On the theory of the mechanical quadrature.

By P. TurÁn in Budapest.

§ 1. In what follows I communicate a few simple remarks on the theory .of mechanical quadrature to which also L. FEJERR ${ }^{1}$) devoted an important paper. These remarks though they are rather naturally connected to the clas--sical theory of mechanical quadrature of Gauss-JaCOBI, seem not to be .observed so far. These reveal an interesting property of those polynomials .$\pi_{n, 2 l}^{*}(x)$ (n, l fixed integers) which minimize the integral

$$
\begin{equation*}
I_{2 l}\left(\pi_{n}\right)=\int_{-1}^{+1}\left|\pi_{n}(x)\right|^{2 l} d x \tag{1.1}
\end{equation*}
$$

.among the polynomials

$$
\begin{equation*}
\pi_{n}(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \tag{1.2}
\end{equation*}
$$

This polynomial $\pi_{n, 2 l}^{*}(x)$ minimizes obviously at the same time also the .expression

$$
\begin{equation*}
H_{2 l}\left(\pi_{n}\right)=\left[\int_{-1}^{+1}\left|\pi_{n}(x)\right|^{22} d x\right]^{\frac{1}{2 l}} \tag{1.3}
\end{equation*}
$$

§ 2. The classical theorem of Gauss-Jacobi deals with quadratureformulae of the type

$$
\begin{equation*}
\int_{-1}^{+1} f(x) d x=\sum_{\nu=1}^{n} f\left(x_{v}\right) \lambda_{\nu} \tag{2.1}
\end{equation*}
$$

where x_{1}, \ldots, x_{n} are different, arbitrarily prescribed numbers and the λ 's are independent of f. Putting

$$
\omega(x)=\prod_{v=1}^{n}\left(x-x_{\nu}\right) \text { and } l_{\nu}(x)=\frac{\omega(x)}{\omega^{\prime}\left(x_{\nu}\right)\left(x-x_{v}\right)} \quad(v=1,2, \ldots, n)
$$

we have $f(x)=\sum_{\nu=1}^{n} f\left(x_{\nu}\right) l_{v}(x)$, for all polynomials $f(x)$ of degree $\leqq n-1$,

[^0]and consequently
\[

$$
\begin{equation*}
\int_{-1}^{+1} f(x) d x=\sum_{\nu=1}^{n} f\left(x_{\nu}\right) \int_{-1}^{+1} l_{\nu}(x) d x . \tag{2.2}
\end{equation*}
$$

\]

This is a quadrature-formula of type (2.1) with the „Cotes-numbers" $\lambda_{\nu}=$ $\int_{-1}^{1} l_{\nu}(x) d x \quad(\nu=1,2, \ldots, n)$, valid for all polynomials of degree $\leqq n-1$.

Now the above-mentioned theorem of Gauss - Jacobi solves the question how to choose the "fundamental points" $x_{1}, x_{2}, \ldots, x_{n}$ in order that the quadrature-formula (2.2) be valid for "the greatest possible set" of polynomials. They proved that formula (2.2) is valid for all polynomials of degree $\leqq 2 n-1$ if and only if x_{1}, \ldots, x_{n} are the zeros of the nth Legendre-polynomial

$$
\begin{equation*}
P_{n}(x)=\left[\left(x^{2}-1\right)^{n}\right]^{(n)} . \tag{2.3}
\end{equation*}
$$

§3. Now we consider mechanical quadratures of the type.

$$
\begin{equation*}
\int_{-1}^{+1} f(x) d x=\sum_{\nu=1}^{n} f\left(x_{\nu}\right) \lambda_{\nu}^{(0)}+\sum_{\nu=1}^{n} f^{\prime}\left(x_{\nu}\right) \lambda_{\nu}^{(1)} \tag{3.1}
\end{equation*}
$$

where the quantities $\lambda_{\nu}^{(0)}, \lambda_{\nu}^{(1)}$ are independent of f. The existence of such a quadrature-formula follows immediately from the formula of FEJER2)

