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Another proof of the Gödel—Rosser incompleíability 
theorem. 

By LÁSZLÓ KALMÁR in Szeged. 
1 

In a paper1) which became a source of a series of investigations, G Ö D E L 

has proved a theorem to the effect that for every postulate system satisfying 
some very general conditions, there is an arithmetical problem unsolvable in 
that system. One of the conditions for the postulate system requires not only 
its non-contradictoriness, i. e. the absence of two theorems one of which is 
the negation of the other, but also its w-consistency, i. e. the absence of an 
enumerable series of theorems, one stating that some positive integer has 
a given property while the others state in succession that 0 does not have 
that property, 1 does not have that property, etc. While non-contradictoriness 
is a natural condition for in a contradictory system, (containing some parts 
of logic, e . g . those allowing to form indirect proofs) everything can be 
proved, hence there are no.unsolvable problems, ^-consistency is regarded 
a rather sophisticated condition. Hence it was a greát progress that ROSSER 

succeeded2) in replacing the condition of ^-consistency by. non-contradic-
toriness. 

In' this paper I shall give a simplified proof for ROSSER'S theorem using, 
with appropriate modifications, the method by which I proved GÖDEL'S 

theorem3). At the same time, I shall present the proof with the same degree 
of generality as I did that of GÖDEL'S theorem in two recent publications4), 

. ' ) K. GÖDEL, Über formal unentächeidbare- Sätze der Principia Mathematica und 
verwandter Systeme I, Monatshefte für Math, und Phys., 38 (1931 ), p. -173—198. 

2) B. ROSSEK, Extensions of some theorems of G3del and Church, Journal of sym-
bolic logic, 1 (1936), p. 87—91, especially theorem II, p. 89. See also D. HILBERT and 
P. BERNAYS, Grundlagen der Mathematik. II (Berlin, 1939), p. 2 7 5 - 2 7 6 . 

3) L. KALMÁR, a) Egyszerű példa eldönthetetlen aritmetikai problémára," Mat. 4s fiz. 
lapok, .50 (1943), p. 1 - 2 3 ; b) Eine e'nfache Konstruktion unentscheidbarer Sätze in for-
malen Systemen, forthcoming in• Methodos-, and seç footnote 4). . 

4) L. KALMÁR, a) Une forme du théorème de Gödel avec des hypothèses minimales, 
Comptes Rendus Acad. Sei. Paris, 229 ( 1949), p. 963 — 965; b) Quelques formes générales 
du théorème de Gödel, ibidem, 229 (1949 , p. 1 0 4 7 - 1 0 4 9 . 
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i . e . without making use of the deductive structure of the postulate system 
in question.. This enables me to formulate the proof without supposing an-y^ 
concept of symbolic logic-so that it can be understood without preliminary 
knowledge. 

Í . Let us call a theoryany ordered-triad & = (A, P, x) formed of-two. 
arbitrary se t s .A and P and a function % of one variable defined over P and ' 
taking elements of A as values. -

We call the elements of A assertions'*) or propositions, those of P proofs. 
If a = Ji("p) (a$A, v£P), we call a the conclusion of p and p a proof of a. 
A proposition which is the conclusion of a proof-is called a theorem in 

2. In this paper, we shall deal with special theories which we call 
Rosser theories. A Rosser theory is a theory. & satisfying the conditions (a) 
to (ë). below. 

(a) & has to be adequate to express, negation; i. e. a function v of one 
variable has to exist, defined for some propositions and taking propositions 
as values. Moreover, v ( f ) = •*>(<)) has to imply p = <f. 

If v(a) is defined, we caíl a à deniable proposition and we call v(a). 
the negation of a, or the contrary assertion to a ; also a is called the contrary 
assertion to v(a). Instead of v(a), we shall write a. The theory & is called. 
contradictory if for a deniable proposition a, both a and a are theorems 
in & ; it is called non-categorical if for a deniable proposition a, neither a 
nor a is a theorem in &. ... . 

. . (b) © has to be adequate, to express precedence relation us well as its 
negation; i. e. a set F has to exist and a function of three variables 
a = 7 r ( f , k , l ) defined' for i£ F and for non-negative integers k, I, and-taking 
deniable propositions as values. Moreover, n{i,k, l) — n(g, i, j) has. to imply 
f = . g , k = /, l=j; and 7t(f, k, I) has always to differ from n{g, i,j). 

We call the elements of F functionals. Instead of k, I) we shall • 
write k-Kfl (read:f k precedes / in the course of values of f ) ; we call such 

~a) I avail myself of this, very convenient term,. introduced fr r a slightly different 
purpose by A. CHAUVIN, Structures logiques, Comptes Rendus Acad. Sci. Paris, .228 (1949), 
p. 1085—1087. I do not say "postu'ate system" for I do not suppose that a theory is based 
on postulates; 1 do riot say "formal system" for I do not suppose that a theory is for-
malized ; I do not say "logic" for 1 do not suppose that a Iheory admits the usual logical 
inferences. . 

