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Some packing and covering theorems. 
! By LÁSZLÓ FEJES TÓTH in Budapest. 

Let .us. consider an infinite set of equal: circles placed in the plane in 
such a way that no two circles overlap. According to a remarkable result of 
A.'THUE1) the density of such a set is ^ r c / f f 2 = 0 , 9 0 6 9 . . .2). The dual 
counterpart of this ' result is due to R. KERSHNER3) and it states the fact 
that the . density of an. infinite set of equal circles covering the plane is 
^ 2 » / / 2 7 = 1 ,209 , . .4>. 

The density of a set of domains strewn over the plane is defined here 
by a suitable limit value. It can be interpreted as the sum of the areas of 
the. domains pro the unit of the area of the plane, or the sum of the areas 
of the domains divided by the area of the whole plane. . • ' 

In the present paper we are going to extend these results in different 
•directions. Instead of equal circles we shall consider first arbitrary congruent 
convex, domains, then incongruent circles. In addition to these generalisations 
we shall .consider, instead of the whole plane, a finite region of the plane, 
namely a convex polygon having at most six sides: We shall call such a 
polygon shortly a hexagon. 

Our results are as follows 5). 

T h e o r e m 1. If n is the number of certain congruent convex domains 
lying in a hexagon f j so that no two of them overlap, then 
(1) n^i)lh, , 

"where h denotes the hexagon of the smallest area circumscribed about a domain. 

1) A. THUE, Om nogle geometrisk taltheoretiske Tlieoremer, Naturforskermode 1892, 
pp. 352—353; Über die dichteste Zusammenstellung von kongruenten Kreiseri in einer 
Ebene, Christiania Videnskaberne Selskabs Skrifter 1910, p. 9. 

2) The conslant equals the density of the closest lattice of equal circles, or 
the ratio of the area of a circle to the area of the circumscribed regular hexagon. 

8) R. KERSHNER, The number of circles covering a set, American Journal of Math., 
61 (1939), pp._665—671. 

4) 2 n $ 2 1 equals the density of the! .smallest lattice of equal circles covering the 
plane, or the ratio of the area of a circle to the area of the inscribed regular hexagon. 

?) For a.domain and its area the same symbol will be used. 
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T h e o r e m 2. If N is the number of certain congruent convex domains 
covering a hexagon. fj' in such a way that the boundaries of the domains 
intersect one another in at most two points% then 

( 2 ) N > h j H , 

where H denotes the hexagon of the largest area inscribed in a. domain. 

T h e o r e m 3. Let cu ..., c„ be n circles lying in a hexagon I) so that 
no two of them overlap, then for any a ^ 1 — ( 4 — ^ 2 7 / j r ) 2 / 2 4 = 0,77 • • .7) 
we have 

( 3 ) , • : • • . ( ^ H f ^ ^ • 

T h e o r e m 4. Let Cu ..., CN be N circles covering the hexagon i), then 
for any p^ i . + ( 2 + K27/TT)2/ 12 = 2, 1-1 . . . . we. have ' 

Let us mention some special cases of these inequalities. 
In the case of equal circles (1)" and (3) and (2) and (4) are equivalent 

and they imply the results mentioned above. 
A further consequence of Theorem 1 is the fact that the density of an 

irregular packing of an infinite set of non-overlapping congruent convex do-
mains having a centre of symmetry cannot exceed the- density of the closest 
lattice of the domains*). For, denoting a domain by d,, the density of the 
closest lattice in question equals d/h.9) On the other hand, we have by (1) 
n d H ) < d l h , whence- the assertion. 

