On ellipsoids circumscribed and inscribed to polyhedra.

by László Fejes Tóth in Budapest.

1. The ellipses (ellipsoids) circumscribed and inscribed to a polygon (polyhedron) $I I$ are defined as the ellipse (ellipsoid) of smallest area (volume) containing $I I$, and that of largest area (volume) contained in $I I$, respectively. We shall denote in this paper a domain and its area (volume) by the same letter.

As a generalization of the fact that the radius of the circumscribed circle of an arbitrary triangle is at least twice as large as the radius of the inscribed circle ${ }^{1}$), we have the following proposition ${ }^{2}$):

If E_{n} and e_{n} are the circumscribed and inscribed ellipses of an n-sided polygon, then

$$
E_{n} / e_{n} \geqq \cos ^{-2} \frac{\pi}{n} .
$$

Equality holds only for the affine images of regular polygons. Hence the ellipses circumscribed and inscribed to the "best" n-sided polygon - i. e. for which E_{n} / e_{n} takes its minimal value - are concentric and homothetic.

The analogous question in the space is to find among the polyhedra with n vertices or n faces those which minimize the quotient E_{n} / e_{n} of the volumes of the circumscribed and inscribed ellipsoids.

It follows from the nature of the problem that we cannot expect to obtain in such a simple manner the set of the best polyhedra for all values of n as in the two-dimensional case. Thus the question arises

[^0]whether at least - analogously to the two-dimensional problem - the ellipsoids circumscribed and inscribed to the best n-verticed or n-faced polyhedron are for all values of n concentric and homothetic, or they are not.

The answer to this question is given by the following
Theorem. Consider the set of the pairs $\left\{E_{n}, e_{n}\right\}$ of ellipsoids circumscribed and inscribed to convex polyhedra, having either a given number n of vertices or a given number n of faces. In both cases the ellipsoids of any pair for which E_{n} / e_{n} takes its minimal value, are concentric but generally not homothetic.

The natural and apparently easier question whether for the n-verticed or n-faced polyhedra which minimize the quotient R_{n} / r_{n} of the radii of the spheres containing and contained in the polyhedron, the corresponding spheres are concentric for all $n \geqq 4$ or not, is still undecided.
2. The affirmative part of the theorem announced above is a consequence of the following

Lemma. If E_{1}, E_{2}, E_{3} denote three ellipsoids, E_{1} and E_{3} being polar reciprocals of each other with respect to E_{2}, then

$$
E_{1} / E_{2} \geqq E_{2} / E_{3} .
$$

Equality holds only if E_{1}, E_{2}, E_{3} are concentric.
It may be supposed that E_{2} is the unit sphere with its centre at the origin, and that the x, y, z-axes are parallel to the principal axes $2 a, 2 b, 2 c$ of E_{1}, respectively. Let ξ, η, ζ be the coordinates of the centre of E_{1}. Since, by hypothesis, the ellipsoid E_{1} is carried by the polar reciprocity with respect to E_{2} into an ellipsoid, it follows that there is no tangent plane of E_{1} passing through the centre of E_{2}. (For to such a plane would correspond, by the polar reciprocity, a point at the infinity.) Consequently, E_{1} contains the centre of E_{2}, thus $|\xi|<a,|\eta|<b,|\zeta|<c$.

The reciprocity, applied to the tangent planes of E_{1} at the endpoints of the axis of length $2 a$, yields two points of E_{3} lying on the x-axis, the distance of which is given by

$$
\frac{1}{a+\xi}+\frac{1}{a-\xi}=\frac{2 a}{a^{2}-\xi^{2}} \geqq \frac{2}{a} .
$$

Similar considerations applied to the other axes of E_{1} yield three mutually perpendicular chords of E_{3} whose lengths are not less than $2 / a, 2 / b, 2 / c$, respectively.

The diameters $2 \alpha, 2 \beta, 2 \gamma$ of E_{3} parallel to these chords are, a fortiori, $\geqq 2 / a, 2 / b, 2 / c$, respectively.

Consider the octahedron Ω with diameters $2 \alpha, 2 \beta, 2 \gamma$. We have $\Omega=\frac{4}{3} \alpha \beta \gamma \geqq \frac{4}{3} \frac{1}{a b c}$.

Let us replace 2α by the diameter $2 \alpha^{\prime}$ of E_{3} conjugate with respect to E_{3} to the diametral plane $\beta \gamma$. Similarly, let us replace 2β by the diameter $2 \beta^{\prime}$ conjugate to the diametral plane $\alpha^{\prime} \gamma$. The volume of the octahedron Ω has been increased by both steps. The diameters $\alpha^{\prime}, \beta^{\prime}, \gamma$ of the new octahedron Ω^{\prime} are pair by pair conjugate with respect to E_{3} and thus $\Omega^{\prime}=\frac{4}{3} \vec{\alpha} \bar{\beta} \bar{\gamma}$, where $\bar{\alpha}, \bar{\beta}, \vec{\gamma}$ denote the principal axes of E_{3}. Since $\Omega^{\prime} \geqq \Omega$, we have $E_{3}=\frac{4 \pi}{3} \bar{\alpha} \bar{\beta} \bar{\gamma} \geqq \frac{4 \pi}{3} \frac{1}{a b c}$, i. e.

$$
E_{1} E_{3} \geqq \frac{4 \pi}{3} a b c \frac{4 \pi}{3} \frac{1}{a b c}=\left(\frac{4 \pi}{3}\right)^{2}=E_{2}^{2},
$$

which proves the lemma. Equality holds only if $\xi=\eta=\zeta=0$. In this case E_{3} is also concentric with E_{2} and its principal axes are $2 / a, 2 / b, 2 / c$.

