On the imbedding of n-dimensional sets in $2 n$-dimensional absolute retracts.

By Karol Borsuk in Warszawa.

1. Under "imbedding theorems".1) one understands theorems dealing with the possibility of homeomorphic mapping of spaces of some kind onto subsets of, some other spaces of more regular properties.

From the homological point of view, a space has a regular structure if it is compact and if its groups of homology have a simple algebraic structure. From the homotopic point of view, the simple structure of the fundamental group is also an important requirement, and so is also the regularity of the local structure, guaranteed, for instance, by local contractibility ${ }^{2}$).

Thus we may regard as the simplest point sets those local contractiblecompacta for which the groups of homology and the fundamental group consist only of the identity. For spaces of finite dimension these conditions. characterise the absolute retracts ${ }^{3}$). Hence the problem of imbedding a spacein a space of possible simplest homological and homotopic structure and: smallest dimension can be formulated as follows:

[^0]What is the smallest number m such that every metric separable space of dimension n is topologically contained in an absolute retract of dimension m ?

By the imbedding theorem of Menger and Nöbeling ${ }^{4}$), every metric separable n-dimensional space is homeomorphic to a subset of the cartesian $(2 n+1)$-dimensional simplex. Hence $m \leqq 2 n+1$.

The purpose of this paper is to show that $m \leqq 2 n$ provided that n is positive ${ }^{5}$).
2. Lemma 1. Let A_{0} be an ($n-1$)-dimensional simplex lying in the cartesian n-dimensional space C_{n} and L a polygonal simple arc having the barycentric center a_{0} of Δ_{0} as one of its ends. If $\Delta_{0}: L=a_{0}$, then there exists a. simplicial homeomorphism \dot{h} of C_{n} into itself such that $h(x)=x$ for every $x \in \Delta_{0}$ and that $h(L)$ is a segment perpendicular to Δ_{0}.

Proof. Let k denote the number of segments constituting L. If $k=1$, then L is a segment and there exists an affine transformation mapping the ($n-1$)-dimensional hyperplane containing Δ_{0} by identity and the segment L into a segment perpendicular to Δ_{0}. Let us assume that $k>1$ and that the lemma is valid for polygonal arcs constituted by $<k$ segments. Let a_{1} denote the end of L different from a_{0} and let $L_{1}, L_{2}, \ldots, L_{k}$ be all segments of L in the order in which they occur in L from a_{1} to a_{0}. We can assume that, for $i=1,2, \ldots,(k-1)$, the segment L_{i+1} is not a straight line prolongation of the segment L_{i}. Let a_{2} be the common end of the segments L_{1} and L and let a_{3} denote a point lying on the straight line prolongation of the segment L_{2} beyond the end a_{2} so near to a_{2}, that the common part of L and the triangle $\Delta\left(a_{1}, a_{2}, a_{3}\right)$ is L_{1}.

Let H denote an ($n-1$)-dimensional hyperplane passing through the segment $\bar{a}_{1} a_{3}$ but not containing the point a_{2}. It is clear that there exists in H an $(n-1)$-dimensional simplex $A_{1}=A\left(b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right)$ containing $\overline{a_{1} a_{3}}$ in its interior and such that the intersection of the n-dimensional simplex $\Delta_{2}^{\prime}=\Delta\left(a_{2}, b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right)$ with the set $L+\Delta_{0}$ is the segment L_{1}. Let. us choose, for every $i=1,2, \ldots, n$, a point b_{i} lying on the straight line prolongation of the segment $\overline{a_{2} b_{i}^{\prime}}$ beyond the end b_{i}^{\prime}. It is easy to see that, provided that the distances $\rho\left(b_{i}, b_{i}^{\prime}\right)$ are sufficiently small, the n-dimensional simplex $\Delta_{2}=\mathcal{A}\left(a_{2}, b_{1}, b_{2}, \ldots, b_{n}\right)$ satisfies the following conditions: 1) $\Delta_{2} \cdot\left(L+\dot{\Delta}_{0}\right)=L_{1}$, 2) $L_{1}-\left(a_{2}\right)$ lies in the interior of Δ_{2}.

