
1 

Contributions to the Theory of Minimal Surfaces.1) 
By TIBOR RAD6 in Columbus, Ohio, U. S. A. 

Introduction. 

The present paper contains results which I obtained while 
studying the work of H . A. SCHWARZ on minimal surfaces. 

SCHWARZ constructed several examples of portions of minimal 
surfaces which do not have a smallest area if compared with sur-
faces bounded by the same curve. By very beautiful computations 
he obtains a convenient formula for the second variation of the 
area-integral and constructs then his examples by using certain 
deep existence theorems concerning the partial differential equation 
Aip + Apip = 0, where X is a parameter and p is a given positive 
function. The results of SCHWARZ concerning this equation and 
the methods he develops are of the highest importance.2) It seemed 
to me however that it would be interesting to finish up the con-
struction of SCHWARZ in an elementary way. In § l of this paper 
I show in a very elementary way that if we consider, for instance, 
a piece of the much studied minimal surface of ENNEPER8) 

x = 3u + 3uv2—u3, • • ' ' 

2 = 3u2—3u2 , 
*) Parts of this paper have been presented to the American Mathema-

tical Society at the meetings in Minneapolis, September 1931, and Chicago, 
April 1932. 

s ) The papers of SCHWABZ, concerned with these subjects, are thé 
following ones. Beitrag zur Untersuchung der zweiten Variation von Minimal-
flächenstücken im. Allgemeinen und von Teilen der Schraubenfläche im be-
sonderen, and Über ein die Flächen kleinsten Flächeninhaltes betreffendes 
Problem der Variationsrechnung, pp. 151—167 and pp. 223—269 respectively 
in the Gesammelte Mathematische Abhandlungen of SCHWARZ (Berlin, 1890). 

8) See Q. DARBOÜX, Théorie générale des surfaces (Paris, 1887), vol. 1, 
pp. 372—376, where a picture of the surface is also given. 
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corresponding to 0 + where 1 < r < f 3 , then this piece 
is bounded by a curve without multiple points and its area is 
not a minimum if compared with surfaces bounded by the same 
curve. This example is chosen as an illustration; the elementary 
method used permits to obtain also one of the general theorems 
of SCHWARZ, namely that if the spherical image of a minimal sur-
face 2JI comprises half of the unit sphere in its interior, then the 
area of 9K is not a minimum. 

On several occasions, SCHWARZ stated that a minimal surface 
is generally not determined by its boundary curve. He also stated 
that if the boundary is a skew quadrilateral, then the minimal 
surface is univocally determined. I was unable to find in the Col-
lected Papers of SCHWARZ or in the more recent literature a proof 
of this statement. In a previous paper4) I proved the uniqueness 
for the case when the boundary curve has a simple covered con-
vex curve as its orthogonal projection upon some plane. In § 2 
of the present paper, I prove the uniqueness for the case when 
the boundary curve has a simply covered convex curve as its 
central projection from some point upon some plane. The minimal 
surfaces considered are supposed to be continuous images of the 
circle, otherwise they are allowed to have multiple points and any 
singularities. 

Several applications of the preceding results are considered 
in § 3. The conclusions obtained are very immediate, still I thought 
that their interest might justify their explicit statement. 

§. I. Elementary discussion of the second variation 
of the area-integral. 

1. Let R be a JORDAN region in the (U, V)-plane bounded 
by an analytic Jordan curve. Consider a surface 

S : x=x(u,v), y=y(u,v), z=z(u,v), (u,v) in R, 
where x (u, v), y(u,v), z (u, v) have all necessary differential coef-
ficients in the closed region R. Suppose that the above.equations 
carry the boundary curve of R in a one-to-one way into a JORDAN 

curve r in the (x, y, z)-space. Put, as usual 

E=xt+fv+zt, F=x„x,+yuyv+zuz„, G = x\+y\+z\, 
*) Some remarks on the problem of PLATEAU, Proceedings of the Na-

tional Academy of Sciences, 16 (1930), pp. 242—248; see in particular p. 247. 
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and suppose that . , 
W* — EG—F2>0 

in the closed region R. This assumption secures the existence of 
a normal for every point of the surface S. The direction cosines 
or the normal will be denoted by X, Y, Z. 