$$
\begin{equation*}
f(x)=\sum_{\nu=1}^{n} f\left(x_{\nu}\right) l_{\nu, 0}(x)+\sum_{\nu=1}^{n} f^{\prime}\left(x_{\nu}\right) l_{\nu, 1}(x) \tag{3.2}
\end{equation*}
$$

valid for all polynomials $f(x)$ of degree $\leqq 2 n-1$, where - again with the motation of § 2 -

$$
\begin{equation*}
l_{\nu, 0}(x)=\left(1-\frac{\omega^{\prime \prime}\left(x_{\nu}\right)}{\omega^{\prime}\left(x_{\nu}\right)}\left(x-x_{\nu}\right)\right) l_{\nu}^{2}(x), l_{\nu, 1}(x)=\left(x-x_{\nu}\right) l_{\nu}^{2}(x) . \tag{3.3}
\end{equation*}
$$

Integrating (3.2) over $[-1,+1]$ we obtain a formula of type (3.1) with

$$
\begin{equation*}
\lambda_{\nu}^{(0)}=\int_{-1}^{+1} l_{\nu, 0}(x) d x, \quad \lambda_{\nu}^{(1)}=\int_{-1}^{+1} l_{\nu, 1}(x) d x, \tag{3.4}
\end{equation*}
$$

valid for all polynomials $f(x)$ of degree $\leqq 2 n-1$.
§ 4. The n zeros of the Legendre-polynomial $P_{n}(x)$ of (2.3) are real. This fact implies that the Gauss-Jacobi formula is applied in praxis, e.g. in meteorology. Hence it is reasonable to modify a iittle Gauss-Jacobi's problem asking for a real system $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for which the quadratureformula (3.1)-(3.4) is true for a greater variety of polynomials than those of degree $\leqq 2 n-1$. It is easy to show that by no choice this formula

[^1](3.1)-(3.4) can be made precise even to all polynomials of degree $\leqq 2 n$. The validity of formula (3.1) for a class A of polynomials means namely that for any $f_{1}(x)$ and $f_{2}(x)$ of the class A, for which
\[

$$
\begin{equation*}
f_{1}\left(x_{\nu}\right)=f_{2}\left(x_{v}\right), f_{1}^{\prime}\left(x_{\nu}\right)=f_{2}^{\prime}\left(x_{\nu}\right) \quad(\nu=1,2, \ldots, n) \tag{4.1}
\end{equation*}
$$

\]

we have

$$
\begin{equation*}
\int_{-1}^{+1}\left(f_{1}(x)-f_{2}(x)\right) d x=0 \tag{4.2}
\end{equation*}
$$

But it follows from (4.1) that the polynomial $f_{1}(x)-f_{2}(x)$ is divisible by $\omega^{2}(x)$; hence if A is the class of polynomials of degree $\leqq 2 n$, we have $f_{1}(x)-f_{2}(x)=c \omega^{2}(x)$, i. e. from (4.2) we would have for all c

$$
c \int_{-1}^{+1} \omega^{2}(x) d x=0
$$

But this is impossible for a proper polynomial $\omega(x)$ with real zeros only.
§5. Now we pass a step further. We consider quadrature-formulae of type

$$
\begin{equation*}
\int_{-1}^{+1} f(x) d x=\sum_{\nu=1}^{n} f\left(x_{\nu}\right) \lambda_{\nu}^{(0)}+\sum_{\nu=1}^{n} f^{\prime}\left(x_{\nu}\right) \lambda_{\nu}^{(1)}+\sum_{\nu=1}^{n} f^{\prime \prime}\left(x_{\nu}\right) \lambda_{\nu}^{(2)} \tag{5.1}
\end{equation*}
$$

where the $\lambda_{\nu}^{(j)}$'s are independent of f. It is again easy to show the existence of such a quadrature-formula (5.1), valid for all $f(x)$ polynomials of degree $\leqq 3 n-1$. Following namely the reasoning FEJÉR used to determine $l_{\nu 0}(x)$ and $l_{\nu 1}(x)$ in (3.2), we obtain ${ }^{8}$) the representation

