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Another proof of the. Godel—Rosser mcompletabnhty
" theorem.

By .LASZLO KALMAR in Szeged. '

1 . . " oo

In ‘a paper!) which became a source of a’series of investigations, GODEL
has proved a theorem to the effect that for every postulate system satisfying -
some very general conditions, there is an arithmetical problem unsolvable. in
that system. One of the conditions for the postulate system requires not only
its non-contradictoriness, i. e. the absence of two theorems one of which is
the negation of the other, but also its w-consistency, i. e. the absence of -an
enumerable series of theorems, one stating that some positive integer has
a given property while the others state in succession that O does not have .

that property, 1 does not have that property, etc. While non- -contradictoriness . '

. is a natural. condition for in a contradictory system. (containing some parts
of logic, e. g. those allowing to form indirect proofs) everything can be
proved, hence there are no.unsolvable problems w-consistency is regarded
a rather sophlshcated condition. Hence it was a great progress that ROSSER
succeeded") in ‘replacing th,e condition of w-consistency- by. non- contradlc-
toriness, .

In" this - paper 1 shall give a simplified proof for ROSSER’s theorem using
with appropriate modifications, the method by which I proved GODELs
theorem?®).- At the same time, | shall present- the proof with the same degree
of generality as I-did that of GODEL’s theorem in two recent ‘publications?),

~» 1Y K. Goper, Uber formal unentscheidbare- Sitze der Principia Mathematica und
‘verwandter Systeme |, Monatshefte fiir Math. und Phys., 38 (1931}, p. ‘173—198.

."2) B, Rosser, Extensions of some thzorems of Gidel and Church, joumal of sym-
bolic logic, 1 (1936), p. 87—91, espe cially theorem II, p. 89. See also D. HiLBerT and
P. Bernavs, Grundlagen der Mathematik. 11 (Berlin, 1939), p. 275—276.

3) L. KaumAr, a) Egyszerii példa eldonthetetlen aritmetikai problémara; Mat. és fiz.
lapok, 50 (1943), p. 1-23; b) Eine e'nfache Konstruktion unentscheidbarer Satze in for-
‘malen Systemzn, forthcoming in- Methodos ; and see footnote 4).

4 L. KaLMAr, a) Une forme du théoreme de Godal avec des hypotheses mmlmales
. Comptes Rendus Acad. Sci. Paris, 229 (1949), p. 963 - 965; b) Quelques formes générales
du théoréme de Godel ibidem, 229 ( 1949 , p. 1047—1049
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i. e. without’ makmo' use of the deductrve structure of the postulate system
in question.. This enables ‘me to formulate the proof without supposmg any
concept of symbolic logrc so that-it can be understood without - prellmrnary'
knowledge R S N
l Let us call a theory5) any ordered triad @——(A P, %) formed of: two _
arbitrary sets A and P and-a function of one variable dehned over Pandf
takrnor elements of -A as values. S : -
“We call the elements of A assertzons“) -or proposzlzons those of P proofs.
lt a——u(P) (aeA 'pEP) we call a the c¢onclusion of p and p aproof of a.
A proposmon which is the conclusion of a proof-is called a theorem in 6.

‘2. In this ‘paper, -we shall deal . with special theories whrch we call
Rosser theories. A Rosser theory is a theory 6 satrsfymg the conditions (a)
to (¢).below. :

- (a) O hds to be adequate to express, neoatton i. e. afunction » of one
“variable has to-exist, defined for some - propositions and taking proposrtrons g
as values. Moreover, »(p) =»(q) has to imply p=4. :

If »(a) is defined, we call a a deniable proposition and we call fu(a).
the ‘negation- of a, or the contrary assertion to-a; also a is called the contrary
assertion to »(a). Instead of »(a), we shall wr1te a. The theory @ is called.
contradlctory if for a denrable proposition a, both a and a are theorems -
in @; it is called - non- categorzcal if for a demable proposrtron -a, neither a -
nor a is a theorem in O. _

(b) ® has to be adequate to express - precedence relation as well as its
negatton, i. e.-a.set F has to exist and -a function of ‘three variables
a=un(f, k [) defined fot f¢F and for non-negative integers k,7, and- taking |
deniable propositions as values. Moreover, - n(f, k, 1)-_n(g,1 ,J) has. to imply
f—=g k=i, [|=j; and.n(f, £ {) has always to differ from (g, 1,))-

We call the elements of Ffunctzonals Instead of n(f, k, 1) wé shall -

write k‘<f1 (read k precedes l in the’ course of. values of f), we call such

5) I avail myself of this very cotvenient term,trntroduced fcr a slxghtly different
purpose by A.Crauvin, Structirres logiques, Comptes Rendus Acad. Sci. Paris, 228 (1949), -
p. 1085—1087. 1 do not say “postu‘ate system” for I do not suppose that a theory is based
.on postulates; I do not say “formal _system” for ‘I do not suppose that a theory is for-
" malized ; 1 do not say “10010 for 1 do not suppose that a lheory admits the usual logrcal '
mfer:nces

