112

Extremum problems for non- negatlve sine polynomlals.

By
W. W. ROGOSINSKI and G. SzeEGO
in Newcastle upon Tyne {England) . in Stanford (California}

1n various chapters of the theory of Founer series and elsewhere non-
negatlve trigonometrical polynomials

©. 1 T(&)'E%(Io (alcosﬁ—l—blsmﬁ)—l-... .+(a,,cosn~9+@,, sinn)

. play an important réle. For instance, the non-negative character of. the
arithmetic means of the polynomials

' ((j. 2) _—;——[—cos&—{—...—{-cos.n&'

is the basic fact in FEJER’s theory of summability of Fourier series. Similarly,
certain sine polynomials, non-negative for 04 <n (in the range <0, n>),
are- frequently of importance. As an example we quote GRONWALL’s polynomials -

(0. 3) . sin&—}—% sin2d--. . .v-l—nilsinn&

In 1915, L. FEJER and F. Riesz [2]!) gave a parametric representation
of fundamental importance for non-negative tngonometrlcal polynomials. By
means of this representahon L FEJER and others determined in

(0. 4) T(a)é7ao(n+ 1), ai+ b?ga‘écos?”/([_/?]fz)

the maxima for such polynomials "and for their coefficients, when the con- '
stant term iao and the degree n are. prescribed. It should be noted that -

FE]ER s problem remains essentially. the same .if the subclass of non- negative
cosine polynomials is con51dered2)

1) The numbers refer to the ]ist of references at:the end of this paper. ..

2) Cf. L. Fessr [3] where a survey of the relevant literature can be found.: An
extension of these results to finite’ Fourier integrals (which are in a certain sense the
analogues of trigonometrical polynomials) has been given-more recently by Boas and Kac [(].
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A completely new situation -arises if one éonsideys sine polynomials

(0.5) SH=b sxn9+b251n23+ —I—b,,smnt} - (b,7F0) -

of given degree n which are non-negative in the range <0, 7). It is theclass -
“of these polynomials we discuss in the present paper. Clearly b,=0 and -
b,=0 is only possible when S(¥) vanishes 1dem1cally We shall usually
normalise by assuming that b,=1. '
v First we determme the maximum of 8(3) for fxxed J in <0 >, and
find : S :

}( Tsmrg (1 +2) sm&—sm(n-{-z)3}
(-0 S(s)<MaX‘ e ’(A+3)sxn(k+l)~9—(k+l)sm(k—l-3)3}2
- Vasin®s < . CkFOEF3) ;
al Cot—ﬁ('ﬁgﬂ{(k—{—m%m(k—{—l)&—-—(k—{—l)sm(k—{-?)&}
0.6)e S(9) < Max/ 2 sind g DI
= Vida |tan—3(n 2)/2{(k+2)sm(k+1)8+(k—|—1)sm(k-|-2)3}2.
2sind F 0 DG+

- when n is odd. or.even, respectwely In particular, when $=0,
(n+1)(n+2) (n—{—3 /24 (n odd)
nn+2)(n+4)/24 -~ (n even).

. The determination of the maxima and minima for the coefficients b,
is rather involved?®). We have computed them in the cases &,, b;'and b,_,, b,.

In other cases, in particular for b, and b,, we discuss relevant methods of.
determmatlon QOur main results are:

2c05271/(n+3) @ pdd)

14 20,4 30,4 +nb, <

-0 RIS 2cosd, - .(n even),

~ where 9 is the least positive root of o
(0. 8) _ (rz—l—4)sm(n-|—2)3/2+(n—|—2)sm(n+4) 9/2-— )
Next, ’
(0.9)e [—2 cos /(W +-3) < by< 1 +2cos 2/ (' +3)
(0.9), 1—2cos $, < b, < 1-42cos 27/(n’ +3),

according to whether n’ = [~(n—l,)] 'is even'or odd, ‘respectively. Here 3,
is the least. positive root of ' ' v
0.10) . n —|—4)cos(n +2)19/2+(n +2)cos(n'+4)$/2==0:

3) The estlmate ’

smk&

lby\— 49| < kb, —k

is trivial.
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Further

. 11) ' Ib,,_ll <1, —(n—2)/(n+2)<b,,_1__

according to n bemg odd or even, respectively. Finally, in the same two
cases, : ,

0. 12) ' —(n—l)/(n+3)<b,,_ |b,| < n/(n+2).