$$
\begin{equation*}
f(x)=\sum_{\nu=1}^{n} f\left(x_{\nu}\right) l_{\nu, 0}\left(x+\sum_{\nu=1}^{n} f^{\prime}\left(x_{\nu}\right) l_{\nu, 1}(x)+\sum_{\nu=1}^{n} f^{\prime \prime}\left(x_{\nu}\right) l_{\nu, 2}(x)\right. \tag{5.2}
\end{equation*}
$$

valid for all $f(x)$ of degree $\leqq 3 n-1$.
Here we have with the notation of $\S 2$

$$
\begin{equation*}
l_{\nu, 0}(x)=\left\{1-3 l_{\nu}^{\prime}\left(x_{\nu}\right)\left(x-x_{\nu}\right)+\frac{3}{2}\left[5\left(l_{\nu}^{\prime}\left(x_{\nu}\right)\right)^{2}-l_{\nu}^{\prime \prime}\left(x_{\nu}\right)\right]\left(x-x_{\nu}\right)^{2}\right\} l_{\nu}^{3}(x), \tag{5.3}
\end{equation*}
$$

$$
l_{\nu, 1}(x)=\left(x-x_{\nu}\right)\left[1-3 l_{\nu}^{\prime}\left(x_{\nu}\right)\left(x-x_{\nu}\right)\right] l_{\nu}^{3}(x), l_{\nu, 2}(x)=\frac{1}{2}\left(x-x_{\nu}\right)^{2} l_{\nu}^{3}(x),
$$

i. e. we obtain (5.1) with

$$
\begin{equation*}
\lambda_{\nu}^{(0)}=\int_{-1}^{+1} l_{\nu, 0}(x) d x, \lambda_{\nu}^{(1)}=\int_{-1}^{+1} l_{\nu, 1}(x) d x, \lambda_{\nu}^{(2)}=\int_{-1}^{+1} l_{\nu, 2}(x) d x . \tag{5.4}
\end{equation*}
$$

§ 6. Now we raise again the question to determine those systems $\left(x_{1}, \ldots, x_{n}\right)$ of n different points for which the quadrature-formula (5.1)-(5.4) is valid for all polynomials of degree $\leqq 4 n-1$. If B denotes this class of polynomials
${ }^{3}$) The same formula was established also by Mr. I. Raisz in an unpublished paper.
and $f_{1}(x), f_{2}(x)$ denote any two members of the class B with
(6.1) $\quad f_{1}^{\prime}\left(x_{v}\right)=f_{2}\left(x_{v}\right), f_{1}^{\prime}\left(x_{v}\right)=f_{2}^{\prime}\left(x_{v}\right), f_{1}^{\prime \prime}\left(x_{\nu}\right)=f_{2}^{\prime \prime}\left(x_{v}\right) \quad(\nu=1,2, \ldots, n)$,
then we must have

$$
\begin{equation*}
\int_{-1}^{+1}\left(f_{1}(x)-f_{2}(x)\right) d x=0 \tag{6.2}
\end{equation*}
$$

Fixing $f_{1}(x)$ in B and choosing

$$
\begin{equation*}
f_{2}(x)=f_{1}(x)+\omega^{3}(x) h(x) \tag{6.3}
\end{equation*}
$$

where $h(x)$ is an arbitrary polynomial of degree $\leqq n-1, f_{2}(x)$ belongs obviously to the class B and satisfies (6.1); hence by (6.2) we must have

$$
\begin{equation*}
\int_{-1}^{+1} \omega^{3}(x) h(x) d x=0 \tag{6.4}
\end{equation*}
$$

for all polynomials $h(x)$ of degree $\leqq n-1$. Since any two polynomials with the property (6.1) fulfill the relation (6.3), the condition (6.4) is necessary and sufficient to the validity of the quadrature-formula (5.1)-(5.4).
§7. Now we have to determine whether or not there is an $\omega(\dot{x})$ with the "higher orthogonality-property" (6.4). We suppose that such an $\omega(x)$ exists. We show first that all the zeros of $\omega(x)$ lie in the interior of the interval $[-1,+1]$ and are simple. To prove this by a classical argument we remark that from (6.4) obviously

$$
\begin{equation*}
\int_{-1}^{+1} \omega^{3}(x) x^{\nu} d x=0 \quad(v=0,1, \ldots, n-1) \tag{7.1}
\end{equation*}
$$