Let us suppose now that the ellipsoids E_{n} and e_{n} circumscribed and inscribed to the best n-verticed (n-faced) polyhedron P_{n} are not concentric. Taking polar reciprocals with respect to e_{n}, there corresponds to P_{n} a polyhedron P_{n}^{\prime} with n-faces (vertices) contained in e_{n} and containing the ellipsoid E_{n}^{\prime} reciprocal to E_{n}. A second polar reciprocity with respect to E_{n}^{\prime} carries P_{n}^{\prime} into a polyhedron $P_{n}^{\prime \prime}$ with n vertices (faces) contained in E_{n}^{\prime} and containing the ellipsoid e_{n}^{\prime} reciprocal to e_{n}. According to the lemma and to our hypothesis, we have

$$
E_{n} / e_{n}>e_{n} / E_{n}^{\prime}>E_{n}^{\prime} / e_{n}^{\prime} .
$$

Hence $P_{n}^{\prime \prime}$ is better than P_{n}; this contradiction proves the theorem.
Since the ellipsoids of any extremal pair are generally not homothetic, the result proved just now is the most which can be said in this direction and it is surprising that this result could be obtained by such simple means, without using any of the more intricate properties of polyhedra.
3. Let us now turn to the negative part of our theorem.

The above considerations show that the minimal value of E_{n} / e_{n} for polyhedra having n vertices is equal to the minimal value of E_{n} / e_{n} for polyhedra having n faces and the best n-verticed and n-faced polyhedra are mutually polar reciprocals of each other with respect to the inscribed or circumscribed ellipsoid.

Therefore we can restrict ourselves to n-verticed polyhedra.
The circumscribed and inscribed ellipsoids of a tetrahedron are - as affine images of two concentric spheres - always homothetic. But the case $n=5$ furnishes already the required exemple of an extremal pair E_{5}, e_{5} of ellipsoids which are not homothetic.

A convex polyhedron with 5 vertices is generally a 6 -faced double
pyramid which can degenerate to a 4 -sided pyramid (or to the convex envelope of 4 or less points).

It follows immediately that among the 5 -verticed polyhedra P_{5} contained in a sphere S, the double pyramid d, formed by the vertices of an equilateral triangle inscribed in the equator and of the two poles, has the greatest volume.

Somewhat more complicated is to determine the 5 -verticed polyhedron D containing the sphere S, which has the least volume.

LhUllier ${ }^{3}$) determined the $2 m$-faced double pyramid D_{m} having the minimal value of $\left|D_{m}\right|^{3} / D_{m}^{2}$ where the sign of the absolute value denotes the surface area. D_{m} is composed by two congruent straight pyramids with regular m-goned bases, so that the greatest sphere S contained in D_{m} touches all faces at their centre of gravity.

We assert that D_{3} is at the same time the polyhedron D having the least volume among the polyhedra P_{5} with 5 vertices containing the sphere S of radius r and centre O. For decompose P_{5} into 6 tetrahedra having the common vertex O. The altitudes of these tetrahedra being $\geqq r$, we have $P_{5} \geqq \frac{r}{3}\left|P_{5}\right|$. Hence indeed, we have for all P_{5} incongruent to D_{3} :

$$
P_{5} \geqq \frac{r^{3}}{27} \frac{\left|P_{5}\right|^{3}}{P_{5}^{2}}>\frac{r^{3}}{27} \frac{\left|D_{3}\right|^{3}}{D_{3}^{2}}=D_{3} .
$$

From the extremum properties of the polyhedra d and D we obtain by well known properties of the affinity, for all 5 -verticed convex polyhedra P_{5} :

$$
e_{5} \frac{D}{S} \leqq P_{5} \leqq E_{5} \frac{d}{S}
$$

and hence

$$
E_{5} / e_{5} \geqq D / d
$$

The lower bound on the right side is reached e. g. for the 5-verticed double pyramid d. In this case E_{5} is a sphere; on the other hand e_{5} is an ellipsoid of revolution which touches the faces of d in their centre of gravity.
(Received September 15, 1947.)

[^1]
[^0]: ${ }^{1}$) To this fact and to the analogous problem for tetrahedra my attention was turned by Professor L. Fejér, who remarked the above inequality in 1897 as a competitor at the mathematical competition of the Loránd Eötvös Mathematical and Physical Society. Cf: J. Kürschák, Matematikai versenytételek (Szeged, 1929); T. Rado, On mathematical life in Hungary, American Math. Monthly, 39 (1932), pp. 85-90.
 ${ }^{\text {a }}$) Cf. L. Fejes Totr, An inequality concerning polyhedra, Bulletin of the American Math. Society (in the press), where - in footnote 5) - the affirmative part of the theorem below is also announced. We return to this question in view of the result in the negative direction.

[^1]: ${ }^{9}$) S. Leullier, De relatione mutua capacitatis et terminorum figurarum, etc. (Varsaviae, 1782).

