On the discreteness of the spectrum of a differential equation.

By E. C. TITCHMARSH in Oxford.

It was proved by WEYL¹) that the spectrum associated with the differential equation

(1)
$$\frac{d^2\varphi}{dx^2} + \{\lambda - q(x)\} \varphi = 0 \qquad (0 \le x < \infty)$$

is discrete if q(x) is bounded in any finite interval and tends to infinity as $x \to \infty$. His proof is reproduced in my book Eigenfunction Expansions Associated with Second Order Differential Equations (Oxford, 1946), § 5. 12. Other proofs have since been given²).

The following is another simple proof. Let $\varphi(x, \lambda)$ be the solution of (1) which satisfies a given boundary condition

(2)
$$\varphi(0,\lambda)\cos\alpha + \varphi_x(0,\lambda)\sin\alpha = 0$$

at x=0. Then it can be proved as in § 5.12 of my book that, for every real λ , either $\varphi(x,\lambda)$ is L^2 (in which case $\varphi(x,\lambda)$ and $\varphi_x(x,\lambda)$ both tend to zero as $x \to \infty$), or $\varphi(x,\lambda) \to \infty$, or $\varphi(x,\lambda) \to -\infty$. Consider any finite interval $a \le \lambda \le b$, and denote the sub-sets of this interval where φ has the above properties by E_0 , E_1 , and E_2 respectively.

If λ' belongs to E_1 , $\varphi(x,\lambda') \to \infty$, $\varphi_{xx}(x,\lambda') \to \infty$ (by (1)), and so $\varphi_x(x,\lambda') \to \infty$. Hence for some ξ , with $q(\xi) > \lambda'$, $\varphi(\xi,\lambda') > 0$ and $\varphi_x(\xi,\lambda') > 0$. Hence also $\varphi(\xi,\lambda) > 0$ and $\varphi_x(\xi,\lambda) > 0$ if $\lambda - \lambda'$ is sufficiently small. This, however, implies that $\varphi(x,\lambda) \to \infty$. Hence any point of E_1 is an interior point of an interval of points of E_1 , and so E_1 is an open set. Similarly E_2 is an open set. Hence E_0 is a closed set.

H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Annalen, 68 (1910), pp. 220-269.

², K. FRIEDRICHS, Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. II., *Math. Annaten*, **109** (1934), pp. 685 · 713. Criteria for the discrete character of the spectra of ordinary differential operators, *Studies and Essays presented to R. Courant* (New York, 1948), pp. 145—160; a proof by E. C. Titchmarsh will be published in the *Annati di Matematica*.

The above argument also shows that, if λ' is a point of E_1 , then, for some ξ , $\varphi(\xi,\lambda) \ge m > 0$, while $\varphi(x,\lambda)$ is steadily increasing for $x \ge \xi$, if λ is in some interval $|\lambda - \lambda'| \le \eta$. Hence $\varphi(x,\lambda) \ge m$ for $x \ge \xi$, $|\lambda - \lambda'| \le \eta$. It follows as on p. 116 of my book that the function $k(\lambda)$ is constant throughout the interval $|\lambda - \lambda'| < \eta$, and so in fact is constant throughout each interval of E_1 .

To prove the theorem, we have now to show that E_0 consists at most of a finite number of points.

Suppose on the contrary that there is a sequence of values of λ tending to (but different from) a limit μ , such that these λ 's and μ all belong to E_0 . Let x_1 be such that $q(x) \geq \mu + \delta$ ($\delta > 0$) for $x \geq x_1$ (such an x_1 exists if $q(x) \to \infty$). Let $x_2 > x_1$ be such that $\varphi(x_2, \mu) \neq 0$, and suppose e.g. that $\varphi(x_2, \mu) > 0$. As in § 5.12 of my book, this implies (since $\varphi(x, \mu)$ is L^2) that $\varphi(x, \mu)$ decreases steadily to zero for $x \geq x_2$, and in particular that $\varphi(x, \mu) > 0$ for $x \geq x_2$.

Now $\varphi(x, \lambda)$ is a continuous function of both variables in any finite region (cf. § 1.5 of my book), and so $\varphi(x, \lambda) + \varphi(x, \mu)$ as $\lambda \to \mu$, uniformly over $0 \le x \le x_2$. Hence

$$\lim_{\lambda \to u} \int_0^{x_2} \varphi(x, \lambda) \varphi(x, \mu) dx = \int_0^{x_2} {\{\varphi(x, \mu)\}^2 dx} > 0,$$

and so

$$\int_{0}^{x_{2}} \varphi(x, \lambda) \varphi(x, \mu) dx > 0$$

if λ is sufficiently near to μ .

Also

$$\varphi(x_2, \lambda) \rightarrow \varphi(x_2, \mu) > 0$$

and so $\varphi(x_2, \lambda) > 0$ if λ is sufficiently near to μ . Since $q(x) - \lambda > 0$ if $x \ge x_1$ and λ is sufficiently near to μ , this implies, as before, that $\varphi(x, \lambda) > 0$ for $x \ge x_2$ and λ sufficiently near to μ . Hence

$$\int_{-\infty}^{\infty} \varphi(x, \lambda) \, \varphi(x, \mu) \, dx > 0$$

if λ is sufficiently near to μ . Altogether

(3)
$$\int_{0}^{\infty} \varphi(x, \lambda) \varphi(x, \mu) dx > 0$$

if λ is sufficiently near to μ .

This, however, is impossible; for on multiplying (1), and the corresponding equation with μ , by $\varphi(x, \mu)$, $\varphi(x, \lambda)$, respectively and subtracting,

we obtain

$$(\lambda - \mu) \varphi(x, \lambda) \varphi(x, \mu) = \frac{\partial}{\partial x} \{ \varphi(x, \lambda) \varphi_x(x, \mu) - \varphi(x, \mu) \varphi_x(x, \lambda) \}.$$
Using (2) it follows that

Using (2) it follows that

$$(\lambda - \mu) \int_{0}^{\pi} \varphi(x, \lambda) \varphi(x, \mu) dx = \varphi(X, \lambda) \varphi_{x}(X, \mu) - \varphi(X, \mu) \varphi_{x}(X, \lambda),$$

which tends to 0 as $X \rightarrow \infty$. Since $\lambda \neq \mu$ it follows that

(4)
$$\int_{0}^{\infty} \varphi(x,\lambda) \varphi(x,\mu) dx = 0.$$

This gives a contradiction, and the theorem follows.