As a corollary of Theorem 3 let us mention the following fact. If 
r u . . . , /"„denote the radii of n non-overlapping circles lying e . g . in a square 

6) The restriction about the points of' intersect on of the curves bordering the do-
mains is probably superfluous and it diminishes not only the beauty of Theorem 2 but 
disturbs also the duality of Theorem 1 and 2. Therefore it would be very desirable to get 
rid Theorem 2 from this restriction. ' ' 

7) The constants occurring in Theorems 3 and 4 are not the tfest possible ones. On 
the other 'hand, the set. of circles arising from the closest packing of congruent circles by 
means of placing into each gap a smaller circle yields an example which shows that for 
values of a such that 1 + ( 2 / K 3 — l ) 2 a > 3 1 " " , i .e . « > 0 , 9 4 . . . , Theorem 3 does not.hold 
any more. - . • 

8) As 1 have learnt by the kind information, of I. FARY, this resuit was also found 
by K. MAHLER who announced this fact during a lecture of CHABAUTY held in Paris in 
October. 1949. — Let us still note that the tesselation of the plane by oblongs like the 
parquetry shows that in certain cases the density of the closest lattice can be reached also 
by not lattice-like packings cf : the domains. 

9) Compare Theorem 3 of the paper of DOWKER quoted in footnote 11. 
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5, then r , - t - . . . + r „ < " VhslV 12. This means that if we will make the total 
length of the perimeters of a great (but given) number of non-overlapping 
circles lying .in a square (or in an arbitrarily given domain) possibly large 
then we have to take congruent circles of convenient size and-arrange them 
in ''hexagonal close-packing". An analogous statement concerning the areas 
of the circles does not hold. -

The simple idea of the following proofs of (1) and (2) is, apart from 
some slight modifications, the same, used ' previously by the author in the 
case of ellipses10). The extension to the general case follows by means of cer-
tain results of C. H. DOWKER11) to which my attention was called recently 
b y P . TURAN-. 

The results of DOWKER in question state that if a(v) is the area of the 
v-gon of the smallest area circumscribed about an arbitrarily given convex 
domain and A(v) the area, of the v-gon of the largest area inscribed in the 
domain, then the sets a(v) and A(v) (v = 3, 4 , . . . ) are convex. More preci-

• sely for any v.^4 a(v—l) + a(v+\)^2a(v) and A(v— ])+A(v+\)^2A(v) 
hold. 

We shall still need the following _well known consequence of EULER'S 

formula. If we decompose a hexagon into \ convex polygons the num-
ber of the sides of which being v1,..'.,vn, then 

( 5 ) J V ± - . - I ± ^ » . < 6 . • : w .. • n . 

Let now du...,d„ be the domains satisfying the'conditions of Theorem I. 
Let. us replace dx by a, convex domain px having no common inner point 
with d2,;..,d„ so that d j c / ^ c f j and that no other convex domain op x has 
these properties. px is a.convex polygon having, say, vx sides. Let us con-
struct successively to each domain d, a polygon p{ defined analogously as 
Pi the number of the sides of which being v{. Although the polygons pt ge-
nerally do not fill out the hexagon fj it is easy to see that the inequality (5> 
holds unaltered. 

•Consider now the f -gon of the smallest, area a ( r ) circumscribed about 
a domain dt. Since, the set a(v) is convex we can extend the definition of 
a(v) to any v^3 so that the function obtained should be a decreasing 
function, convex from below. Thus, by JENSEN'S inequality 

10) FEJES L., Extremális pontrendszerek'a síkban, a gömbfelületen és a térben; Acta-
Sei. Math. Naturalium, Kolozsvár 23 (1944), pp. 15—18. — The case of congruent ellipses, 
seems to involve some interest in crystallography. C f . W. NOWACKI, Über Ellipsenpackun-
gen in der Kristallebene, Schweizerische Mineralogische und Petrographische Mitteilungen; 
28 (1948), pp. 5 0 1 - 5 0 8 . 

N ) C. H. DOWKER, On minimum circumscribed polygons, Bulletin American Math. So-
ciety, 50 (1944), pp. 120—122. 
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i ) ^ a +... + p„^a(v>) + . . . + a ( v „ ) ^ n a +
 n

+ K ' j ^ n a ( 6 ) , q , e. d! 

The proof of (2) is analogous to the previous one. Let D l f . . . ) D N be 
the domains considered in Theorem 2. Let us replace A ' b y the least convex 
domain D[ such that the domains D[, D 2 , . . . , DN should cover fj and that 
the boundary of D[ intersect the boundaries of the domains D2,...,DN in at 
most two points. By constructing successively to each domain D{ the domain 
D\ defined analogously as D[, it may occur that some of the domains D\ over-
lap. In thifc case let us continue the above process until each domain D{ will 
contract to a polygon P ; having no common inner point with another one. 
Denoting the number of the sides of P{ by we have + . . . + 
Hence, A(fi), 3, being an increasing function concave from below such 
that for M = 4 , . . . the function .A (ft) equals the maximum of the areas of 
the ,w-gons inscribed in a domain Dit we have 

t) = P1 + . . . + P * < A ( f . ) + '.;.+A+ + (6), q. e. d. 