6) Of course, the theorems to be proved are true also if A is (e. g.) the complex
. plane, P the unit circle and % a function -analytical in-the unit circle, provided the below
conditions are fulfilled (as to the condition (d), sce, footnote 12y), Nevertheless, I use the
terms “assertion,”" “proof” etc. for the only intéresting cases of the .Iheorems to te proved
I know:are those in" which the elements of A’ are asseitions mdeed -those of P proofs -
. etc. in the éveryday sense; at least, I cannot regard -the fact that - nerther of two values
which are.in a certain relarion are taken by a function as surprising and so as'intéresting
as the fact'that neither of two contrary assertions.can be proved in a theory.
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-a proposition a precedence assertzon or a posztzve precedence assertion, its
‘negation’ k. <;/ a negative precedence assertion.

(c).® has-to be an interpreted theory;: i. e. to ‘each’) functronal an
arithmetical function®) has to. be .attached, called its interpretation.

IF an arithmetical function-¢ is the mterpretatron of a functional f, we
say, ¢ is representable in ® and we call f a% representation of.q. A non-
negative integer j is called a counter-example for a precedence assertion

k <;l and also for the negatlon I<sk of the converse precedence assertion
[ <sk if we have“’) :

| 2Ok $)Hk ooy 9= Dk gU) =L |
for the “interpretation ¢ of the functional f. A positive or a negative prece-
dence assertion is called false.if there is a counter-example' for it'!). The

theory @ is called incorrect 1f a false, positive or negative, precedence assertron
is a theorem in it. ‘

(d) © has to be an enumerable theory, 1. e. its functionals as well as’
its proofs'?) have to form a finite_or an enumerable infinite set.
, Consider a one-to-one correspondence . between the functionals of @
and a subset of the positive integers (0 excluded!) as well as a one-to-one
_correspondence x . between the proofs of @ and a subset of the po_smve
- integers. We call the positive integer attached to a functional by vy or to-a

proof.by y is Gddel number. A positive or negative precedence assertion of -
the form 2i—1 <27 or 2i—1 <¢2{ for which i is the Godel number of the

") For. applications to particular theories, it would be.convenient to loosen.this
condition by requiring an interpretation for some functionals only; however, this would
have the same effect as to replace F by a subset of F.

§) We call a function arithmetical if it is defined for non-negatlve mteoers and takes
non-negative integers as values.

%) Of course, an arithmetical functron can have several representatlons In general
it is-a hard problem to decrde if two drfferent functronals represent the same arithmetical
function. :

1) For]_O ‘read p(jy=1L .

11) 1t would be natural to defne a precedence assertion k<l to be false also in the
. case that heither k nor [ is a value of the mterpretatron @ of t; and to define a (positive
or negative) precedence assertion to be frue if- and only if its. contrary is false. Then,
k<¢l would be true if (a) k and [ are values of ¢ and the least integer j for which @ (j)=1k
is less than the least integer i for which ¢(i)==1; (b) k.is a value of ¢, I not; and it
would be false in the other cases, i. e. if (c) k and [ are values of ¢ and the least integer
J for which @(j)=~Fk is greater than or (in the case k=1) equal to the least integer i
for which ¢ i)=1; (d) [ is a value of ¢, & not; (e) neither k& nor [ is a value of .
- However, 1 do not’ need more of the concept of truth-arnd falsehood of- precedence asser-
tions than defined above, )

12) One could loosen this condition by requrrmg only that the . functronals and for
an-appropriate correspondence between the functionals and the positive integers, the diagonal
proofs and’ draproofs (as defined below) form a finite or enumerable infinite set:
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functional f is called a diagonal proposition (a positive or.a negative ‘one,
respectively); the integer i is called its index. A proof the conclusion of -
which.is a diagonal proposition is -called" a diagonal proof or a" diagonal
disproof. according as its conclusion is positive or negative; the - index of
. its conclusion is called. the zndex of the diagonal proof or dxsproof too. The

- anthmetlcal function?®) .

‘ 21 if the proof of Godel -number m ex1sts and is'a dlagonal '
| proof of index .i, :
' ' 21——1 if the proof of Gddel number m ex1sts and is a dlagonal ’
o (my= dis
. proof of index i, ,
1 - if the proof of Godel number m does not exists or is nelther
: - a-diagonal proof nor a dlagonal disproof ’
is called the index function of @ .. (belonamo to the correspondences + and ).
) (e) O has to be .adequate to express its-own index function, i.e., for
:an appropriate . choice of the correcpondences 1// and g, its index functlon
has to be representable in ©.1%).

3. Now we have the’ following |

.First form of the theorem of " Rosser A Rosser z‘he‘ory is
ezther contradictory or incorrect or non-categorical. .