The introductory § ! contains general remarks concerning various
methods dealing with problems of our kind. In § 2 we determine the maxi-
mum of S($), in § 3 the extrema for b,_, and b,, in § 4 for b,, and in §5
for the less simple case b;. In § 6 some formal properties of orthogonal
polynomials are discussed which are useful in dealing with the general ,.
The last § 7 deals, in particular, with &, and b;.

- § 1. General remarks.

1. For giveh degree n and given b, (=1) we put
(1L 1) B (k, 1y==Min b,, B (k, n)=Maxb,.
Now, if the sine polynomial S(%) is positive in <0,7n)>, then S0 is
S(rt—9) == Z(—1)-1b, sinkd. Hence.
(1.2) _ B(k,n)=—B(k, n) (k even).
Also ‘ :
(1.3 S9 =%{S(8)—|—;S(7r——8)}=bl sin 9+ b, sin39 4 . .
is non-negative. If n is even, then S* is of degree a‘t' most n—1. It follows that
(1.4) Bk, n)=B(k n—1), B(k,n)=B(k,n—1)  (k odd, n even).

2 Let 0<9<n Any non-negative sine polynomial can be written in
the form :

(1.5) - SH = sin 9 Z'bk sink9/sin$ =sin ¢ P(cos%?)
. . 1 .
where
(1. 6) P(cos&) -—ao—i—a1 cosd+-...+a,cos(n— 1)3
is a non-negative cosine polynomlal of degree n—1; the converse is also
true. Here -
(1. 7) ) ) sz = ak_l—ak+1

where a,=a,,,=0. Now, according to L. FEJER and F. RIESZ, any non-
negative trigonometrical polynomial P(cos«.‘)) admits of the parametric repre-
sentation

(1.8) P'\cos&,_lc0+cle"9+ .- e‘(" Doe
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where the c, are (arbltrary) real constants Hence by (1 7, b,,__d) (co, Clyerrs Cot)
is-a certam quadratlc form of the ¢,. In particular,

(.9) by=@,= 2 (ao_a2)—'co+c2+ +cn—1—(CoC2+C1C3+ +Cn 3Cy— 1)

is’ posmve deﬁmte o

There are then, theoretically, two possibilities of cornputing Bk, n)
and B(k,n): o '
(i) We can either form the charactenstlc equatlon
(1:10) o | P, —A D=0
and obtain our quantmes as the least and greatest roots “of this- equatlon
" (ii) Alternatively, we may form .the system of linear equations in the ¢,
corresponding to (1.10) and solve this system. This method works satis--
factorily in the cases b,_; and b,. .

In general, however, the method based on (1. 10) is not easily adaptable..
for obtaining explicit results, in particular when n is 'large

3. We prefer to base our actual dlSCUSSlOH on the followmg theorem
of LUKACS [4,' pp. 4—5]%):

Any polynomial P(x) of degree P= N, which is non-negatzve in{— 1 1>,
can be represented in the form .

(1. 11) P(x) = A%(x) + (1—x2) B¥(x) A<—— B< >

N—1 ~ N—1 ..
2 P

N—-2

(a.11), Px)=(1—x)C2(x)+(14+x)D(x); C<
according to N being even or odd.

‘ Now, by (1.5), if we put x=rcosd, _
(1. 12) S(9)=sin 0P(x)_(1—x2)‘/ P(x), *

where P(x) is a non- negatlve polynomial of degree N—=n—1 in <—1, l>
It is clear that, when N is even, say, we can restrict P to range over poly-
nomials of the type A® or (1—Xx%) B%. Max S(¥) is then the greater (not .

smaller) maximum obtained in the two cases. A similar remark apphes to
B(k,n) and B(k, n), and to the-case when N is odd

4. We have

(1.13) . Px)= Z b, sin k&/sma = Z by Uy (%)

Here :

(.19 Ux)= Uk(cosﬁ)—sm(k—i- 1)3/51n1‘}—2"x‘+A x4,

is the familiar Tchebychev polynomlal of the second kind. The polynonnals

4). This theorem can also be denved “from the results of FEJER and RiEesz.
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V— U, form an orthonormal system with the welght functlon (l—xz)‘/’ over

the range <—1, 1>. It follows that
1

(l. 15) : ' .[‘kak(x)(l—x‘-’.)‘/l”dx=712‘(“"’.
: 4 . |
Also '
(].'16) o ' bk=% JP(X) U (x) (1 —x2) d x.

We shall also require orthogonal polynomials over {—1, 1> corresponding
to the ‘weight functions w(x)==(1—x2%)" and w(x)=(I'—x) (1 —x2)". The
‘former are®) .

