*}
$$

If $n^{\prime}=2 m+1$, we need the greatest zero of

$$
\begin{equation*}
U_{2 m+4}(0) U_{2 m+2}(V / \bar{t})-U_{2 m+2}(0) U_{2 m+4}(\sqrt{t})= \tag{54}
\end{equation*}
$$

$$
\doteq(-1)^{m+2} \frac{\sin (2 m+3) \vartheta+\sin (2 m+5) \vartheta}{\sin \vartheta}=(-1)^{m+2} \frac{2 \sin (3 m+4) \vartheta \cos \vartheta}{\sin \vartheta},
$$

where $t=\cos ^{2} \vartheta$, which leads to the right half of $(0.9)_{o}$; the least zero of

$$
\begin{gather*}
U_{2_{m+4}}(1) U_{2 m+2}(\sqrt{t})-U_{2 m+2}(1) U_{2 m+4}(\sqrt{t})= \tag{5.5}\\
=\frac{(2 m+5) \sin (2 m+3) 9-(2 m+3) \sin (2 m+5) 9}{\sin 9}
\end{gather*}
$$

similarly gives the left half of (0.9) .

§ 6. Identities involving orthogonal polynomials

1. Let $w(x)$ be a weight function over $\langle a, \beta\rangle$, and let the $p_{m}(x)=k_{m} x^{m}+\ldots$, where $k_{m}>0$, be the associated orthonormal polynomials. We introduce the moments

$$
\begin{equation*}
c_{m}=\int_{\alpha}^{\beta} x^{m} w(x) d x \tag{6.1}
\end{equation*}
$$

The determinants $D_{m}=\left[c_{p+q}\right]_{0}^{m}$ are then positive, and we hàve, for $m \equiv 1,{ }^{7}$)

$$
\begin{gather*}
p_{m}(x)=\left(D_{m-1} D_{m}\right)^{-1 / 2}\left[c_{p+q} x-c_{p+q+1}\right]_{0}^{m-1} \tag{6.2}\\
k_{0}=D_{0}^{-1 / 2}, k_{m}=\left(D_{m-1} / D_{m}\right)^{1 / 2}, D_{m}=\left(k_{0} k_{1} \ldots k_{m}\right)^{-2} \tag{6.3}
\end{gather*}
$$

We wish to generalise these formulae.
2. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}$ be real or complex constants chosen so that the polynomial

$$
\begin{equation*}
u(x)=\left(\alpha_{1}-x\right)\left(\alpha_{2}-x\right) \ldots\left(\alpha_{l}-x\right) \tag{6.4}
\end{equation*}
$$

is real and non-negative in $\langle\alpha, \beta\rangle$. This will be, for instance, the case when the α_{i} are sufficiently large positive. We assume, moreover; that the determinants

$$
\Delta_{m}=\left|\begin{array}{cccc}
p_{m}\left(\alpha_{1}\right) & p_{m+1}\left(\alpha_{1}\right) & \ldots & p_{m+l-1}\left(\alpha_{1}\right) \tag{6.5}\\
p_{m}\left(\alpha_{2}\right) & p_{m+1}\left(\alpha_{2}\right) & \ldots & p_{m+l-1}\left(\alpha_{2}\right) \\
\cdot & \cdots & \cdot \\
p_{m}\left(\alpha_{l}\right) & p_{m+1}\left(\alpha_{l}\right) & \ldots & p_{m+l-1}\left(\alpha_{l}\right)
\end{array}\right|, m=0,1,2, \ldots, N
$$

are positive. Then the orthonormal polynomials $q_{n n}(x)$ associated with the weight function $u(x) w(x)$ over $\langle\alpha, \beta\rangle$ are, for $n=0,1,2, \ldots, N-1$, given by the formula

$$
u(x) q_{m}(x)=\left(\frac{k_{m}}{k_{m+i} d_{m} A_{m+1}}\right)^{1 / 4}\left|\begin{array}{cccc}
p_{m}(x) & p_{m+1}(x) & \cdots & p_{m+l}(x) \tag{6.6}\\
p_{m}\left(\alpha_{1}\right) & p_{m+1}\left(\alpha_{1}\right) & \cdots & \ddots \\
\cdot & p_{m+l}\left(\alpha_{1}\right) \\
p_{m}\left(\alpha_{l}\right) & p_{m+1}\left(\alpha_{l}\right) & \cdots & \cdots \\
p_{m+l}\left(\alpha_{l}\right)
\end{array}\right|
$$