Let us decompose Δ_{2} into $n+1 n$-dimensional simplexes having a_{1} as their common vertex and the $(n-1)$-faces of A_{2} as their bases. Putting

$$
\varphi\left(a_{1}\right)=a_{3}, \varphi\left(a_{2}\right)=a_{2} \text { and } \varphi\left(b_{i}\right)=b_{i}, \text { for } i=1,2, \ldots, n,
$$

[^1]we define a simplicial transformation φ of Δ_{2} in itself such that it is the identity on the boundary of Δ_{2} and maps the segment L_{1} onto the segment $\overline{a_{2}} a_{3}$. If we put
$$
\varphi(x)=x, \text { for every } x \in C_{n}-\Delta_{2},
$$
we obtain a simplicial homeomorphism φ which is the identity on $\dot{\Delta}_{0}$ and maps the polygonal arc L onto the polygonal arc
$$
L^{\prime}=\left(\bar{a}_{2} \dot{a}_{3}+L_{2}\right)+L_{3}+\ldots+L_{k} .
$$

But $\bar{a}_{2} a_{3}+L_{2}$ is a segment, hence the polygonal arc L^{\prime} consists of $k-1$ segments. By the hypothesis of induction applied to Δ_{0} and L^{\prime} there exists. a simplicial homeomorphism ψ being the identity on Δ_{0} and mapping L onto a segment perpendicular to Δ_{0}. If we put

$$
h(x)=\psi \varphi(x) \quad \text { for every } x \in C_{n},
$$

we obtain the desired simplicial homeomorphism h of C_{n} into itself mapping L onto a segment perpendicular to Δ_{0} and satisfying the condition $h(x)=x$ for every $x \in \Delta_{0}$.
3. Lemma 2. Let P be an m-dimensional strongly connected polytope lying in the m-dimensional $(m>1)$ cartesian space C_{m} and let T be a triangulation of P. If A_{0} is an ($m-1$)-dimensional simplex of T lying on the boundary B of P and E a compact subset of $P-\Delta_{0}$ such that dim $E<m-1$, then there exists a simplicial retraction $r(x)$ of P satisfying the following conditions: 1) $E+B-\Delta_{0} \subset r(P)$, 2) for every m-dimensional simplex Δ of the triangulation $T: \Delta \cdot(P-r(P)) \neq 0$.

Proof. In every m-dimensional simplex of the triangulation T let us choose an interior point belonging to $P-E$. Thus we obtain a finite system of points $a_{1}, a_{2}, \ldots, \dot{a}_{k}$. Since P is strongly connected, there exists a polygonal simple arc L such that

1. L has as one of its ends the barycentric center a_{0} of the simplex Δ_{0},
2. $L-\left(a_{0}\right) \subset P-B-E$,
3. $a_{i} \in L$ for eviery $i=1,2, \ldots, k$.

By lemma 1, there exists a simplicial homeomorphism h mapping C_{m} on itself in such a manner that $h(x)=x$ for every $x \in \Delta_{0}$ and that $h(L)$ is a segment perpendicular to Δ_{0}. The point a_{0} is one of the ends of the segment $h(L)$. Let b_{0} be the other end of $h(L)$. The set $P_{1}=h(P)$ is a strongly connected polytope containing $h(L)-\left(a_{0}\right)$ in its interior and Δ_{0} on its boundary. Let Δ_{0}^{\prime} denote an ($n-1$)-dimensional simplex contained in Δ_{0} and being a neighborhood of a_{0} in Δ_{0} so small that for every $x \in \Delta_{0}^{\prime}$ the segment $\overline{x b}_{0}$ lies in the interior of P_{1}. The sum of all segments $\bar{x} b_{0}$ with $x \in \Delta_{0}^{\prime}$ is an m-dimensional simplex Δ_{1} having Δ_{0}^{\prime} as one of its faces. Let us denote by Λ the sum of all faces of Δ_{1} different from Δ_{0}^{\prime}. Consider, for every $y \in \Delta_{1}$, the straight line Γ_{y} passing through y and perpendicular to Δ_{0}. Clearly Γ_{y} cuts
Λ in one point; let us denote this point by $r_{1}(y)$. Moreover, if we put $r_{1}(y)=y$ for every $y \in P_{1}-\Delta_{1}$, we obtain a simplicial retraction r_{1} of P_{1} to the closure of the set $P_{1}-\Delta_{1}$. Putting

$$
r(x)=h^{-1} r_{1} h(x) \quad \text { for every } x \in P
$$

we obtain the required retraction.
4. Theorem. Every metric separable n-dimensional space E is homeomorphic to a subset of some absolute retract of dimension $\leqq 2 n$ lying in the cartesian $(2 n+1)$-dimensional space $C_{2 n+1}$.