. — . 2 -1 ‘U+2(x) Uk(x) 2k k
(1.17) V() =(x*—=1) [k"+3 k+1] k—l—3x+
$0 that by (1.15), - |

, ' U(x) Ui 2k+2
Q. 18)JV,3(x)(1—x2 hdx — J(kf‘l) k+‘;‘))(k+3

(k1) (k+3)°
Sumlarly, when w(x)=(1—x) (1 —x? )‘/’ we have the orthogonal polynomlals

X )(1 —xY)hdx

(1L19) - W) =(x—1)" (chki(; f:fifx])) k2-:2 X
with R .

(1.20) [ W) (1—x) (0 —x2yrdx = m (e + 1) (k+2)
' . 1 . .

5. Our problem  is of the general type of determining the extrema of
. a quotient . ' '
g : - f -

(.21 = j u(x) h(x) w(x)dx : j 1% (x) w(x) dx,
B . a . 24
where w(x) is-a given weight function and- 2(x) a given polynomial; u(x)
is an arbitrary polynomial of given degree  whose coefficients vary through
all real values not all zero%).

In the cases b, and b; we shall have h(x)==x. This is the so called
-‘problem of the centroid’, first treated by- Tchebychev.

-5y Compare (6. 6) ) :
8) Actually, we shall have elther e=—1,p=1or a=0, ﬂ-—l
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Its solution is as follows: [Cf. 4, Theorem 7.72.1, p. 183; we follow
(apart from.slight changes) the notation of 4.] _

Let w(x) be a given weight function over {e, 8> and the p,(x) be. the
orthonormal polynomials associated with it. Let f(x) run through all polyno-
mials of given degree N and non-negative in {e, 8>. anally, let M and M
be the maxzmum and minimum of the quotzent

.'(1.22) A ff(x)icw(x)dx : [f(x)iv(x)dx. |

"If N —2m, then M is the greatest and M is the least zero of p,.,(x). If
N ?m+l then M Is the greate‘St zero Of pm+2 a)pm+l(x) pm+1(a)pm+2(x)
and M ls the leHSt zero of p1n+z(ﬂ)pm+l(x) pm+1(ﬂ)pm+2(x) »

We' note that extremum problems of our type are normally treated by
“the Gauss-Jacobi method of mechanical quadrature. We_ use instead, in §§ 6
and 7, certain formal identities for orthogonal polynomlals associated with
w(x) and h(x)w(x). :

§ 2. The maximum of S(t})

1. First, let n be 'odd, so that the degree N=n—1 of P(x), in (1.13), -
is even. By (1. 11), we may assume P= A? or P=(1—x?)B% The maximum

of S(¥) is then the greater of the two maxuna obtained in each case.
h

- (i) Let P= A2 and A(x)_z @, Uy(x), where h=- (n—l) Slnce the -

'V; U, are orthonormal with weight (1'——x-)‘/-, we have, by (1. 1_6),
. 2 l. . | ; 'h '
(2. 1) : b'1=—; [A‘z(x)(l—x2)‘/2dx=24a%,=1.
: . 0
-1 :
Hence, by Caucny’s inequality,”

TP =2 e ZU;.(X)‘*Z U2(x)=.
(2.2) __Z(Sm(kntl)ﬂ)_ Z 1—cos2(k+ 19 _

_ sind ) . 2sin?d .
1 [n—|—1+ 1 _.sin(n—|—2).9]
T2sin2d | 20 T2 2sind |’
so that by (1.12) | ,
@. 3) S =< ﬁ{(n +2) sina—sin(nqrz)'a},
: whlch is the first mequallty (0. 6)o.
Clearly, equality in (2 2) and hence in (2. 3) can, be attamed.
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(ii) Let P=(1—x2) B and B(x)—Zﬂ,,V,,(x where h=— 2 (n—3).
Then by (1 18)

' .‘ 2 : 2'. 2/ ‘ .
(2.4) JBO‘)(‘ xz)’d"—“zmm

Hence

@.5) B(x)= zm S+ 1) (+3) v,f<x)=%_>;<_k+ngk+3)v;<x>

which is equivalent to the second inequality (0. 6),.

2. If n is even we have the two cases P(x)=(1 +x) C%(x). | It ‘suffices
to consider the case of the factor 1 —x, the two cases changing mto each
other on replacmg X by —X, that' is 4 by n—93.

