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Integral formulae in the theory of convex curves. 

By ALFRÉD R É N Y I in Budapest. 

Introduction. 

The definition of external parallel-curves of a convex curve can 
be formulated in many ways. For example, let us shift all supporting 
lines by the same distance outwards; the external parallel curve can 
be defined as the curve envelopped by these lines, or as the boundary 
of the domain which is the common part of all the negative half-planes 
of these lines. The first definition fails when using it to define internal 
parallel curves, because generally the curves thus obtained will not be 
convex, in fact not even simple Jordan-curves. 

On the second way mentioned above, however, a useful definition 
of internal parallel curves can be obtained. The method of internal 
parallel curves has first been applied to isoperimetric problems by 
B É L A v. Sz. NAGY1) by making use of an idea of F. RIESZ2) developed 
in connection with some other problems. Later on, G. BOL used the 
same method to give an extraordinary simple proof of the isoperimetric 
inequality3). 

In the present paper the theory of internal parallel curves shail 
be developed further. Our main result is ah explicit positive integral 
representation of the isoperimetric deficiency4). This is obtained by 

I ) B. v. Sz. NAGY , Über ein geometrisches Extremalproblem, these Acta, 9 

<1939), pp. 253-257 . 
S) F . RIESZ , Sur une inégalité intégrale, Journal of the London Math. Society, 

5 (1930), pp. 162 -168. 
3) G. BOL, Einfache Isoperimetriebeweise für Kreis und Kugel, Abhandlungen 

aus dem Math. Seminar der Hamburgischen Universität, 1 (1943), pp. 27—36. 
4) As far as I am aware the only known explicit representation of the isoperi-

metric deficiency is that of SANTALÓ , which also contains the results of BONNESEK. 

In spite of the apparent coincidence of the consequences, the investigations of 
SANTALÓ are built on a totally different ground, — the integral-geometry of BLASCHKE 

— and have nothing in common with this paper. See W. BLASCHKE, Vorlesungen 
über Integralgeometrie, 1 (Leipzig, Berlin, 19J6), pp. 25—36. 
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introducing a function which we call the characteristic function of the 
curve. From our formula, besides other inequalities, there follows 
easily an improvement of the isoperimetric inequality given by Bon-
nesen5), 6), 
(2) P2—4nA^(P-2nQ)2, 

P denoting the periphery, A the area^ of the curve and q the radius of 
the greatest inscribable circle. 

BOL proves the isoperimetric inequality by showing that the isoperi-
metric deficiency of the internal parallel curves decreases when pro-
ceeding inwards. This is a consequence of the decrease of size only, 
and it would be false to conclude that the internal parallel curves show 
a gradually increasing resemblance to the circle. In fact, the very oppo-
site of this is the case: we prove that the relative deficiency, 

^ A ' 
increases monotonously. 

BONNESEN gave also a second improvement7) of the isoperimetric 
inequality, namely: 
(4) P-—4nA^(2nR~P)-, 
where R denotes the radius of the least circumscribable circle. (4) can 
also be proved by the method of internal parallel-curves. For this 
purpose the theory has to be generalized by employing internal "relative-
parallel-curves"8). The method furnishes an explicit integral represen-
tation of Minkowski's deficiency, 
(5) Afn AnA%,, 
where An, Adenote the areas of the convex curves and Au their 
"mixed area," as introduced by MINKOWSKI . In full analogy to the 
special case an improvement of Minkowski's inequality is obtained, 
and by a simple lemma on quadratic equations, (4) follows therefrom. 
It is remarkable, that here generalization supplies fuller knowledge of 
the special case. 

The introduction of the characteristic of-a convex curve, and of 
its internal parallel curves, i. e., of the characteristic function, is the 
most important feature of these investigations. The isoperimetric defi-
ciency of a curve is determined exclusively by its characteristic func-

5 ) T . B O N N E S E N — W . FENCHEL, Theorie der konvexen Körper (Berlin, 
1934), p. 113. 

c) T. BONNESEN, Les problèmes des isoperimètres (Paris, 1929), pp. 59 -63 . 
7 ) BONNESEN, 1. c . , p . 8 6 ; BONNESEN—FENCHEL, 1. c . , p . 97. 