If $\omega(x)$ would have in the interior of $[-1,+1]$ only $k<n$ sign-changing places, say $-1<\zeta_{1}<\zeta_{2}<\ldots<\zeta_{k}<+1$, then we would have

$$
\omega^{3}(x) \sum_{\nu=0}^{k} c_{v} x^{\nu}=\omega^{3}(x) \prod_{\nu=1}^{k}\left(x-\zeta_{v}\right) \geqq 0
$$

in $[-1,+1]$ and hence

$$
0<\int_{-1}^{+1} \omega^{3}(x) \prod_{\nu=1}^{k}\left(x-\zeta_{v}\right) d x=\sum_{v=0}^{k} c_{v} \int_{-1}^{1} \omega^{3}(x) x^{v} d x=0
$$

owing to (7.1); an obvious contradiction. Hence $k=n$ and the assertion concerning the zeros of $\omega(x)$ is proved. This implies of course that the coefficients of $\omega(x)$ are all real too. Since any polynomial $\cdot \pi_{n}(x)=x^{n}+\ldots+a_{n}$ may be written in the form $\pi_{n}(x)=\omega(x)+h(x)$ with an $h(x)$ of degree $\leqq n-1$ we have
$\Delta \doteq \int_{-1}^{+1}\left|\pi_{n}(x)\right|^{4} d x-\int_{-1}^{+1}|\omega(x)|^{4} d x=\int_{-1}^{+1}[\omega(x)+h(x)]^{2}[\omega(x)+\bar{h}(x)]^{2} d x-\int_{-1}^{+1}|\omega(x)|^{4} d x \quad$.
where $\dot{\bar{h}}(x)$ denotes that polynomial whose coefficients are conjugate-complex
to those of $h(x)$. Hence .

$$
\begin{gather*}
\Delta=2 \int_{-1}^{+1} \omega^{3}(x)(h(x)+\bar{h}(x)) d x+\int_{-1}^{1}\left[|h(x)|^{2}+\omega(x)(h(x)+\bar{h}(x))\right]^{2} d x+ \tag{7.2}\\
\quad \therefore+2 \int_{-1}^{+1}|h(x)|^{2} \omega^{2}(x) d x
\end{gather*}
$$

But the first integral in (7.2) is 0 owing to (6.4) and hence we have $\Delta \geqq 0$; equality only in the case $h(x) \equiv 0$. Hence if a polynomial $\omega(x)$ with property (6.4) exists, then it minimizes the integral $I_{4}\left(\pi_{n}\right)$ of (1.1). But the existence and uniqueness of a solution of this extremal-problem was proved by JACKSON ${ }^{4}$). Hence we proved the following:

Theorem I. Among the quadrature-formulae (5.1.). valid for all polynomials $f(x)$ of degree $\leqq 3 n-1$ there is exactly one choice of $\left(x_{1}, \ldots, x_{n}\right)$ for which the formula is valid for all polynomials of degree $\leqq 4 n-1$. This $\left(x_{1}, \ldots, x_{n}\right)$-system consists of the n real distinct zeros in the interior of $[-1,1]$ of that polynomial $\pi_{n, 4}^{*}(x)=x^{n}+\ldots$ which minimizes the integral $I_{4}\left(\pi_{n}\right)$ of (1.1) in the class (1.2).
§ 8. The generalisation of the quadrature-formula (5.1) is immediate. Given any system of n distinct points (x_{1}, \ldots, x_{n}) and n integers $m_{1}, m_{2}, \ldots, m_{n}$, Hermite ${ }^{5}$) proved the existence and uniqueness of polynomials