-Indeed, let g be.the representation of the index function g ofa Rosser-
theory © and denoté r its Godel number. Consider the dlagonal proposmons
2r—1 <g2r and 2r—1<g2r of index r. If.

T 2r—1=g2r | : 2r—1 -<gTr

is a theorem in @, denote P one of its proofs and s the Godel number-of p.
‘Then p 1s a diagonal

. proof - = B I disproof
of mdex r. By the definition of o, we have ‘
(s)__2r Y e =2r—1
if for a posxtlve integer £ <s we have . R :
ey=2r—1, -~ | e()=2r,

then, by the defmmon of. g, the proof q of Godel number t must exist and
be a diagonal

dxsproof 4 '  |4 , o proof

13) By defmmon we have @(0)——0 for 0 is not the Godel number of any proof..

14) :For_ the theories considered by Rosser (l.c.) anc_l for the- theories which are in
general use in mathematics (e. g. the Peano postulate system for arithmetic, the Zermelo—
Fraenkel postulate system for set theory, etc) one shows easily be means of an enume-
ration method due to Géver that, for an appropriate choice of the correspondences
- and %, their index functions are recursive or even clementary (see l. c. 3) a), or 3) b), foot-
" note Y)), and, as éasily seen, every elementary (or even r.cursive) function is represen!able

in them; hence condition (e) is fulfxlled for these- theories. :
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of irdex f, for o K X S
2r—1s0, b © o 2r=0,

the integer O being o oo _ :
 even. - | notthe Godel number ¢f any funictional.
Thus the conclusion of q, the _ S S
: negative - | . positive
diagonal proposmon of index r, i.e. S
2r—1=<42r, . . , | 2r—1 -<ng ,
is also a theorem in @ and O is contradictory. 1f, on the contrary, we have
o(t)F2i—1 | e(t)2r

for t=1,2,...,s—1 (and, on account of Q(O)—O for =0 too) then we
have the counter example s for ‘the theorem

2r—1=<42r . . ' 2r——1 -<ng : _
and @ is incorrect. If neither 2r—1 -<g2r nor 2r—| -<g2r is a theorem in
O, then @ is non- categurlcal '

4. The case that the theory @ is 1ncorrect can be eliminated (1 e.
replaced’ by contradlctormess) if we make some more. conditions enabling
us to prove, by means of a counter-example for a positive or negative- pre-
cedence assertlon the contrary assertion. Thus we call a theory @ a Rosser -
theory in the strong sense if, besides bemg a Rosser theory, it is sansfymo
the” conditions (f) to (h) below.

(f) © has to be adequate to express equalzty as well as- mequaltty, i.e.
a set N has to exist and two functions a==z(n, k)-and n=uv(f ) of two
variables, the former defined for n€ N and for non-negative integers k, and
taking deniable propositions as.values, whereas the latter defined for functio-
nals f and for non-negative integers /, and taking elements of 'N as values.

We call the elements of N numerals. Instead of &(n, k), we shall write
n=k; we call such a proposition an- equatxon its negation n—k which
we shall write n==k, an inequality. Instead of v(f 1), we shall wnte f(l),
we call such a numeral a function value.

(g) © has to. be deductively interpreted; i. e. for any functional f, . for
its representation '@ and .for any non-negative integer /, the equation'?)
f(/) =(l), and for any non- negative lnteger /(:#(p l), the inequality f(l)_izlc
‘have to be theorems in ©. .

(h) © has to admit mfererce from a counter-example for a positive or
negaiive precedence assertion to the contrary assertion; i. e., for any functionat
f and for any non-negative' integers j, k, { for which f(O):{:k', f(1)=+xk,. ..,
f(j—1)==k, and f(j)=1 are theorems in '@, the same has to hold for the
propositions [ <¢k and k'(fl : : x

By f({) =) is an equatlon mdeed for f(l) is a numeral and qo(l) is a non-
negative mteger
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5 Now we have the 'followm«T - L :
Second form of the theorem of Rosser A Rosser. theory in
the strong senseis éither contradictory or non-categorical..

' lndeed let ® be a Rosser theory in-the strong sense. By the. f1rst form.
of the “theorem of ROSSER '@ is either contradictory or incorrect or non-
~ categorical. In the case O is incorrect; there-is a theorem in & which is a
- false . positive or negative precedence assertion; i.e. it has either the form-

k'<fl or the form l'<fk with non- negatlve integers &,/ and a’ functxonal f
. for Wthh we have for some .non- neoamve integer _]

P O)k ¢(1)=Fk, .. ,fp(J—l)JFff o) =1,
L denotmo the mterpretatlon of f. By (g) ‘we see that

Ok, 10)FE, . .., TG—1)Fk, £() =1

are theorems in ©; hence, by (h), <tk and k'<¢ are also theorems in ©
and thus, O is’ contradlctory ‘ Co : .

o (Received December 9, 1949)