2. Denote now by e a parameter and by i>(u,v) a function 
having continuous first partial derivatives in the closed region R 
and vanishing on the boundary of R. Define a surface 5 by the 
equations 

x = x(u, v) + eip(u,v)X(u,v), \ 
y = y(u,v) + exf)(u,v)Y(u,v), }• (u,v) in R. 
z=z(u,v) + £ip(u,v)Z(u,v) J 

The area of S is a function A (e) of e; we are going to compute 
4 '(0) and A"(0). If E, F, G are the first fundamental quantities 
relative to S, we find 

(1.1) EG—F2 = a0 + ale + a2e2 + ..., 
where 

j a 0 = = tt^EG—f\. a1 =—2if>(EN—2FM+ GL), 
(1.2) \ a2 = i>2[Eg-2Ff+Ge + 4(LN-M2)] + 

[ +Eipl—2Fyutpv + G t f . 
In these formulas, L, M, N, e, f , g are the second and third funda-
mental quantities relative to the original surface S ; the explicit 
expressions are r 

where 5 and £ stand for the vectors (x, y, z) and ( X , Y, Z) res-
pectively. We obtain then 

(EG—F2y = b0 + b,e + bie2 + ..., 
where the coefficients b are obtained by squaring and comparing 
with (I . 1). It follows 
(1.3) bl = Co, 2Ml = a1, b\ + 2b0b2 = a2. 
As 

A (e) = JJ (EG - F2)' du dv, 
R 

we get 
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>1' (0 )=JJb idudv , /4"(0) = J J 2 b i d u d v . 
R R 

3. Suppose now that the original surface 5 is a minimal 
surface, that is to say that its mean curvature 

EN—2FM + GL 
2 (EG—F2) 

vanishes identically. From (1.2) it follows then that a1 = 0, and 
(1. 2) and (1. 3) yield the formulas 

A'(0) = 0, A"(0) = \\~[ipHEg-2Ff+Ge) + 
(1.4) 

+ 4 ipz(LN—M2) +Eipl—2Fyuye + Gylldudv. 
If we can choose tp(u,v), subject to the. condition' of va-

nishing on the boundary curve of the region R, so as to make 
A" (0) negative, the function A(e) will have a relative maximum 
for £ = 0, that is to say the given minimal surface 5 will certainly 
not have a minimum area if compared with surfaces bounded by 
the same curve. 

4. Suppose that the minimal surface S is given by the for-
mulas of WEIERSTRASZ 

r x = S r J ( 1 — w^ti^dw, 

(1.5) y = 9i j/(l+w2)/t(tv)Gf»>, 

, z = 9l§2w(i(w)dw, 
where w = u + iv and where /*(w) is an analytic function of w i n 
the closed region R. For the quantities E, F, G, L, M, N, e, f , g 
we obtain the expressions 

£ = 0 = ^ ( 1 + w w ) 2 , F= 0, 

e = g= ,4 , f=0, 
(1+ww) 2 . 

where the bar denotes the conjugate complex number. Substituting 
in (1.4) we obtain the formula of Sdiwarz for the second variation: 

(1.6) A"{0) = 8 f , 2 

dudv. 

The function p(w) does not figure in A"(0), which depends only 
upon the region R and the function if>. 
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5. So we have to find 
a) a JORDAN region # and a function ip (u, v) in R, having 

continuous first partial derivatives in the closed region R and 
vanishing on the boundary of R, and such that the integral (1. 6), 
extended over R, be negative, and 

b) an analytic function ¡¿(w) in R, such that the formulas 
(1. 5) of WEIERSTRASZ carry the boundary curve of R in a one-to-one 
and continuous way into a JORDAN curve in the (x, y, z)-space. 

It is possible to give examples for such a situation without 
reference to the deep existence theorems used by SCHWARZ,6) as 
we are going to show presently. 