8 ) G . BOL, Beweis einer Vermutung von- H . MINKOWSKI , Abhandlungen aus 
dem Math. Seminar der Hamburgischen Universität, 1 (1943), pp. 37—55. 
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tion, though the curve itself is far from being determined by it. 
The characteristic of a polygon can be evaluated by a simple trigono-
metric sum. For general curves the characteristic is defined by passing 
to the limit. An explicit representation of the characteristic for general 
curves can be obtained by using integrals of "non-additive functions of 
interval"9). This may only be mentioned here; the detailed discussion 
of this question would lead beyond the scope of this paper. 

Part I. 

Let us denote the area and periphery of the internal parallel curves 
C(f>) at the distance p of a given convex curve C by A(/i) and P(t*). 
First let us consider the internal parallel curves of a polygon, which 
are polygons themselves, obtained by shifting each of the sides of the 
original polygon inwards by the distance p. For sufficiently small values 
of /* the parallel polygons will have the same number of sides, and 
angles equal to those of the original polygon. By increasing (i, a 
"critical value" of n is reached, at which one of the sides will shrink 
to a point, and thus the number of sides will be diminished. The 
angles of the parallel polygons after passing this critical value will be 
equal to those of the polygon, obtained from the original polygon by 
prolonging, until their point of intersection, the two sides of the latter, 
adjacent to the shrunken side. After passing the first critical value, the 
number of sides, and the angles, do not change until the second 
critical value is reached, and so on. 

A simple calculation shows, that 

(6) - O g L - p , , ) 

and 

where 
(8) *(M) = 2 Z t g - % -
(the denote the external angles of C(ft)). (7) holds, except at a finite 
number of points, viz. the critical values mentioned above, which are 
the points of discontinuity of x(m). 

x(fi), called characteristric function of the polygon CO), has a simple 
geometrical interpretation: it is equal to the double area of the polygon 

' ) F. RIESZ , Sur l'existence de la dérivée des fonctions d'une variable réelle 
et des fonctions d'intervalles, Verhandlungen des internationalen Math.-Kongresses, 
Zürich, 1932, pp. 267-269. 
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— called, according to TH. KALUZA, the "form-figure," — having angles 
equal to those of C(P) and circumscribed to the unit circle. 

It follows, that x(n) is increasing with p, because between two 
critical values of fi the form-figure remains unaltered, and by passing 
a critical value the form-figure increases by the prolongation, until their 
point of intersection, of the two sides, adjacent to the side correspon-
ding to that of C(F*) which, at the critical value in question, has shrunk 
to a point. 

X(FI) being an increasing function, it follows by (7) that — P (N) 

is a convex function. 
Further, the form-figure being circumscribed to the unit circle, 

we have 
(9) 

The characteristic x = x(0) of a general convex curve C is defined 
as the greatest lower bound of the characteristics of the polygons 
circumscribed to C and formed by some of the tangents of the curve C. 
Similarly, X(U) is defined as the characteristic of the curve C ( / I ) . 

The formulae (6) and (7) can be generalized for arbritrary convex 
curves, by passing to the limit, without any essential difficulty. A lemma 
of F. RIESZ10) is the only tool required. It follows from this lemma, 
that if a sequence of convex functions converges to a limit function — 
which is naturally convex itself too — the derivatives of the functions 
of the sequence converge to the derivative of the limit function, provi-
ded that the latter exists, that is, almost everywhere (precisely, with 
exception at most of an enumerable set of points.) Let us consider a 
sequence of polygons C„ converging to the curve C, each polygon being 
formed by some of thetangents of C and each polygon containing — besides 
new ones — the tangents forming the preceding polygon of the sequence. 
Let A „ ( / J ) , P „ ( N ) and X„({I) denote the area, periphery and characteristic 
function of the internal parallel polygons of C„, it follows that 

lim A „ ( f ) : = A(u)\ lim P„(f) = P ( f ) ; lim Mi") = *(/*)• 
tl->-00 n->0© »->-00 

Applying the lemma of F. RIESZ, mentioned above, (6) and (7) are 
proved to be valid, for arbitrary convex curves, almost everywhere. 