Proof. By the Menger-Nöbeling imbedding theorem we can assume that E is a subset of a $(2 n+1)$-dimensional simplex Δ having the diameter $\leqq 1$. Let us denote by T_{k} the result of the process of barycentric subdivision when iterated k times. The diameters of all simplexes of the triangulation T_{k} are $\leqq\binom{ 2 n+1}{2 n+\frac{1}{2}}^{k}{ }^{6}$.

Now let us define the sequence $\left\{r_{k}\right\}$ of retractions as follows:
Putting $r_{0}(x)=x$ for every $x \in \Delta$, let us assume that the retraction $r_{k}(x)$ mapping Δ into a polytope $r_{k}(\Delta) \supset E$ has been already defined for some k in such a manner that no one of the $(2 n+1)$-dimensional simplexes belonging to T_{k} is contained in $r_{k}(\Lambda)$.

If $\Delta_{1}^{(k)}, \Delta_{2}^{(k)}, \ldots, \Delta_{n_{k}}^{(k)}$ are all $(2 n+1)$-dimensional simplexes of the triangulation T_{k}, then

$$
r_{k}(\Delta)=\sum_{\nu=1}^{m_{k}} d_{\nu}^{(k)} \cdot r_{k}(\mathcal{A})
$$

Every of the sets $\Delta_{\nu}^{(k)} \cdot r_{k}(J), \nu=1,2, \ldots, m_{k}$ is a polytope. Hence there exists a polytope $P_{0}(\nu, k)$ of dimension $\leqq 2 n$ and a system of strongly connected $(2 n+1)$-dimensional polytopes $P_{1}(\nu, k), P_{2}(\nu, k), \ldots, P_{\alpha_{v, k}}(\nu, k)$ such that

$$
\Delta_{v}^{(k)} \cdot r_{k}(\Lambda)=P_{0}(\nu, k)+P_{1}(\nu, k)+\ldots+P_{\alpha_{\nu, k}}(\nu, k)
$$

and that, for $i \neq j$

$$
\operatorname{dim} P_{i}(\nu, k) \cdot P_{j}(\nu, k) \leqq 2 n-1
$$

Consider a simplicial decomposition $T_{i}(\nu, k)$ of $P_{i}(\nu, k)$, which is a subdivision of the triangulation T_{k+1}. Since $P_{i}(\nu, k) \underset{\mp}{\subseteq} \Delta_{\nu}^{(k)}$, there exists in the triangulation $T_{i}(\nu, k)$ a $2 n$-dimensional simplex $\Delta_{i}(\nu, k)$ lying on the boundary $B_{i}(\nu, k)$ of $P_{i}(v, k)$, but not contained in the boundary of $\Delta_{v}^{(k)}$. Applying the lemma 2 we infer that there exists a simplicial retraction $\varphi_{i}^{(\nu, k)}$ of the polytope $P_{i}(v, k)$ satisfying to following conditions:

1. $\left.E \cdot P_{i}(\nu, k)+B_{i}(\nu, k)-\Delta_{i} \nu, k\right) \subset \varphi_{i}^{(\nu, k)}\left(P_{i}(\nu, k)\right)$.
2. No. one of the $(2 \pi+1)$-dimensional simplexes of the triangulation $T_{i}(\nu, k)$ is contained in. $\varphi_{i}^{(\nu, k)}\left(P_{i}(\nu, k)\right)$.
${ }^{\circ}$) See, for instance, ${ }^{\circ}$ P. Alexandroff and H. Hopf, Topologie. I (Berlin, 1935), p. 136.

Hence for different systems of indices i, ν and j, μ we have

$$
P_{i}(\nu, k) \cdot\left(P_{i}(\mu, k) \subset B_{i}(\nu, k)-\operatorname{Int}\left[\Delta_{i}(\nu, k)\right],\right.
$$

where $\operatorname{Int}\left[\Delta_{i}(\nu, k)\right]$ denotes the interior of the simplex $\Delta_{i}(\nu, k)$. Hence $\varphi_{i}^{(\nu, k)}(x)=x$ for every $x \in P_{i}(\nu, k) \cdot P_{j}(\mu, k)$. It follows that if we put $\varphi(x)={f_{i}^{(\nu, k)}(x)}^{(x)}$ for $x \in P_{i}(v, k)$, we obtain a simplicial retraction φ of the polytope $r_{k}(\Delta)$. Putting $r_{k+1}(x)=\varphi r_{k}(x)$ for every $x \in \Delta$, we obtain a simplicial retraction of Δ into the polytope $\varphi r_{k}(\Delta)$ such that no one of the $e_{\circ}(2 n+1)$-dimensional simplexes belonging to the triangulation T_{k+1} is contained in $\varphi r_{k}(\Delta)$. Moreover, by our construction the points $r_{k}(x)$ and $r_{k+1}(x)=\varphi r_{k}(x)$ are points of one of the simplexes of the triangulation T_{k}. Hence