For the proof cf. 4, Theorem 2.5, pp. 28-29, where the orthogonality of these polynomials is shown. As for the normalisation we note that the highest term of $q_{m}(x)$ is $\left(k_{m} k_{m+l}\right)^{1 / 2}\left(\Delta_{m} / A_{m+1}\right)^{1 / 2} x^{m}+\ldots$, and that Hence
(6. 8) $\int_{\alpha}^{\beta} q_{m}^{2}(x) u(x) w(x) d x=\int_{\alpha}^{\beta}\left(\frac{k_{m}}{k_{m+l}}\right)^{1 / 2}\left(\frac{\Delta_{n+1}}{\Delta_{m}}\right)^{1 / 2} p_{m}(x)\left(k_{m} k_{m+l}\right)^{1 / 2}\left(\frac{\Delta_{m}}{\Delta_{m+1}}\right)^{1 / 2} x^{m} w(x) d x=1$
7) Cf. 4, (2. 29), p. 26.
3. Let $h(x)$ be a given polynomial with real coefficients. We want to determine the extrema of the quotient

$$
\begin{equation*}
\int_{a}^{\beta} h(x) f^{2}(x) w(x) d x: \int_{a}^{\beta} f^{2}(x) w(x) d x \tag{6.9}
\end{equation*}
$$

where the coefficients of the polynomial $f(x)$, of degree m, take arbitrary real values $u_{n}, u_{1}, \ldots, u_{m}$ not all zero. These maxima and minima are then characterised as the greatest and least zeros of the discriminant $H_{m}(\varrho)$ of the quadratic form (in the u_{i})

$$
\begin{equation*}
\int_{a}^{\beta}(h(x)-\varrho)\left[\dot{u}_{0}+u_{1} x+\ldots+u_{m} x^{m}\right]^{2} w(x) d x \tag{6.10}
\end{equation*}
$$

In order to compute $H_{m}(\rho)$ we choose first the real numbers ε and ρ so that $u(x)=\varepsilon(h(x)-\varrho)$ satisfies the above conditions. The highest coefficient of $u(x)^{\text {in }}$ (6.4) has to be $(-1)^{l}$, so that ε depends oniy on the highest coefficient of h. By (6.3),

$$
\begin{equation*}
\varepsilon^{-(m+1)} H_{m}(\varrho)=\left(k_{0}^{\prime} k_{1}^{\prime} \ldots k_{m}^{\prime}\right)^{-3}, \tag{6.11}
\end{equation*}
$$

where k_{i}^{\prime} is the highest coefficient of the orthonormal polynomial $q_{i}(t)$ associated with the weight function $u(x) w(x)$. By (6.6)

$$
\begin{equation*}
\dot{k}_{i}^{\prime}=\left(k_{i} k_{i+1}\right)^{1 / 2}\left(\Delta_{i} / \Delta_{i+1}\right)^{1 / 2} . \tag{6.12}
\end{equation*}
$$

so that

$$
\begin{equation*}
\varepsilon^{-(m+1)} H_{m}(\varrho)=\left(k_{0} k_{1} \ldots k_{m}\right)^{-1}\left(k_{l} k_{l+1} \ldots k_{l+m}\right)^{-1} \Delta_{m+1} i \Delta_{0} \tag{6.13}
\end{equation*}
$$

The quotient A_{m+1} / A_{0} is a symmetric polynomial in $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}$ which are the roots of $h(x)-\rho$: Hence it is a polynomial of degree $m+1$ in ϱ, and the equation (6.13) is an identity in o. The greatest and least zeros of the polynomial $\Lambda_{m+1} / \Delta_{0}$ in ρ yield the extrema in question.
4. The two simplest cases are $l=1$ and $l=2$ (compare (6.5)). If $l=1$, we have

$$
\begin{equation*}
\Delta_{m+1} / \Delta_{0}=k_{0}^{-1} p_{m+1}\left(\alpha_{1}\right) . \tag{6.14}
\end{equation*}
$$

If $l=2$, then

$$
\begin{equation*}
\frac{\Delta_{m+1}}{\Delta_{0}}=\frac{p_{m+1}\left(\alpha_{1}\right) p_{m+2}\left(\alpha_{2}\right)-p_{m+1}\left(\alpha_{2}\right) p_{m+2}\left(\alpha_{1}\right)}{k_{0} k_{1}\left(\alpha_{2}-\alpha_{1}\right)}=\left(k_{0} k_{1}\right)^{-1} K_{m+1}\left(\alpha_{1}, \alpha_{2}\right) \tag{6.15}
\end{equation*}
$$

where K_{m} is the 'kernel function' [cf. 4, (3.2.3), p. 42].

§ 7. The coefficients b_{4} and b_{5}.

1. In the case b_{4} we have

$$
\begin{equation*}
b_{4}: b_{1}=\int_{-1}^{1} P(x) U_{3}(x)\left(1-x^{2}\right)^{1 / 2} d x: \int_{-1}^{1} P(x)\left(1-x^{2}\right)^{1 / 2} d x \tag{7.1}
\end{equation*}
$$

By (1.2), it suffices to consider $\bar{B}(4, n)$ in each of the cases

$$
\begin{array}{cc}
P(x)=A^{2}, P(x)=\left(1-x^{2}\right) B^{2} & (n \text { odd } ; \tag{7.2}\\
P(x)=(1 \pm x) C^{2} & (n \text { even })
\end{array}
$$

Now $U_{3}(x)=8 x^{3}-4 x$, so that, on using the method of $\S \dot{6}$, we are in the case $l=3$, and we have to solve the equation $\Delta_{m+1} / A_{0}=0$, that is an equation of the form
where the $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the roots of $U_{3}(x)-\varrho=0 ; m=\frac{1}{2}(n-1), \frac{1}{2}(n-3)$, $\frac{1}{2}(n-2)$, respectively; and the polynomials $p_{k}(x)$ are associated with the weights $\left(1-x^{2}\right)^{1 / 2},\left(1-x^{2}\right)^{3 / 2},(1 \pm x)\left(1-x^{2}\right)^{1 / 3}$, respectively.