6. Consider the function 

<1.7) = for + 

Then 
(1.8) i[>(u,v) = 0 for u2 + v> = t3. 
Put 

(1.9) X(f)= J J 
W 

dudv, 

where £f means integration over O ^ t f + v* <t*. First we observe 
M 

that <2(1 ) = 0. Indeed, using (1.8), we find by partial integration 

l<0 — 8 V / 

( l + a ' + i;')1 du dv, 

and an easy computation shows that the function 
o»+-t>»— 1 

to which xp reduces for r = 1, satisfies the partial differential equation 

So the relation 
(1.10) ¿(1) = 0 
is proved. We show next that 
(1.11) ¿ ' ( 1 ) < 0 . 

6) See, in particular, the second paper of SCHWARZ quoted under s). 
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This can be seen as follows. Substituting (1.7) into (1.9), we 
obtain 

(r) (r) 

We introduce new variables a, § by a—ar,v = j?r and we get 

- f y * ^ ^ -

fit i\a r» 
da dp, 

/1 i o \ + (1 . 12) . O) 
8 ( « a + /9 2— l) a r» 

- J R . (o a + ^ + 1 ) 2 l ) s 

<») 

where the domain of integration (namely the unit circle) is now 
fixed. Hence we can compute ¿'(1) by differentiating under the 
integral sign. We obtain 

(i) 

As « 2 + / J a < l in the domain of integration, the integrand is ob-
viously negative, and (1.11) is proved. From ¿ ( 1 ) = 0 and ¿ ' ( 1 ) < 0 
it follows that we have a o > 1 such that 

(1.13) k(r)<0 for \<r<a. 

It should be observed that it follows from (1.12) that 

16 ( « * + / ? * ) 

^ i l p a + A 2 + l ) 4 

(i) 

dadp for r-*~ + °o, 

that is to say that k(r) does not stay permanently negative f o r r > l . 
7. The inequality (1.13) expresses that if \<r<a, then 

there exists a function ip (u, v), having continuous first derivatives 
for 0 ^ u3+V3 ^ r3, vanishing for = and such that 

JJ dudv< 0. (l+u'+v'f. 
w 

It is easy to complete this result and to show that such a tfj exists 
even for r^a. Consider an r^a. Choose r0,d so that 

\<r0<a, <5>0, rQ + 6<a, 

and define, for 0 ^ u i + v t ^ r l , a function ty as follows. 
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(1. 14) 

u2 + v' — ra , , , . . . 
+ + f 0 r 

V = - ¿ r [("2 + v 2 f - ] [(«••+ - r0 - <5]* 
for r l ^ U 2 + V 2 ^(r 0 + df , 

v = 0 for + + 
This V vanishes for u1 -f w2 = r2, and an easy, computation shows 
that it has continuous first derivatives for us -f- v1 ^ f . Consider now 

( . ; t5 ) + + i f + I f -
" ' • to ( r j (r0, r0 + <5). (r0 + i , r) 

The first integral on the right-hand side of (1.15) is equal to i(r„), 
and so this term is negative, on account of r0 < a. The last term 
on the right-hand side of (1. 15) is zero, and for the second term 
a rough evaluation gives the bound 

'o 
and so this term will be as small as we please, if 6>'Q is chosen 
properly. So we see that by a proper choice of <5 > 0 the fun-
ction 1p defined by (1. 14) will make the integral (1.6) negative. 

8. It follows then, on account of § 1, No. 3 and 4, that the 
formulas (1.5) of WEIERSTRASZ, if considered for ¡u>] sgr, 1 < r , 
give a minimal surface which does not have a minimum area, no 
matter how the analytic function ¡n(w) is chosen. In order to have 
a clear-cut example, this n{w) must be chosen so that the minimal 
surface obtained be bounded by a curve without multiple points. 
A case which permits a simple discussion is fi(w) = 3. The cor-
responding surface is called the minimal surface of Enneper. From 
(1.5) we obtain, putting fi(tv) = 3, the equations of the surface 
in the form • 