It may be mentioned that if a curve has a tangent in every of 
its points, its characteristic is equal to 2n. In fact, for curves of this 
kind, circumscribed polygons, formed by tangents of the curve and 

2 n 
having each of its external angles equal to — can be drawn, n being 

10) F. RIESZ , Sur les fonctions subharmoniques et leur rapport à la théorie 
du potentiel," II, Acta Math., 54 (1930), pp. 321-360, especially p. 353. 

u 



162 A. Rényi 

any integer; Thus, by the definition of the characteristic and taking (9) 
into account, we have 

(10) 

and owing to 
TV 

l i m 2 / z t g — = 2 n , & n «->-00 't 

v. =~=2n follows. 
It can easily be seen that if g denotes the radius of the greatest 

circle inscribable in the curve C, C(FI) shrunks for H = Q to a point 
or to an interval, called the "kernel" of the curve. If the kernel is a 
point, it follows from (6) and (7) that 

p 
( 1 1 ) P=\Mtc)de-

0 
ahd 

p 
(12) A = |'P(//,) d/i. 

o 
If the kernel is an interval of the length K, we have, instead of (11), 

p 
(I la) P = 2K+{x(ft)di*. 

<r 

In what follows, we suppose for the sake of brevity that the first case 
takes place, i. e., the kernel is a point. The second case offers no 
additional difficulties and can be treated in the same way, and — with 
obvious modifications — the same conclusions can be drawn. 

In (11) the integral is taken in Lebesgue's sense, so that the 
exceptional set of measure zero, for which (7) does not hold, can be 
neglected. 

Taking C(FI) for the original curve, we have from (11) 
o 

(13) J°(/0 = f x{X)dl. 
i< 

By substituting (13) into (12), it results 
t o P 

(14) d^=\ i i y . {n )d ( i . 
0 f\ 0 

By a well known'transformation of the double integral, 
e op p p 

(15) p* = ( fx (p) diif = \\x(n)x{X)diidX = 2 f x{fi)\x(Z) dl • dp. 
ti 0 0 6 fi 

Combining (15) with (14) our explicit formula for the isoperimetric 
deficiency is obtained: 
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? e 
(16) P 2 — 4 ^ 4 = 2 | (x(/t) — 2n) | x(X)djL»dn. 

6 ¡i 
Owing to X(IA)^Z2JT. the positivity of the representation is obvious. 

The inequality of BONNESEN can be obtained as follows : 
t e -p e 

2\(x(ti) — 2n) j x{k)dldii^2 f (x( i i ) — 2ri) \(x(X) — 2n)dZ»dn= ; 

0 /1 o" ,'< 
? ' 

= | j ( x ( / . t ) — 
o 

and thus 
( 1 7 ) P 9 - — 4 7 T A ^ ( P - 2 7 I O ) - . • . 

Another improvement of the isoperimetric inequality follows from the 
monotonity of x(fi) ; %(/*) x(0) = x and therefrom 

e e 
P°- — 47iAv^2(x — 2 n) j j x(Z)dJ.*dfi~2(x — 2 n) A, 

ON 

that is 
(18) P2 — 2y.A^0. 
This inequality has already been proved for polygons by LHUILIER11): 

Another group of inequalities can be obtained from (14). We have 
e c 

(19) A — $ - P = f [ j l - f J x W d t = f ( j l - £ ] ( x ( A ) - x ( ( , - * ) ) M . 
o J ' 

2 

y.(A) being an increasing function it follows 

(20) A — 0. 

On the other hand, an upper estimation of (19) can also be effected: 
c 

e 
2 

that gives, combined with (20) 

(21) 

(20) combined with (17) gives the range of variation of Q if A and P 
are given12) : 

n ) See L. FEJES, Extremális pontrendszerek a síkban, a gömbfelületen és a 
térben (Kolozsvár, 1944), p. 19. 