6) Of course, the theorems to be proved are true also if A is (e. g.) the complex 
plane, P the unit circle and x a function - analytical in the unit circle, provided the below 
conditions are fulfilled (as to the condition (d), see , footnote IS)). Nevertheless, I use the 
terms "assertion," "proof" etc. for the only interesting cases of the theorems to t e proved 
I know are those in which the elements of A' are asseit ions indeed,, those of P proofs 
etc. in ihe everyday sense ; at least; I cannot regard the fact that-neither of two values 
which are.in a certain relaiion are taken by a.functiori as surprising and so as'intèresting 
as the fact that neither of two contrary assertions .can be proved in a theory. 
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a proposition a precedence assertion or a positive precedence assertion, its 
negation Ar.-<f/ a negative precedence assertion. 

(c). © has to be an interpreted theory;- i . e . to each') functional an 
arithmetical function8) has to. be .attached, called its interpretation. 

• If an arithmetical function 9 is the interpretation of a functional f, we 
say, (p is representable in © and we call f a9) representation o f .9 . A non-
negative integer j is called a counter-example for a precedence assertion 
k<il and also for the negation I <ik of the converse precedence assertion 
I < f k if we have10) 

for the interpretation <p of the functional f. A positive or a negative prece-
dence assertion is called false, if there is a counter-example for it11). The 
theory 0 is called incorrect if a false, positive or negative, precedence assertion 
•is a theorem in it. 

(d) Q has-to be an enumerable theory, i . e . its f u n c t i o n a l as well as 
its proofs12) have to form a finite..or an enumerable infinite set. 

Consider a one-to-one correspondence ip. between the functionals of © 
and a subset of the positive integers (0 excluded!) as well as a one-to-one 
correspondence % between the proofs of © and a subset of the positive 
integers. We call the positive integer attached' to a functional by 1p or to a 
proof.by x is Godel number. A positive or negative precedence assertion of 
the form 2 / — 1 <f2i or 2i— 1 <f2i for which i. is the Godel number of the 

') For applications to particular theories, it would be . convenient to loosen .this 
condition by requiring an interpretation for some functionals only; however, this would 
have the same effect as to replace F by a subset of F. 

8) We call a function arithmetical if it is defined for non-negative integei s and takes 
non-negative integers as values. 

Of course, an arithmetical function can have several representations. In general, 
it is a hard problem to decide if two different functionals represent the same arithmetical 
function. 

w) For ; = 0 , read <p{j) = l. 
n ) It would be natural to def ne a precedence assertion k<ft to be false also in the 

case that neither k nor I is a value of the interpretation g> of 1; and to define a (positive 
or negative) precedence assertion to be.'true if and only if its. contrary is false. Then, 
k-<f I would be true if (a) k and I are values of <¡0 and the ¡east integer j for which q>(jy=k 
is less than the least integer /' for which <p(i) = l; (b) /r.is a value of <p, I not; and it 
would be false in the other cases, i. e. if (c) k and t are values of <p and the least integer 
j for which <p(j) — k is greater than or (in the case k = t) equal to the least integer i 
for which 9£> i) = l; (d) / is a value of <p, k not; '(e) neither k nor I is a value of <p. 
However, 1 do not need more of the concept of truth and falsehood of-precedence asser-
tions than defined above. . ; 

12) One could loosen this condition by requiring only that the functionals, and for 
an appropriate correspondence between the functionals and the positive integers, the diagonal 
proofs and'disproofs (as defined below) form a finite or enumerable infinite set. 
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functional f is called a diagonal proposition (a positive or. a negative one, 
respectively); the integer / is called its index. A proof the conclusion of 
which. is .a diagonal proposition is called a diagonal proof ox a'diagonal 
disproof, according as its conclusion is positive or negative; the index of 
its conclusion is called, the index of the diagonal proof or disproof too. The 
arithmetical function18).. 

[ 2 / if the proof of Godel number m exists and is a diagonal 
i '." proof of index i. . 

. . ! 2i— 1 if the proof of Godel number m exists and is a diagonal 
disproof of index i, . 