(1.16) { y = —3v—3u'lv + v\ . 
I z = 3u2—3v\ i 

We are going to show that if r<f3, then the image of the circle 
a t + vl = i3 by the equations (1.16) is a curve without multiple 
points. Write u = rcos<jny v = rsin<p, where r is fixed according 
to r>Y3. Then x, y, z become functions *(</>), y(rf)> z(<p) of <p, 
the explicit expressions being 
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J x(rp) = [3—r1 ( c o s V - 3 s i n > ) ] rcosy , 
(1.17) -( y(cp) = — [ 3 — r ' i s i n V — 3 c o s » ] r s iny , 

( z((p) = 3i3cos2ip. 
We show that for 
(1.18) Q ^ ( p l < t p 3 < 2 n 
the equations 

x ( f i ) = x ( f t ) , y(<Pi)=y(<P2h 2(^0 = z(g>,) 
cannot be satisfied simultaneously if r < / 3 . Indeed, from 2(9,)=z(q> 2) 
it follows that COS295J—cos2ya = 2sin(9a + 9'i)sin(7'2—yi) = 0, 
that is to say that sin(9».,+91) = 0 or sin(qoa—91) = 0. The only 
possibilities, consistent' with (1.18), are 

I. = ^Pi+ 71. 

II. 9o3 = — ^ j + n;, O s i ^ C - y . 

III. g>, — — qii + 2n,0<(pi<n. 
11 r _ 3f t IV. 9>2= — y i + 37r, J I < 9 ) 1 < - 2 " . 

The equations x(<p1) = x(rp1), y(rpi)=y(92) give then, correspon-
ding to these four cases, the following relations: 

I*, x f o ^ — x(<p,), = — y f a ) , 
that is to say x (91) =)'(<?] ) = °-

II*. x(<pl) = — x(q>,), that is to say x(9 i ) = 0. 
III*. y(fpi) = — y(<pi), that is to say y(q>i)=0. 
IV*. x ( f l ) = — x((p1), that is to say x(y i ) = 0. 

The brackets in (1.17) are both ^ 3 — r*, and consequently 
on account of r< / 3 . Hence, from x ( ^ , ) = 0 it follows that 
cos9i = 0, and from y(<pi)=0 it follows that siny1 = 0. It is then 
obvious that I* is impossible, and that II and II*, III and III*, 
IV and IV* respectively are incompatible* 

§ 2. A uniqueness theorem. 
1. If the functions x(u,v), y(u,v), z(u,v) are continuous in 

a closed JORDAN region R, we shall say that the equations 
x = x (u, v), y=y (u, v), z=z (u, v), (u, v) in R 

define a continuous surface S of the type of the circle. This defi-
nition does not require that the correspondence between the points 
(u, v) and (x, y, z) be one-to-one. 
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Suppose we map, by equations u = u(a, ¡3), v = v{a,(i), 
the JORDAN region R in a one-to-one and continuous way upon 
another JORDAN region R*. The functions x(u, v), y(u,v), z(u,v) 
are transformed into the new~functions x* (a, /3) = x [u (a, /3), v(a, /?)] 
and so on, and we say that the two sets of equations 

x = x(u, v), y=y (u, v), z = z (u, v), (u, v) in R, 
and 

X = X* (a, p), y («, /?), 2 = («, /?), («, ¡3) in R* 

define the same surface, or that these two sets of equations are 
parametric representations of the same surface. 

In the sequel, ' by a surface we always mean a continuous 
surface of the type of the circle. 

2. Consider a surface 
S: x = x(u,v), y=y(u,v), z = z(u,v), (u,v) in R. 

if these equations carry the boundary of R in a one-to-one and 
continuous way into a JORDAN curve I 7 in the (x, y, z)-space, we 
shall say that 5 is bounded by r . 