Puttmg C(x)— y,,Wk(x), where h—~— (n—2), we have by(l 20),

(2.6) b, =,72z-:lf02(x) (1=x0 -—.x'z)‘/* dx =2 ;h* Wl_;%m =1.
Hence
@n cz<x><—2<k+1)(k+2> We)
_ which is equxvalent to the first mequahty (0 6)e. The secOnd is obtained on
changing 4 into n—+.
§ 3. The extrema of b, and b,,_,.

1. Let n be odd Auam we have two cases
h-

(i) - Let P(x)=A (x) where A(x)= 2, e Uy(x) and h=— (/z—l). By

(1. 14), P(x)~—a~ ”"r-’"—{- Hence using (1.15) and (1. 16),
1

Q. l) b..:’_[P(x) Upr () (1 —x* )””dx—ga 2”"J ”'Uw(X)(l —x*)rdx =
-1
=—27;-(¢%2‘”‘7t2'(2"+1) — a;é 1,

by (2.1). Also b,=z0. ' ,
(i1) Let P( )_(I—X)Bq(x)—(‘-'Yg)g ﬁkV(X)s where h——2— -3).
Then, by (1. 17), ; .

. . 20(),.(.')) -
(3.2), P ==
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Hence, as in (3. 1), since n—1=2h12, R
(3 3) b L 2 2 2n(h+2) 2 (2h+5)=_.—418;‘2__”_§£:l;1—)—(~h—+3) 71—1 )
- o (h+3) : (h+3)*~ (h+3)? T n+3

by (2.4). Also b,<0. This establishes ©. 12), when n is odd.

2, If n is even, we may take ‘

V

2

Z?’LWk(X)g " where h=-%—(r_1——2).'

P(x) = (1—x) C*(x) = (1—X)

By (1.19),
3 A - | . P( ) 22(h+1) x2/z+1+
( ) X yh (h+2)
and we find, as above, using (2.6), ‘ .
2 220:41). R 27;—:_' o (h+1) (h-+?2) n
iy S, B R 5 ) Dk LI —t L e,
@-5) b= =TV GrgzE 2= (nF2r T2

which establishes (0. 12), when n is even.

3. For b,_, we may assume that n is odd, since for even n the case
reduces, by (1.4), to that of the last coefficient. Agam we have our two
cases.

(i) We take

) h : ’
P(x) = (Z akUk(x)) = (@,2"x" 4 a'_1211_1x1. 1+ )=
(3.6) |

= 22.”a%x9"-|- 2%, @, X2 + oy h= 7 (1—1).

" Hence, by (1. 16) and (2.1),

b —-2 jP(x) Uy, (%) (l—x2)‘/ dx —

(3..7) -1 , »
' Z%zghahah—lnz -h'_zal 4G 1= a;+a%'_1§1

(11) We take ' :
3 2 2 Qh+1 2
P(x)=(1——x‘-’)(;ﬂkl/k(x)) =(1—x 2)[h+3ﬂhx"+h+2ﬂh 1x"“+ ]

. (3 8) 22(h+2) ')2(h+2Jp) ‘3_ fl 3
—_— ‘3 x2h+2 h 1.+1+ . —
(32" (/1+3)(h+2) 2

Hence, by (2. 4), .
b __ 2 204288, D BBba o
n=1 7t (h+3) (h+2) : (h+3)(r+2)—
ﬁh 1+P,h ﬂf_1 : ﬂh '
=~ 4ar et~ “4[h<h+2>+<h+l)<h+3>] =1
. This completes the proof of (0. 11) when n is odd. When 7 is even,
(0. 11) follows from the first formula (0. 12) on replacing n_by n—1.
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§ 4. The extrema for b,.
By (1.2), _it' suffices.to determine B(2,n). Since U,(x)=2x we have

1 ’ 1
4. 1) By: by = [xp(x)(x —x2)hdx ;[ P(x) (1 —x2)kdx,

1 L=l
which is a special case of the problem of the centroid (1.2:). If n is odd,
P=n—tis even, and B(2, n) is twice the greatest zero of -

sin 252 2n
Ui?(x)-—_ < & , 1 €. B(2 rz)——')cos—:*?g
If nis even, then B(2, n)=2cosd, where x(,—cos& is the greatest root of
4.2y n+2(——')U (x)—U. (—I)Uw(X)—O

which is equivalent to (0. 8).

§ 5 The extrema for b,.
By (1. 3) and (1.4) we may assume that n is odd and that P(x) = Q(x?)