$$
\varrho\left\{r_{k}(x), r_{k+1}(x)\right) \leqq\left(\frac{2 n+1}{2 n+2}\right)^{k}
$$

for every $x \in \Delta$. It follows that the sequence $\left\{r_{k}\right\}$ is uniformly convergent to a continuous transformation r of A. Evidently,

$$
\begin{equation*}
r(A)=\prod_{k=1}^{\infty} r_{k}(A) \text { and } r(x)=x \text { for every } x \in r(\Delta) \tag{1}
\end{equation*}
$$

Hence r is a retraction of Δ to an absolute retract $r(\Delta) \supset E$. Moreover, by (1) and the construction of $r_{k}(\Delta)$, we infer that no one of the $(2 n+1)$ dimensional simplexes belonging to $T_{k}(k=1,2, \ldots)$ is contained in $r_{k}(4)$. Since the diameters of the simplexes belonging to T_{k} are $\leqq\left(\frac{2 n+1}{2 n+2}\right)^{k}$ it follows that the dimension of $r(\Delta)$ is $<2 n+1$. Thus the proof of the theorem is achieved.
4. Corollary. There exists a $2 n$-dimensional absolute retract such that every metric separable space of dimension $\leqq n$ is topologically contained in it.

Applying the last theorem to the universal n-dimensional compact space M_{n} of MENGER 7) which contains topologically every metric separable space of dimension $\leqq n$, we obtain a $2 n$-dimensional absolute retract with the required property.

Let us remark that M_{1} cannot be imbedded in a 2-dimensional polytope. Indeed, M_{1} is not contained obviously in no 1 -dimensional polytope. Hence if M_{1} is homeomorphic to a subset of some triangulated 2-dimensional polytope, there exists an open subset G of M_{1} homeomorphic to a subset of the cartesian plane C_{2}. But this is impossible, becâuse G contains topologically every curve.
(Received November 6, 1949.)

[^2]
[^0]: ${ }^{1}$) Such are for instance: 1. the classic theorem of Urysohn that every metric separablespace is topologically contained in the Hilbert cube, 2. the Menger-Nöbeling theorem that: every n-dimensional metric separable space is homeomorphic to a subset of the cartesian ($2 n+1$)-dimensional space $C_{2 n+1}, 3$. the theorem that every metric separable space istopologically contained in a compact space of the same dimension, 4. the theorem that every metric separable space of positive dimension is homeomorphic to a subset of a Peanospace of the same dimension.
 ${ }^{2}$) A space M is said to be locally contractible in the point $a \in M$ if every neigh-. borhood U of a contains another neighborhood V which is contractible in U, i. e. such that there exists a continuous mapping $f(x, t)$ defined for $x \in V$ and $0 \leqq t \leqq 1$ and satisfyingto the conditions $f(x, 0)=x, f(x, t) \in U, f(x, 1)=a$ for every $x \in V$ and $0 \leqq t \leqq 1$. Every polytope is locally contractible. Every locally contractible space is localiy connected in all: dimensions.
 ${ }^{3}$) A continuous mapping f of a space M onto its subset E is said to be a retraction, if $f x)=x$ for every $x \in E$. Then the set E is called the retract of M. The compactum A is said to be an absolute retract if it is a topological image of a retract of the Hilbert. cube. A necessary and sufficient condition for a compactum A of finite dimension to be an absolute retract is that A be locally contractible, acyclic in all dimensions and that the fundamental group of A consists only of the identity. See W. Hurewicz, Beiträge zur Topologie der Deformationen, I. Höherdimensionale Homotopiegruppen, Proceedings Academy Amsterdam, 38 (1938), p. 113.

[^1]: ${ }^{4}$) See, for instance, W. Hurewicz and H. Wallman, Dimension Theory (Princeton, 1941), p. 60.
 ${ }^{\text {5 }}$) Cf. my paper: Sur le plongement des. espaces dans les rétractes absolus, Fundamenta Math., 27 (1936), p. 242, where I expressed the conjecture that $m=n+1$.

[^2]: 7) K. Menger, Über umfassendste n-dimensionale Mengen, Proceedings Academy Amsterdam, 29 (1926), p. 1125-1128.