3. Given a surface 
S : x = x(u,v), y=y (u, v), z = z ( u , v), (u, v) in R, 

consider an interior point (u 0 ,v 0 ) °f R- Map some vicinity of 
(u0, v0) in a one-to-one and continuous way upon a domain of 
an (a,/?)-plane by equations u = u(a, fi), v = v(a,p). The functi-
ons x (u, v), y {u, v), z (u, v) become then functions of a, ¡3 and we 
say that we introduced new parameters in the vicinity of (u0, v0). 

Suppose then that it is possible to introduce new parame-
ters a,/3 in the vicinity of every interior point (u0,v0) of R in 
such a way that 

I. x, y, z become harmonic functions of «, /î, and 
II. x, y, z as functions of «, /3 satisfy thé relations E=G,, 

F = 0, where 
E = xl+fa + z?a, F=xaxf+yayfi + zaz?, G = x | - h ^ + 4 -

Under these circumstances, we shall say that 5 is a minimal sur-
face. Parameters a, /?, satisfying "the conditions I, II for the vicinity 
of an interior point (u0, va) of R, will be called local typical pa-
rameters for (u0) v0). 

4. If we should add the condition EG — F*>0, the minimal 
surfaces in the sense of the preceding definition would become 
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identical to the minimal surfaces considered in differential geometry. 
In differential geometry, the condition EG—F2> 0 is standard. 
On the one hand, this condition secures the existence of the 
tangent plane, and on the other hand, EG — F2 appears in the 
denominators of most of the important quantities studied in diffe-
rential geometry. Our purpose in omitting the condition EG—F2> 0 
and in requiring the existence of typical parameters in the small 
only, is to secure the generality necessary for the applications. 

5. U n i q u e n e s s t h e o r e m . Let there be given, in the 
(x, y, z)-space, a Jordan curve r. Suppose that F has a simply 
covered convex curve as its central or parallel projection upon some 
plane. Then T cannot bound more than one minimal surface. 

6. We are going to state first a lemma which will be used 
in the proof. Let h(u,v) be a continuous function in a JORDAN 

region R. Let (u0, v0) be an interior point of R, and map some 
vicinity of (u0, v0) in a one-to-one and continuous way upon a 
domain in an («,/?)-plane by equations u — u(a, ft), v = v(a,ft). 
The function h(u, v) is then transformed, in the vicinity of (u0, ?;0), 
into the function h*{ a, ft) = h [u (a, ft), v (a, /?)], and we say that 
we introduced new variables a, ft in the vicinity of (u0, v0). 

Suppose it is possible to introduce new variables (a, ft) in 
the vicinity of every interior point (u0, v0) of R in such a way 
that the transformed function h*(a,ft) is harmonic. Then h(u,v) 
will be called a generalized harmonic function; the variables a, ft 
as described above will be called local typical variables. 

Lemma. Let h (u, v) be a generalized harmonic function in 
a Jordan region R. Suppose that after introduction of local typical 
variables a, ft for the vicinity of some interior point (u0, va) of R, 
the transformed function and its first partial derivatives with res-
pect to a and ft vanish at the image (ce0, p0) of (u0,v0). Then the 
function h (u, v) vanishes in at least four distinct points of the 
boundary of R. Moreover; h (u, v) takes on both positive and ne-
gative values on the boundary of R, except in the trivial case when 
h (u, v) vanishes identically. — 

. In the particular case when R is a circle and h (u, v) is 
harmonic in the usual sense, this lemma has been proved in a 
previous paper of the author.6) The proof extends easily to the 

6) The problem of the least area and the problem of PLATEAU, Math. 
Zeitsdirift, 32 (1930), pp. 763—796; see in particular § 2, No 3. 
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above general statement, and the reader is asked to think through 
himself the necessary modifications. 

7. Consider now a minimal surface 
SOI: x = x(u,v), y = y(u, v), z = z («, v), (u, v) in R, 

bounded by a JORDAN curve P . Suppose that the central projection 
of r from some point upon some plane is a simply covered 
convex curve. We can obviously suppose that the center of pro-
jection is the point (0,0, 1), that the plane is the (x, ;y)-plane, 
and that T is below the plane z— 1, that is to say that z < l on 
the whole curve T. From this it follows that 
(2.1) z(u,v)<\ in R. 
Indeed, by the definition of a minimal surface, z(u,v) is a gene-
ralized harmonic function, and it is immediate that such a function 
takes on its maximum on the boundary. 

