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On a Tauberian theorem of O. Szász. 
By ALFRED RÉNYI in Budapest . 

O. SZÁSZ proved1) the following generalisation of Littlewood's 
Tauberian theorem on power series2): 

00 

Let ^ ak be summable by Abel's method. If p > 1 and 

1 " — 2 k P \ a k\ v i s bounded, 
00 

then 2 ak converges. This theorem does not hold for the limiting case 
o 

p = 1, as it can be seen from Example 1, given below3). In the present 
paper it shall be proved that if 

¿k\ak\ 
/ 1 \ 17 1 

is not only bounded, but converges to a finite number V, then we can 
*' 0 0 

assure the convergence of the series 2 ak. The following preliminary 
o 

remark illustrates the difference between the qualitative and quantitative 
hypothesis concerning V„: the boundedness of Vn does not imply. a„ •*• 0 
(see e. g. Example 1) which holds evidently if V„ converges, since 

After having proved our theorem, we give three examples. From the 

' ) 0 . SzÄsz, Verallgemeinerung eines Littlewoodschen Satzes über Potenz-
reihen, Journal London Math. Soc., 3 (1928), pp . . 254—262. 

2) J. E. LITTI.EWOOD, T h e converse of Abel 's theorem on power series, 
Proc. London Math. Soc., (2) 9 (1911), pp . 434 - 4 4 8 . 

3) Another example can be obtained from the example given by L. NEDER, 
Über Taubersche Bedingungen, Proc. London Math. Soc., (2) 23 (1925), pp . 172—184, 
espacially p. 180. 
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second it can be seen that there exist series summable by Abel's 
means, to which the theorem of 0 . SzAsz can not be applied, while 
the conditions of our theorem are satisfied. The third example illustrates 
that the opposite case is also possible, viz. a series for which our 
theorem does not work, while that of 0 . SzAsz can be applied. 

We prove the following 
00 

T h e o r e m A. If A (x) = 2 atxk ls convergent for | x | < l and 
o 

00 

lim A (x) = s exists, the series 2 a k converges to the sum s, provided 
. x-t-l-0 l> 

that V„, defined in (1), converges to a .limit V. 
P r o o f . Write 

( 2 ) S„ = A0 + A1 + . . . + A „ . 

We prove first that |S„| is bounded. This follows already from A(x) 
and V„ being bounded. In fact, let us suppose 

|A(x) |rg C l , V „ ^ c 2 . 
Evidently the ABEL sums of the sequence t„ = n\a„\ have the same 
upper bound as the arithmetic means Vn, i. e. 

00 

(1— X ) 2 k \ ' * k \ * t * C t , • 0 < ; x < 1. 
u 

From the identity 

S, = É « » O - * k ) ~ É A (x), 0 n+T 

combined with the inequality 1 — x*<lA;(l — x), 0 < L x < I, it follows that 

. I S J S O - x ^ + ^ ^ + e , 

Putting x = 1 — — w e get 

| 5 „ | S c 1 + 2C2. 
Now Karamata's following lemma4) will be required: 

If the sequence S„ is bounded from below, Sn^ — M (Af^O), and 
the function f ( t ) is bounded and integrable in Riemann's sense over 
the interval (0, 1), then 

00 

lim ( l - x ) £ Skx" = S 
x->l-0 U 

implies that 
i 

lim ( 1 - X ) ¿ 5 , X v ( ^ ) = 5 ( f ( t ) d t . 
x-vl-0 0 J 

0 
4) J. KARAMATA, Über die Hardy—Littlewoodschen Umkehrungen des Abel-

schen Stetigkeitssatzes, Math. Zeiischrifi, 32 (1930), pp. 319-320 . 
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After having shown the boundedness of S„, this lemma can be applied 
to the sequence S„. It can also be applied to the sequence t„ = n\a„\ 
which, by the suppositions made, evidently satisfies the conditions of 
Karamata's lemma. In both cases / ( / ) shall be defined as follows: 

1 
/ ( 0 = t 

for e-<1+« ,)< t<e~x 

and f ( t ) --=0 in the remaining parts of the interval (0, 1). In this defi-
nition Q is an arbitrary positive number. We shall denote the integral 
part of /2(1 +i>) by n'. Using the relation 

lim 
n - . X 1, 

applying Karamata's lemma to the sequences S„ and t„ and choosing 
for f { t ) the function defined above, we have 

l im 
n-y OC fï 

1 
-rZStc = sQ (?) 