To the proofs of (3) and (4) we make two remarks: 
R e m a r k 1. The function &(x, y) of the two variables x l > 0 , y2t 3 

defined by , 

0(x,y) = x^fp(y) , <p(y) = -y~ t a r t y , 

is for any a < 0 , 7 7 . . . (a 4= 0) convex from below. 
For, the condition of the convexity is 

i. e. 

' nsys cos2 y [ ( 1 — a)<p<p" — <p"-j = 2rc2( 1 — a) s i n 2 y - / s i n y cos y j ^ 0 

or 

2 ^ ( 1 - a ) ^ [ f ( y ) f , f ( y ) = 7i cosec y —y c o s y . 

But f ( y ) being for y ; > 3 a decreasing function12) of y, the condition 
of the convexity is satisfied if 2 ^ 2 ( 1 — a ) = [ /P ) ] 2 -

R e m a r k 2. The function ^ ( x , y ) of the two variables x ^ O , de-
fined by 

Q!(x,y) = xi<p(y) , = 

is for any / ? > 2 , 1 1 . . . concave from below. 

12) We have y"- tan — sin — f'(y)=^ - s i n 2 — [y2Jrny tan—)< n"-— s i n 2 — [ y 2 + n 2 \ = 
y y ' M y) ' y\ J 

= 2 cos2 — V" sin2 0. " ' 
y • y 

F 5 
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The condition of the concavity is namely 

Wxx Vyy- Wly = - p - 2 x 2 l l - 2 [ ( j 3 - + v'2] ^0. 

This is equivalent with 

. — 4 n y [(/y— l) i / /V" + V'2] = 4'»2(/i — I) sin2 y — ( . V s i n y — c o s y ] ^ 0 

o r w i t h 

4 7 1 2 ( / S - = y - 2 T r c o t y 

But g(y) being for. .y;> 3 a decreasing function1 3) of y the above condition 
is satisfied if 4TI2(/?—1) > f ^ ( 3 ) J 2 . 

Now, preserving the notations of the above proofs of (1) and (2), we 
have p ^ C i i p ^ i ) . This follows from the fact that among the r - g o n s containing 
a circle the circumscribed regular v-gon has the minimal area. Hence, 
applying JENSEN'S, inequality to the function <D(x, y) of Remark 1 

\ / . . \ / rt . * . rt \ 1 

But this is just the inequality (3) to be proved. 
W e can proceed analogously at the proof of (4). Since among the ju-gons 

containing a circle the inscribed regular p-gon has the maximal area, we 
have Pi<Ciyj(f*i). Hence Remark 2 and JENSEN'S inequality imply that 

f ; = A + . . . + Pstk c o + . : •+(cfoK (i*N) ¿L 

This concludes the proof. 
The above proofs show that Theorems 1 and 2 hold also under the 

more general condition that the domains , instead of being congruent , arise 
from a convex domain by affine transformations preserving the area. ' Analo- ; 
gously, we can take in Theorems 3 and 4, instead of circles, arbitrary el-
liptical discs, provided that no two ellipses intersect one another in more 
than two points. 

At last let us note that by means of the above considerations inequalities 
analogous to (3) and (4) can also be derived between the surface area and the 
radii of the incircles or circumcircles of the faces of a polyhedron. For 

2 a 2 n 4j i s 
l s ) We have sin* — g' ( v) = sirA < 0. 

y y y-
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example, if r u . . .,/•> denote the radii of the incircles of the faces of a poly-
hedron of area F having e edges and / faces, then 

Equality holds only if all faces are congruent regular polygons. 
For Eulerian polyhedra we have 

where equality holds only for the regular tetrahedron, hexahedron and do-
decahedron. 

(Received August 25,1949, revised January 17, 1950.) 