Denote by R* the JORDAN region bounded by the central 
projection r* of r. The central projection of a point x («, v), 
y(u,v), z(u,v) of the minimal surface 3JI from' the point (0, 0, 1) 
upon the (x,y)-plane is a point with coordinates x — a, y = b, 
where 

1 — z(u, v)' 1 —z(u, v)' 
We are going to show that these equations carry the JORDAN re-
gion R in a one-to-one and continuous way into the JORDAN re-
gion R*. 

8. Consider an interior point (u0,v0) of R; we shall first 
show that the transformation is one-to-one in the vicinity of (u0, v0). 
We introduce, for the minimal surface 2R, locai typical parameters 
in the vicinity of (u0, v0). The vicinity of (u0, v0) is then trans-
formed in a one-to-one and continuous way into a vicinity of 
the image (a0, p0) of (u0, v0), and the functions x, y, z become 
functions x (a, /?), y (a, /¥), z (a, /?) of a, /?. Hence it is sufficient to 
prove that the equations 

carry the vicinity of (a0, ft0) in a one-to-one and continuous way 
into a vicinity of 

a - XQ h - y0 

where x'0=?x(a0f fl0) and so on. 
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As a, ft are local typical parameters for the minimal surface 
SDt, the functions x (a, ft), y (a, ft), z (a, ft) are harmonic and con-
sequently analytic functions of a, ft. As z{a, ft) < 1, a and b are 
also analytic functions of a, ft and the assertion that the transfor-
mation is one-to-one in the small will be. proved if we show that 

AO), (0) 10) .(0) , A att bp —a? ba +0, 

where <№ = aa (a0t ft0) and so on. Suppose a(abf—ap0) &„' = (). 
Then we have two numbers X, n which satisfy the relations 

¿ai0) + /ii>L0) = 0, + = 0, V + 

Substituting the values of d „ , . . . , b f obtained from (2.2), we get 

(2 3) (¿*o0) + p / a ) (1 — + + A*>*o) = 0, 
{Xxf + w f ) (1 - z 0 ) + (Ax0 + iiy^zf = 0. 

Consider now, in the JORDAN region R, the function 
(2.4) A (a, v^HXi+Wo) (z(u, v)-1 )-(*x(u, v) + fiy(u, v)) (z0-1). 

If we introduce, in the vicinity of (ua, v0), the new variables a, ft, 
then h and its first partial derivatives with respect to a, ft vanish 
at (%, fto), as it follows from (2.4) and (2.3). On the other hand, 
h (u, v) is a generalized harmonic function. Indeed, typical local 
parameters for the minimal surface 3JI transform x («, v), y (u, v), 
z (u, v) into harmonic functions simultaneously, and consequently h, 
as a linear combination of x, y, z with constant coefficients, is also 
transformed into a harmonic function. 

Applying then the lemma of § 2, No. 6 to h (u, v), it follows 
that h(u ,v) vanishes in at least lour distinct points of the bound-
ary of . R, and that h (a, v) takes on both positive and negative 
•values on the boundary of R, except if h(u, v) vanishes identi-
cally. This, means that the plane with equation 

<2.5) (Xx0 + ^ y 0 ) ( z - \ ) - ^ x + ^y)(z0-\) = 0 

intersects the boundary curve r of 2)1 in at least four distinct 
points, and that either there are points of on both sides of 
this plane, or else r is entirely situated in this plane. As however 
the plane (2.5) obviously passes through the center of projection 
(0, 0, 1), these conclusions are in contradiction with the assumption 
that the projection of r from (0, 0, 1) upon the (x, y)-plane is a 
simply covered convex curve. 
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9. The formulas 
x (u, v) y(u,v) 