Py

where Q=n’ :7(71—1). Since U,(x) =4x>*—1 we have,
) 1 o . 1

(B.1) by:b,= | (41—1) Q(t) (1 = £t [ Q(t) (1 — tyt-dt = 4T =1,
0 : §

say. Thus our problem is again a special case of the problem of the centroid.

Now the. p‘(t)—UM(Vt) are, plainly, orthogonal polynomxals over
<0, I'> associated with the weight function (1 — )1,
If n'=2m, then p,.,,(t) = U, .o( (V) and hence

o ez T L (n n+2)_.'2L
(5.2) Max T=cos T3 Min T =cos? 3 sin 3W+3)’
(5.3) B(3 n) =1 +2c0s ——— _}_‘ , B(3 n)— 1 —2cos +‘3 .

If n'.=2m+ 1, we need the greatest zero of-
(5 4) : . U"m+4 O) U"m+2(v-t_.)— U"lni—”(O) U"’m+~i (]/?) ==

(= 1y sin(2m+3)34 sm(2m+5)3 : '1),,‘+22sm(3m—{—4)3c050

sind sind
where t—cos21‘} Wthh leads to the rxght half of (0.9),; the least zero of
(5 5) o ‘ U9m+4(|) U’m+" Vt ) A U2m+’(‘) U2m+4 Vt ) -
(2m—}—5)sm(2m—{—3)3-—(2m—l—3)%1n(2m+5)d
sind |

similarly gives the left half of (0.9),.
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§ 6. Identities involving orthogonal polynomials

I. Let w(x) be a weight function over (e, 83, and let the p, (x) =k, x" - ..,
where k,, >0, be the associated orthonormal po]ynomxals We introduce the
moments
6.1) . c_,,,=J xmw(x)dx -

The determinants D,,=[c,. J; are then positivé and we have, for m =17
(6 2) . pm(‘x)_(Dm le) [C]+q C])+q+1];)" 1)

(6.3) ko=D;", k= (D, D,)", D= (hoks ... 1e,)".

We wish to generalise these formulae. '

2. Let o, ay, .
polynomial : ‘ - .
(6. 4) - u(x) == (e, —x) (—x) . . . (¢;—x)
is real and non-negative in {e, £>. This will be, for instance, the case when

the «; are suffxmently large posmve We assume, moreover, that the deter-
minants

., @, be real or complex constants chosen so that the

pm.(al) pm+1(a1) L pm-H—l (al) ) )
(6 5) A :' pm(aQ) pm+1(0!2) N ey (0‘2) 'III:O, ]" 2, s, N, .

m ’

pm(al)‘ p:zz+1(“l,) L pm+l——l(al)

are positive. Then the orthonormal polynomials g¢,,(x) associated with the
weight function u(x) w(t) over {«, #> are, for n=0,1,2,..., N—1, given
by the formula - ' ‘

. . o “y plu(x) pm+l(x) U pm+l(x)
» km : " pm(al) pl +l(ai) L p7u+l(ai) '
(6 6) “ (X) qm (X) (km-HZIm Am-i-l)
pm(al) pm+l(“l) pm+1(al)

For the proof cf. 4, Theorem 2.5, pp. 28—29, where the orthogonality of
these polynomials is shown As for the normalisation we note that the highest
tern] Of qﬂl(x) ls (kmk»nz+l)1/ (A"l/‘d”)+])1/2x"l oty al]d tl]at

. . k 13 Y " N » : .
(6.7) U(x)q,,,(X)=(k—"'—l) ( — )p.,,(X)+A1p,,l+1(x)+ +A,p.,.+,()
_Hence e o

m+I m- m+1

(6 S)Jq,,,(x) u(x) w(x) dx—f( s ) (A;/';‘i)l/zpm (x) k. k) ( Z” )l/zx'"w(x)dle.

7)-Ci. 4, (2.2 9), b. 2.
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3. Let A(x) be a given polynomial with real coefflcrents 'We want to
determine the extrema of the quotient

F '
69 [.h(x> W) dx j F2(x) w(x) dx,
where the coefficients of the . polynomial f(x), of degree m, take arbitrary
real values u,, u,, ..., u, not all zero. These maxima and minima-are then

characterised as the greatest and least zeros of the discriminant H,(¢) of the
quadratic form (m the u,)

6.10) = ,(h(x)-——g)[uo—}—ulx-{- +u,,,x’"]2w(x)dx

In order to compute H,(0) we choose frrst the real .numbers & and ¢ so that
u(x)=¢e(h(x)—po) satisfies the above conditions. The ‘highest coefficient of
u(x) in (6.4) has to be (—1), so that ¢ depends only on the highest
coefficient of A. By (6.3), '