and 

(4) lim - ^ ¿ > | a t | = l/c>. 
n CC ll n 

Further, it follows from (4), that 

(5) ïîïn ¿ > * | i £ i y 
« x « 

Let us consider the différence S„ — S. We have 

n —n n' — n 

n 

n—n 
1 

n 2s> 
-S • 

Since by (3) and because of lim 
»-*<* n'—n (> 

the right tends to 0, it follows from (5) that 

n — n 77 

the second member on 

lim | S „ — V p . 
il->QC 

Q being arbitrary it follows that 

lim S„ = 5. 
n GO 

This proves Theorem A. We can state it in a slightly generalised form, 
which however is a simple consequence of its original form. Let or

n 
00 

denote the CESARO means of order r of the series Z \ak\- We have 
o 

evidently Vn = a° — a„\ We prove the following 
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T h e o r e tp B. If the series z ak is summable by Abel's method, 
o 

* 09 
and (o*— ar„+i) tends to a limit Vr, then the series 2 ak is convergent. 

o 
(r is an integral number.) 

Theorem B follows easily from Theorem A. In fact, let xr
n denote 

the CESARO means of order r of the sequence tk = k |o t | (i. e. of the series 
00 

[A:|ot| — (k — OlCi-jU). It can be easily verified that 
i 

r+1 
r r+1 _ Jt„__ 

(6) / " • - r + 1 
(r = 0, 1 , 2 , . . . ; 71 = 0, 1 , 2 , . . . ) . 

But it is well known5) that if a positive sequence is summable by 
CESARO means of any order greater than 1, it is also summable by 
CESARO means of the first order, i. e. by arithmetic means. Thus the 
hypothesis that ar

n — a ' t c o n v e r g e s to a limit ensures also the conver-
gence of V„, and Theorem A can be applied. 

The following examples may serve for illustrating the mutual 
relation of our Theorem A and the theorem of O. SzAsz mentioned 
above. 

E x a m p l e 1. There exist divergent series, summable by Abel 
means, with V„ bounded. For instance the series: 

a„= 1 if k — T 

fli = _ l if A: = 2n + M 1 > 2 ' 3 ' - - - ' 

ak= 0 for every other value of the index k. 
E x a m p l e 2. There exist series for which Vn converges, while 

1 ^ 
— Z ^ W k V ' s unbounded for every value of p greater than 1. For 
n l 
instance the series: 

if k — 2n, n= 1 ,2 , 3 , . . ., 
n 

ak — 0 for every other value of the index k. 
E x a m p l e 3. There exist convergent series for which V„ does 

not converge, while 

is bounded, moreover convergent, for some p > 1. (In this connection 
it must be observed that according to the inequalities of Schwarz— 

5) J. KARAMATA, loc. cit., p . 320. 
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HOLDER, V„ is bounded provided that (7) is bounded with some p > 1. 
This is the reason why the following example is a little bit more in-
tricate.) We define first the absolute values of the numbers ok. Let 
us have 

0*1 
5 

" k 
if k = 1, 2, . . ., n,; 

k l 
l 

if k~= nx + (2m — 1), m — 1 , 2 , . . ., n,; 

¡01.1 
7 

— k 
if nx-\-2m, m = 1, 2 , . i 

'M 
5 
k 

if rt1 + 2n2-|-/77, m = 1 

M 
1 

" T 
if k = «, + 2 ^ + n3 + (2m /77= 1,2, 

\ak\ 
7 

— k 
if k = nl + 2n2+ji~J

r 2m, m = l , 2 , . . . , / 7 4 

The sequence of integers n„ n S ) . . . can be chosen so as to cause 
VN to . oscillate between 4 and 5. After having chosen the numbers 
nx, nit n3, . . . in that way, the signs of the numbers ak can be fixed 

00 

so as to render convergent the series Z ak. The choice of the numbers 
o 

1, 7, 5, serves to ensure the convergence of 

- ¿ > i ak? n i 1 • 

which tends to 52 in view of 4 - (12 + 7Z) = 52. 

(Received March 20, 1945.) 