1—z(u,v)' 1 —z(u,v) 
define a transformation of the region R. On account of z (u, v) < 1 
this transformation is continuous. In the preceding No. 8 we pro-
ved tnat the transformation is one-to-one in the small. From the 
assumption that the boundary curve of R is carried in a one-to-one 
way into r and that r is projected in a one-to-one way into r* , 
it follows that the transformation carries the boundary curve of R 
in a one-to-one way into the projection r * of r . Hence we have 
a transformation 

T: a = a(u,v), b — b (u, v) 
with the following properties. T is continuous in the JORDAN re-
gion R. T carries the boundary curve of R in a one-to-one way 
into a JORDAN curve r*, and T is one-to-one in the vicinity of 
every interior point of R. On account of the monodromy theorem 
in topology,7) it follows then that T carries the JORDAN region R 
in a one-to-one and continuous way into the JORDAN region R* 
bounded by r* . Consequently, we can express u, v as single-valued 
and continuous functions of a, b and we obtain then the equations 
oI the minimal surface in the form 

m : x--=x(a, b), y = y(a, b), z = z(a, b), (a, b) in R*, 
where x (a, b), y (a, b), z (a, b) are single-valued continuous func-
tions in R* and satisfy the relations 

z(ab)< 1 a= X(a'b) J = J M _ 

It is important to observe that x (a,b), y(a, b), z(a,b) are 
actually analytic functions of a, b in the interior of R*. Indeed, 
if we introduce local typical parameters a,/? in the vicinity of an 
interior point (u0, ti„) of R for the minimal surface 2ft, then the 
equations 

x = x(a,b), y = y(a,b), z = z(a,b) 
are obtained by eliminating,a, /? from the equations 

x = X (a, P), y = y («, ¿0, 2 == * (a, /S) 
and 

a- 1 -z(a,ß)> 1 -Z(a,ß)-
7) See, for instance, B. VON KER6KJART6, Vorlesungen über Topologie, 

vol. 1 (Berlin, 1923), p. 175. 
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As x (a, ft), y (a, ft), z (a, ft) are harmonic, and as we proved that 
aabft—cijiba is different from zero, x{a,b), y{a,b), z(a,b) come 
out to be analytic functions of a, b, on account of well-known 
Iheorems on implicit functions. 

10. As 1— z(a, ¿>)>0 in R*, we can write 
I -z(a,b) = eu°'h), 

-where C(a, b) is single-valued continuous in R* and analytic in the 
interior of R*. The equations of 2ft appear then in the form 

(2. 6) : x = ae?(a ' y = be^ l \ z = 1 - e i ( a ' (a, b) in R*. 
The first fundamental quantities 

E=xl+yl+zl, F=xaxh + yayh+zazh, G = xl+fb + zl 
have then the expressions 

G = e 2 ? [ ( l + a1 + b2) £i-{- 2 b £ i + 1]. 
]t follows that 

= £¡.+ (1 + 
and consequently 

W* = EG—Fl> 0. 
Thus 9)1, which is a minimal surface in the general sense of the 
definition of § 2, No. 3, is also a minimal surface in the usual 
sense of differential geometry. Hence the mean curvature 

EN—2FM + GL 
2 {EG-F1) 

vanishes. For the second fundamental quantities L, Af, N we obtain 
from (2.6) the expressions 

£ = (.Ca £<I<J)> 

and H = 0 gives then for £ the partial differential equation 

1 ' + [ ( l + a 2 + 6 2 ) ^ + 2 a c a + l ] ? t i - ( C + ^ ) = 0. 
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11. Thus we find that our minimal surface 3ft admits of a 
representation 

2ft: x=ael, y=bel, z=\ — e%, (a,b)\nR*, 
where Ç=Ç(a,b) is single-valued continuous in R* and analytic 
in the interior of R*, and satisfies in the interior of R* the equa-
tion (2.7). The boundary values of f on the boundary curve r * 
of R* are determined by the boundary curve r . Consequently, the 
uniqueness of the minimal surface bounded by the given Jordan 
curve r will be proved if the solutions of (2.7) are univocally 
determined by their boundary values, and this follows directly from 
general uniqueness theorems. 