$$
l_{\nu 0}\left(x, l_{\nu 1}(x), \ldots, l_{\nu, m_{\nu-1}}(x) \quad(\nu=1,2, \ldots, n)\right.
$$

each of degree $\leqq\left(m_{1}+m_{2}+\ldots+m_{n}-1\right)$, such that
$l_{\nu / k}^{(h)}\left(x_{\mu}\right)-0$ for all $\nu, \mu, k, h\left(1 \leqq \nu \leqq n, 1 \leqq \mu \leqq n, 0 \leqq k \leqq m_{\nu}-1,0 \leqq h \leqq m_{\mu}-1\right)$, except for $\nu=\mu$ and $k=h$; in the latter case

$$
l_{v k}^{(k)}\left(x_{v}\right)=1 .
$$

Then we have the representation
(8. 1) $f(x)=\sum_{\nu=1}^{n}\left[f\left(x_{v}\right) l_{\nu 0}(x)+f^{\prime}\left(x_{v}\right) l_{v 1}(x)+\ldots+f^{\left.\prime m_{\nu}-1\right)}\left(x_{v}\right) l_{\nu, m_{\nu-1}}(x)\right]$,
valid for all polynomials of degree $\leqq\left(m_{1}+\ldots+m_{n}-1\right)$, for the difference of the expressions on both sides of (8.1) is divisible by $\left(x-x_{1}\right)^{m_{1}}\left(x-x_{2}\right)^{m_{2}} .\left(x-x_{n}\right)^{\dot{m}_{n}}$, i. e. identical zero. Hence integrating (8.1) over $[-1,+1]$ we obtain the quadrature-formula of L. Tschakaloff. ${ }^{0}$)

[^2]$$
\int_{-1}^{+1} f(x) d x=\sum_{\nu=1}^{n}\left[f\left(x_{\nu}\right) \lambda_{\nu}^{(0)}+f^{\prime}\left(x_{\nu}\right) \lambda_{\nu}^{(1)}+\ldots+f^{\left(m_{\nu}-1\right)}\left(x_{\nu}\right) \lambda_{\nu}^{\left(m_{\nu}-1\right)}\right]
$$
valid for all polynomials of degree $\leqq\left(m_{1}+\ldots+m_{n}-1\right)$, which was the starting point of these investigations.
§ 9. Specializing $m_{1}=m_{2}=\ldots=m_{n}=k$ we obtain the quadratureformula
\[

$$
\begin{equation*}
\int_{-1}^{+1} f(x) d x=\sum_{\nu=1}^{n}\left[f\left(x_{\nu}\right) \lambda_{\nu}^{(0)}+f^{\prime}\left(x_{\nu}\right) \lambda_{\nu}^{(1)}+\ldots+f^{(k-1)}\left(x_{\nu}\right) \lambda_{v}^{(k-1)}\right] \tag{9.1}
\end{equation*}
$$

\]

valid for all polynomials $f(x)$ of degree $\leqq k n-1$. In this case the functions $l_{\nu j}(x)$ of $\S 8$ can explicitly be represented following FeJer's procedure ${ }^{2}$) and so the quantities $\chi_{\nu}^{(j)}$. Asking by which choice of the x_{ν} 's the formula (9:1) will be exact for all polynomials $f(x)$ of degree $\leqq(k+1) n-1$ we obtain similarly that there is no real system $\left(x_{1}, \ldots, x_{n}\right)$ if k is even, and for odd k if and only if x_{1}, \ldots, x_{n} are the zeros of the minimizing polynomial $\pi_{n, k+1}^{*}(x)$ of $\S 1$.
$\S 10$. Is this result compatible with the theorem of Gauss-Jacobi, explained in $\S 2$ which corresponds to the special case $k-1$? It is a wellknown property of the nth Legendre-polynomial (2.3) that, when properly normalized, it minimizes the integral $I_{2}\left(\pi_{n}\right)$ of (1.1). Hence our results constitute a generalization of Gauss-JACOBI's theorem.
§ 11. All these considerations can be applied to the theory of mechanical quadrature of Mehler-Christoffel-Chebyshev-Stieltjes, where a weightfunction is permitted, i. e.. of quadrature-formulae of the type