If we denote the maximal ρ by $U_{3}(\zeta)$ where $-1 \leqq \zeta \leqq 1$, then

$$
\begin{equation*}
U_{3}(x)-\varrho=(x-\zeta)\left(8 x^{2}+8 x \zeta+8 \zeta^{2}-4\right), \tag{7.4}
\end{equation*}
$$

so that $\alpha_{1}, \alpha_{2}, \alpha_{3}$ have the values

$$
\begin{equation*}
\zeta, \frac{1}{2}\left(-\zeta \pm \sqrt{2-3 \zeta^{2}}\right) \tag{7.5}
\end{equation*}
$$

Inserting these values in (7.3) we obtain an equation in ζ.
2. The case b_{5} is in some respect even simpler. Here we may assume n odd and $P(x)=Q\left(x^{2}\right)$ where $\widehat{Q}=n^{\prime}=\frac{1}{2}(n-1)$ (compare §5).

Since $U_{4}(x)=16 x^{4}-12 x^{2}+1$ we have

$$
\begin{equation*}
b_{4}: b_{1}=\int_{0}^{1} Q(t)\left(16 t^{2}-12 t+1\right)(1-t)^{1 / 2} t^{-1 / 2} d t: \int_{0}^{1} Q(t)(1-t)^{1 / 2} t^{-1 / 2} d t \tag{7.6}
\end{equation*}
$$

Now putting $s=2 t-1, Q(t)$ becomes a polynomial $Q^{*}(s)$ non-negative in $\langle-1,1\rangle$. Applying the theorem of LukÁcs, we find that we may restrict $Q(t)$ to the subclasses

$$
\begin{array}{lrl}
A^{2}(t), & t(1-t) B^{2}(t) & \left(n^{\prime} \text { even }\right) \tag{7.7}\\
t C^{2}(t), & (1-t) D^{2}(t) & \left(n^{\prime} \text { odd }\right) .
\end{array}
$$

We are in the case $l=2$, and the equations to be solved are, by (6.15) of the form

$$
\frac{1}{\alpha_{1}-\alpha_{2}}\left|\begin{array}{cc}
p_{m+1}\left(\alpha_{1}\right) & p_{m+2}\left(\alpha_{1}\right) \tag{7.8}\\
p_{m+1}\left(\alpha_{2}\right) & p_{m+2}\left(\alpha_{2}\right)
\end{array}\right|=0
$$

where the $p_{k}(t)$ are associated with the weights $(1-t)^{1 / 2} t^{-1 / 2},(1-t)^{1 / 2} t^{1 / 2}$, $(1-t)^{1 / 2} t^{1 / 2},(1-t)^{8 / 2} t^{-1 / 2}$, respectively ; and m being $\frac{1}{2} n^{\prime}, \frac{1}{2}\left(n^{\prime}-2\right), \frac{1}{2}\left(n^{\prime}-1\right)$, respectively. Also α_{1} and α_{2} are the roots of $16 t^{2}-12 t+1-\varrho$. Hence, putting $o=16 \tau^{2}-12 \tau+1$, these roots are τ and $\frac{3}{4}-\tau$, so that (7.8) becomes

$$
\frac{1}{2 \tau-\frac{3}{4}}\left|\begin{array}{ll}
p_{m+1}(\tau) & p_{m+2}(\tau) \tag{7.9}\\
p_{m+1}\left(\frac{3}{4}-\tau\right) & p_{m+2}\left(\frac{3}{4}-\tau\right)
\end{array}\right|=0
$$

or $K_{m+1}\left(\tau, \frac{3}{4}-\tau\right)=0[$ compare (6.15)].

References.

1. R. P. Boas Jr. - M. Kác, Inequalities for Fourier transforms of positive functions, Duke Math. Journal, 12 (1945), pp. 189-206.
2. L. Fejér, Über trigonometrische Polynome, Journal für die reine und angewandte Math., 146 (1915), pp: 53-82.
3. L. Fejér, Über eine Aufgabe der Harnackschen. Potentialtheorie; Göttinger Nachrichten (1928', pp. 1-9.
4. G. Szegŏ, Orthogonal Polynomials (New York, 1939).
(Received September 9, 1949.)

King's Cglege, Newcastle upon Tyne.
Stanford University.

[^0]: ${ }^{1)}$ The numbers refer to the list of references at: the end of this paper.
 ${ }^{2}$) Cf. L. Fejer [3] where a survey of the relevant literature can be found. An extension of these results to 'finite' Fourier integrals (which are in a certain sense the analogues of trigonometrical polynomials) has been given more recently by Boas and Kac [1].

[^1]: ${ }^{5}$) Compare (6.6).
 ${ }^{6}$) Actually, we shall have either $\alpha=-1 ; \beta=1$ or $\alpha=0, \beta=1$.