(6.11) ' e~ H, (o) = (koki. .. k)72,

where k] is the highest coefficient of the orthonormal polyn'omial g:(t) asso-
ciated with the weight function u(x)w(x). By (6. 6) '

(6 12) - _— k —~(/f k.+z)"’(4 JZ
'so-that _ '
(6.13) & D H (0) = (kyky + . . k) 1 (Kikyar « o Kign )t sl Ay

The quotienf.4,,,;,1/_410 is a symmetric polynomial in a,, @,,..., @, which are
_the roots of h(x)—o. Hence it is a polynomial of -degree m--1 in o, and
the ‘equation (6.13) is- an identity in o. The greatest and least ' zeros of the
polynomial J,,,H/A in ¢ yield the extrema in question. :

4. The two simplest-cases are l—— 1 and [— 2 (compare (6.5)). If I=1,
we have :

(6. 14) ) _ ’ dm'kl/dozko_]puﬁl(al)'
1f [=2, then ’ |

AA + m . »;+" " Mt n )
(6. 15) 201 — P ()P k(‘l:'j(aQ_“lr)az)p “(a == (k, k) le+1(a1’ “a).

where K, is the ‘kernel function’ {cf. 4, (3 2, 3), p. 42].




Extremum problems for sine polynomials. - 123

Q

§ 7. The coefficients b, and b,.
1. In the case b, we have ' '
| .

. l : 1 .
(7.1) b b=[P(x) Up(x) 1 —x2)Pdx @ | P(x)(1—x2)"dx.
-1 .- 21

By (i.2), it suffices to consider §(4 n) in each of the cases
.2 P(x) =A% P(x)=(1—x2)B? “(n ddd ;
. Px)=(1+x)C? _ - (n even).
Now U,(x) =8x®—4x, so that, on using.the method of § 6, we are in the

-case [=3, and we have to solve the equahon A,,,H/AO—O that i$ an equahon
of the form :

l ‘ ‘pm+l(a1)§pm-_(-2{4“1) p:nz+3(a1)
pm+l(“‘.".) p:zz+2(aé) pm+3(a2). = Oy
(@ —ea) (o — ) (@amma) | 077 Porse(@) Prias (@)

where the @, a,, «; are the roots of U;(x)—e=0; m =%-(n} 1), l7(n—3)

@. 3)

2 (n—2), ‘respectively ; and the polyhomia]s pi(x) are. associated with the
weights (1 —x%)%, (1-—x2)", (1+Xx) (1 —x2)%, respectively.-
If we denote the maximal ¢ by U,(f) where —1<C<1, then "

(1.4) - Us(x)—e=(x—5)(8x* +8x¢ +87’—4),
so that “1, a,, @, have the values
(1.5) ( C+V2 3C)

Inserting these values in, (7. 3) we obtain an equation in' L.
2. The case, b, is in some respect even simpler. Here we may assume
n odd and P(x) = Q(x?) where Q——n’zl(n—l) (compare § 5).

Since U,(x)= 16x —12x21 we have
1

(1.6) b,: b—‘Q(z‘)(lﬁt" 1263 1) (1 —t )t edt JQ(t)(l—t)‘/zt-;/edt.

Now puttmg s=2t—1, Q(t) becomes a polynomial Q*(s) non-negative in
{—1,1>. Applying the theorem of LUKAcs we find that we ~may restrict
Q) to the subclasses :

A, t(I=0Bxf) even);

tCZ(t), (=) D) (n’ odd).

We are in the ‘case [=2, and the equatlons to be solved are, by (6. 15) of
the form

(7- 8) R | | _.1___ p’"+1(al) .p7n+2(a1)

all_ Gy pm+.l (aZ) “pm+2(a2)

(7.7)
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where the pk(t) are associated with the .weights (V= 1)let-"ey (1 —t)"Nat's,
(1 '—t)‘/'at'./{, (1 —t)”zt“/s,_ respecti;/ely; and m .being—;—'n’, 1 (n"'—2), %(n'— 1),
respectively. Also «;and «, are the roots of 16¢2—12¢-+1-—p. Hence, putting
0= 1'6z2_12i+.l, these rqoté are 7 -and %—1, so that (7. 8) becomes

) . . + T m+ ' V
(7 9) ' i ; pm 1( ) . P ‘2(1) = O,
. . . g u!+1 4 m+2 4

~or K., ('z,'%—;—w) =) [éompare (6. 15)].
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