$$
\int_{-1}^{+1} f(x) p(x) d x=\sum_{\nu=1}^{n} f\left(x_{\nu}\right) \dot{\lambda}_{\nu}^{(0)}
$$

where the $\lambda_{\psi}^{(0)}$'s are independent of $f(x)$ but dependent in general on $p(x)$. The theorems so obtained will not be formulated explicitly except in the case

$$
\begin{equation*}
p(x)=\frac{1}{\sqrt{1-x^{2}}} . \tag{11.2}
\end{equation*}
$$

In this case - as S. Bernstein discovered ${ }^{7}$) - the Chebyshev-polynomial $T_{n}(x)$ with

$$
\begin{equation*}
T_{n}(\cos \vartheta)=\frac{1}{2^{n-1}} \cos n \vartheta \tag{11.3}
\end{equation*}
$$

minimizes : all functionals

[^3]\[

$$
\begin{equation*}
J_{k}\left(\pi_{n}\right)=\int_{-1}^{+1} \frac{\left|\pi_{n}(x)\right|^{k}}{\sqrt{1-x^{2}}} d x \quad(k \geqq 1, \text { fixed }) \tag{11.4}
\end{equation*}
$$

\]

in the class (1.2). Hence we obtained the following new property of the zeros of $T_{n}(x)$:

Theorem II. Given an arbitrary odd integer k we can determine the numbers $\lambda_{v}^{(j)}$ so that quadrature-formula

$$
\begin{align*}
\int_{-1}^{+1} f(x) d x= & \sum_{\nu=1}^{n}\left[f\left(\cos \frac{2 v-1}{2 n} \pi\right) \lambda_{\nu}^{(0)}+f^{\prime}\left(\cos \frac{2 v-1}{2 n} \pi\right) \lambda_{\nu}^{(1)}+\right. \tag{11.5}\\
\therefore \quad & \left.+\cdots+f_{v}^{(k-1)}\left(\cos \frac{2 v-1}{2 n} \pi\right) \lambda_{v}^{(k-1)}\right]
\end{align*}
$$

is valid for all polynomials $f(x) \cdot$ of degree $\leqq(k+1) n-1$.
§ 12. These results make desirable to find an explicit expression of the extremal-polynomials $\pi_{n, k}^{*}(x)$ (for all $k \geqq 1$) which minimize (1.3) with k instead of $2 l$ in the class (1.2) or develop a similar asymptotical theory of them which exists 8) in the case $k=2$. As to the explicit representation the following cases are only known to me.
$k=1$. The minimizing polynomial is the polynomial $U_{n}(x)$ with

$$
U_{n}(\cos \vartheta)=\frac{1}{2^{n}} \frac{\sin (n+1) \vartheta}{\sin \vartheta}
$$

(Result of Korkine and Zolotareff.)

$k=2$. The minimizing polynomial is the nth Legendre-polynomial.
$k=+\infty$. The minimizing polynomial is the polynomial $T_{n}(x)$ of (11.3). (Classical result of Chebyshev.)

As to the asymptotical theory of these polynomials little is known. Among the four main questions of the theory, namely
a) asymptotic behaviour on the segment $[-1,+1]$,
b) asymptotic behaviour outside the segment $[-1,+1]$,
c) asymptotic determination of the individual zeros,
d) uniform distribution of the zeros,
only the last one is in a somewhat satisfactory shape. As we have shown ${ }^{9}$), the zeros of $\pi_{n, k}^{*}(x)$ are "uniformly-distributed on the unit-circle" in the sense that writing them in the form (k and n fixed)

$$
x_{\nu}=x_{\nu, n}=\cos \vartheta_{v, n}=\cos \vartheta_{\nu} \quad(\nu=1,2, \ldots, n)
$$

we have for all $0 \leqq \alpha<\beta \leqq \pi$

[^4]$$
\left|\sum_{\alpha \leqq \vartheta_{v} \leqq \beta} 1-\frac{\beta-\alpha}{\pi} n\right|<c(k) \sqrt{n \log n}
$$