13) BONNESEN-FENCIIEL , 1. c . , p . 8 2 . 
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P—]/P2 — 4nA 2 A 
— 2n ¿Q^JT-

The decrease of 

observed by BOL follows from 
(23) D' (u) — — 2 P ( u ) (•/-(//) — 2 TI) ; 

the increase'of d ( i i ) ^ = — , , , — — from 
A(fi) 

(24) d' (,u) = ^ ( / » (/*) - 2 X (/*) A ( « ) ) 

with respect to (18). In this connection it is worth mentioning that for 
external parallel curves the isoperimetric deficiency is conslant, so that 
these problems do not occur there13). 

Part II. 

We now turn to the generalization of the results of the first part. 
Let p(q>) denote the "supporting function"14) of the convex curve C. 
We have 

2.-i 
(25) P=\p(<p)d<p 

o 
and 

2.1 

(26) ( p H c p ) - p ' 2 { ( p ) ) d < p , 
o 

The "mixed area" of two curves Cu C2 with supporting functions p^v), 
p.i((p) is defined by15) 

2n 

(27) Aa= y J pA(r)PÁ<p)—p'i((p)p'A<p) 
0 

dtp. 

If C2 = C, we have An — Ax — A2, therefore Ax and A2 can be denoted 
by An, An.3, respectively. The inequality 

(28) A2
n — 

is called the inequality of MINKOWSKI. (28) contains the isoperimetric 
inequality, corresponding to the case when C2 is the unit circle. The 
internal parallel curve, denoted by Qifi), of Cx relatively to C2, at the 

13) H . HADWIGBB , Eine elementare Ableitung der isoperimetrischen Ungleichun-
gen für Polygone, Commentarii Math. Helvetici, 16 ( 1 9 4 3 - 4 4 ) , pp. 3 05—309 . 

M) "Stützfunktion"; see BONNESEN-FENCHEL, 1. c , p. 23. 

15) BLASCHKE, 1. c . , p 34. 
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distance is obtained by shifting the supporting line of Cx belonging 
to the normal direction <p, inwards by the distance fip2(<p). Let Au(p) 
denote the area of Cx(n), and Axi(/i) the mixed area of Cx(n) and C2(p). 
The whole discussion of Part I can be repeated with Axx(ft) and 
2J412(JM) instead of A(fi) and P(fi). If (>12 denotes the greatest number 
for which e l sCi can be placed within Cx, we obtain instead of 
<11), (12), (16), . 

ON 

<29) 

o 
PIJ (¡IU 

(30) An 2 I An(u) d,u = I fixn(ii) du 
6 (i 

0L2 OL2 

<31) ^ - A , / L O , = - - Y [ ( > I 1 ! ( M ) - 2 A J 2 ) ] Y . N (X )DX .D{ I . 

o ; 

xl3(n) is called the mixed characteristic function of the two curves 
Cx, Ci. Its definition is an obvious generalization of the definition 
of *(/»). We have — as a generalization of (9) — 

(32) x1 2(tt)r=2A2 . 

It follows from (32) that 

(33) Am A u A 2 2 ^ (i4]<I A12(?I2)~ ; 

(33) contains (17) when C2 is the unit circle. But (33) is by no means 
symmetrical. If the unit circle is taken for Cx and for C2 any convex 
curve C, we obtain a new inequality: 

f 2AY (34) P 2 - 4 ^ ( P - - J . 

Now we use the following elementary 
Lemma: If b°—4ac^(b — 2a)2 then bi — 4ac^(b — 2cfprovided 

that—^Q. 
a 
This results from both inequalities being equivalent toftifea + c, 

or i S c + c according to the common sign of a and c. This lemma 
expresses the following property of quadratic equations : if the equation 
ax2 + 6x-(-c = 0 has real roots a, /?, the two pairs of points («,/?) 

and separate each other or not, according to ~ being negative 

or positive. 
Applying this lemma to (34), the second inequality of BONNESEN 
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(35) \P2—4nA^(P—2nR)z 

follows. - , 

The other inequalities of Part I have also their counterpart; for 
instance we have, as a generalization of (18), 

( 36 ) . . 

etc. 
G. BOL extended the .method of internal parallel curves to the 

case of three or more dimensions. Our results can also be generalized 
in this direction. 

(Received January 18, 1946; revised February 27, 1946.) 