1 if the .proof of Godel number m does not exists or. is neither 
a diagonal proof nor a diagonal disproof ' 

i s called the index function of ©. (belonging, to the correspondences ip and %). 
(e) 0 has to be adequate to express its own index function, i. e., for 

•an appropriate. choice of the correspondences ip and %, its index function 
has to be representable in @.14) 

3. Now we have the following 
. F i r s t f o r m o.f t h e t h e o r e m of R o s s e r . - A Rosser theory is 

either contradictory or incorrect or non-categorical. 
Indeed, let g be. the representation of the index function Q of a Rosser-

Iheory © and denoté r its Godel number. Consider the diagonal propositions 
2r— 1 <%2r and 2r— 1 <s2r of index r. If 

. •' 2r— 1 <g2r I 2 r — I -<g2r 
is a theorem in denote ? one of its proofs and s the Godel 'number of p. 
Then f is a diagonal 

p roo f - | disproof 
•of index r. By the definition of Q, we have 

,p(s) — 2r. . ' ." . Q(S) = 2r-<-1. 
if for a positive integer t < s we have 

e ( 0 = = 2 r — 1, ' ' | C ( 0 = = 2 r , 

"then, by the definition of Q, the proof f of Godel number t must exist and 
be a diagonal 

-disproof | . proof 
13) By definition, we have p(0) = 0 for 0 is not the Godel number of any proof.-
u ) For the theories considered by ROSSER (1. C;) and for the theories which are in 

general use in mathematics (e. g. the Peano postulate system'for arithmetic, the Zermelo— 
Fraenkel postulate system for set theory, etc.) one shows easily be means of an enume-
ration method due to GODEL that, for an appropriate choice of the correspondences y 
and their index functions are recursive or even elementary (see 1. c . 3 ) a), or 3) b), foot-
note ,J)), and, as easily seen, every elementary (or even r.cursive) function is representable 
in them; hence, condition (é) is fulfilled-for these theories. • 
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of index r, for 
2 R - 1 4 = 0 , . | ' 2 R - I = 0 , 

the integer 0 being. 
even. | not the Godel number of any functional. 

Thus the conclusion of the 
• negative | . '••" .• positive 

diagonal proposition of index r, i. e., 
2r— 1 <s2 r, • | 2r—1 <&2r, 

is also a theorem in © and 0 is contradictory. If,- on the contrary, we have 
«(0 = 2/—1 , | Q{t)--r--2r 

for f = 1 , ; 2 , . . s — 1 (and, on account of (>(0) = 0, .for / = 0 too), then we 
have the counter-example s for the theorem 

2r— I -<g2 | 2r— 1 <g2r 
and 0 is incorrect. If. neither 2r—1 <%2r nor 2 r— 1 <e2r is a theorem in 
©, then 0 is non-categorical. 

4. The case that the theory © is incorrect can be eliminated (i. e. 
replaced by contradictoriness) if we make some more conditions enabling 
us to prove, by means of a counter-example for a positive or negative-pre-
cedence assertion, the contrary assertion. Thus we call a theory 0 a Rosser 
theory in the strong sense if, besides being a Rosser theory, it is satisfying 
the'conditions (f) to (h) below. 

(f) © has to be adequate to express equality as well as inequality; i. e. 
a set TV has to exist and two functions a = e(n, k) and n = v ( f , / ) of two 
variables, the former defined for N and for non-negative integers k, and 
taking deniable propositions as.values, whereas the latter.defined for f.uiictio-
nals f and for non-negative integers /, and taking elements of N as values. 

We call the elements of TV numerals. Instead of e(n, k), we shall write 
n = k; we call such a proposition an equation, its negation n =.k, which 
we shall write n = j a n inequality. Instead of we shall write f(/) ; 
we call such a numeral a function value. 

(g) © has to be deductively interpreted; i . e . for any functional f, .'for 
its representation <p and for any non-negative integer /, the equation15) 
f ( / )= / / ) ( / ) , and for any non-negative integer k=\=cp(l), the inequality f ( l ) ^ k 
have to be theorems in 0 . 

(h) © has to admit inference from a couiiter-example for a positive or 
negative precedence assertion to the contrary assertion; i. e., for any functional 
f and for any non-negative' integers j, k, I for which f(0)4=#. f(1 )=4= Ar,. . . r 

f(y—'1)4=*, and f(y') = / are theorems in ©, the same has to hold for the 
propositions K f k and k < t l . 

iu) f ( / ) = <p(i) ¡j an equation indeed, for f ( / ) is a numeral and <p(t) is a non-
negative integer. 
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5. Now we have the following • 
S e c o n d ' f o r m of t h e t h e o r e m of R o s s e r . A Rosser theory, in 

the strong sense is either contradictory or non-categorical. 
Indeed, let © be a Rosser theory in the strong sense. By the first form 

of the theorem of ROSSER, © is either contradictory or incorrect or non-
categorical. In the case © is incorrect, there is a theorem in & which is a 
false . positive or negative precedence assertion; i. e. it has either the fo rm ' 
k <tl or the form l<ik with non-negative integers k, I and a functional f 

. f o r which we have for some .non-negative integer J 

. <p denoting the interpretation of / . By (g) we see that 
; f(0)-i.^, f(i)-i A',.... f (7— i) rk, 

are theorems in ©; hence, by (h), • l<ik and k'<ti are also theorems in & 
and thus, © is contradictory. 

(Received December 9, 1949) 