As to the question b) we obtained certain results, but - as Prof. G. Szegó mentioned in a conversation - he has found a sharper asymptotical formula for $\pi_{n, k}^{*}(z)$ outside the interval $[-1,+1]$. Essentially the same is quite recently announced by Geronimus ${ }^{10}$).
§ 13. Finally we return to the quadrature-formula (5.1). FEJER ${ }^{1}$) has shown the importance of the fact that the Cotes-numbers λ_{v} in (2.1) are non-negative in some cases. The same advantages can be derived for the quadrature-formula (5.1) if the numbers $\lambda_{\nu}^{(0)}, \lambda_{v}^{(1)}, \lambda_{v}^{(2)}$ are non-negative. In what follows I shall show that if the x_{v} 's are the zeros of $\pi_{n, 4}^{*}(x)$, then (13.1) $\quad \because \quad \lambda_{v}^{(2)}>0 \quad(\nu=1,2, \ldots, n)$.

The corresponding questions for $\lambda_{\nu}^{(0)}$ and $\lambda_{\nu}^{(1)}$ remain open.
To prove the assertion (13.1) we remark that from (5.3) and (5.4).

$$
\lambda_{\nu}^{(2)}-\frac{1}{2} \int_{-1}^{+1}\left(x-x_{i}\right)^{2} l_{v}^{4}(x) d x=\frac{1}{2\left[\omega^{\prime}\left(x_{v}\right)\right]^{3}} \int_{-1}^{+1} \omega^{3}(x) \frac{1-l_{v}(x)}{x-x_{\nu}} d x
$$

But $\left[1-l_{\nu}(x)\right] /\left(x-x_{\nu}\right)$ is obviously a polynomial of degree $n-2$, i. e., from the orthogonality-property (6.4), the last integral is 0 . Hence

$$
\lambda_{\nu}^{(2)}=\frac{1}{2} \int_{-1}^{+1}\left(x-x_{\nu}\right)^{2} l_{\nu}^{4}(x) d x>0 . \quad \text { Q. e. d. }
$$

(Received August 8, 1949.)

[^5]
[^0]: ${ }^{1}$) L. Fejér, Mechanische Quadraturen mit positiven Cotesschen Zahlen, Math. Zeitschrift, 37 (1933), pp. 287-310.

[^1]: ${ }^{2}$) Implicitly in his paper: Lagrangesche Interpolation und die zugehörigen konjugierten Punkte, Math. Annalen, 106 (1932), pp. 1-56. Our notation differs from his one; this change is motivated by the considerations of § 8 .

[^2]: ${ }^{4}$) D. Jackson, On functions of closest approximation, Transactions American Math. Society, 22 (1921), pp. 117-128.
 5) Ch: Hermite, Sur la formule d'interpolation de Lagrange, Journal für die reine und angewandte Math., 84 (1878), pp. $70-79$.
 0) L: Tschakalofr, Über eine allgemeine Quadraturformel, Comptes Rendus de l'Acad. Bulgare des Sciences, 1 (1948), pp:9-12. The point of his paper is a method for computation of the $\cdot \lambda_{j}^{(1)}$ s.

[^3]: ${ }^{7}$) S. Bernsten, Sur les polynomes orthogonaux relatifs à un segment fini, Journal de Math., (9) 9 (1930), pp. 127-177 et (9) 10 (1931), pp: 219-286.

[^4]: ${ }^{8)}$ See e. g. G. Szeqö, Orthogonal polynomials (New York, 1939).
 ${ }^{9}$) P. Erdös and P. Turan, On the uniformly dense distribution of certain sequences of points, Annals of Math., 41 (1940), pp. 162-173.

[^5]: $\left.{ }^{10}\right)^{\prime}$ Ja. L. Geronimus, On asymptotic properties of polynomials deviating least from zero in the space L_{σ}^{p}, Doklady Akad. Nauk SSSR, 62. (1948), pp. 9-12. I know this paper only from its review in the Math. Reviews.