Indeed, (2. 7) has thé form 
(2.8) P(a, b, Ç,-p, q, r,s,t) = 0 
where P is a polynomial of its arguments and p,...,t stand for 
£ „ , . . . , (it would be sufficient if , P would be a sufficiently 
regular function of its arguments). For a partial differential equa-
tion of the form (2.8) we have then the theorem that the solutions 
are univocally determined by their boundary values provided 

PTPt-P?> 0, P 5<:0. 8 ) 
In our case Pç = 0, and 

PrP, - PI=/>* + q* + (1 + ap + bqf. 
This expression is obviously positive. 

12. The case of the central projection being thus settled, let 
us suppose that the boundary curve r of the minimal surface 2ft 
has a simply covered convex curve as its projection when pro-
jected parallel to some direction upon some plane. The projection 
of r in the same direction and upon a plane perpendicular to 
that direction is then again a simply covered convex curve and 
so it is sufficient to consider the case of the orthogonal projection.9) 

Suppose that we project upon the (x,y)-plane. Denote by 
r* the projection of R and by R* the JORDAN region bounded 

8) A beautiful treatment of this theorem and of related subjects is given 
in the paper of E. HOPF, Elementare Bemerkungen über die Lösungen 
partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, 
Sitzungsberidite der preußischen Akademie der Wissenschaften, mathematisch-
physikalische Klasse, 1927, pp. 147—152. 

9) This case has already been considered, in a somewhat restricted 
form, in the paper of the author referred to under 4). 
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by r* . A reasoning similar to that used in the case of the central 
projection leads in the present case to the following first result 
which we state, with regard to later application, as a 

Lemma. Suppose that the boundary curve r of a minimal 
surface 2JI has. a simply covered convex curve r* as its orthogonal 
projection upon the (x, y)-plane. Denote by R* the Jordan region 
bounded by r*. then 2Ji admits of a representation 

2)i: z=*z{x,y), (x,y) in R*, 
where z (x, y) is single-valued continuous in R*, analytic in the in-
terior of R*, and satisfies in the interior of R* the partial diffe-
rential equation 
(2.9) (1 + P 2 ) f = = = 0 , 
where p, ...,t stand for z„ . . z u y . 

The boundary values of z(x,y) are univocally determined by . 
the given JORDAN curve r . Consequently the uniqueness of the 
minimal surface 2)1, bounded by the given JORDAN curve r , fol-
lows from the fact that the solutions of (2. 9) are univocally de-
termined by their boundary vaiues. This fact has been proved in 
many ways10) and follows, in particular, from the general unique-
ness theorem used in § 2 , No. 11. 

§ 3. Applications. 

1. We shall combine the preceding results with the following 
E x i s t e n c e t h e o r e m . 1 1 ) Let r be a Jordan curve in the 

(x, y, z)-space. Consider all the continuous surfaces S of the type 
of the circle, bounded by r, and denote by a (r) the greatest lower 
bound of their areas A (S), where A (S) is the area as defined by 
Lebesgue. 

. 1 0 ) A;very simple proof might be obtained by using certain convexity 
properties of the area-integrarJJ(L+p2 + 92)1/'RFXD)'; see A. HAAR, Über 
reguläre Variationsprobleme, these Acta, 3 (1927), pp. 224—234. It would be 
interesting to investigate the possibility of a similar .method for the partial 
differential equation (2. 7). 

N ) T.'RADÖ, l o c . c i t . 6 ) ; J. DOUGLAS, S o l u t i o n of t h e p r o b l e m of PLATEAU, 
Transactions of the American Mathematical Society, 33 (1931),- pp. 263—321. 
— For an exposition of the theory of the area; in the sense of LEBESGUE, 
see the .authors paper, Über das Flächenmaß rektifizierbarer Flächen, Math. 
Annaten, 100 (1928), pp: 445-479. . 
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If a(r)<+oo, that is to say if r bounds some continuous 
surface of the type of the circle with a finite area, then there exists 
a minimal surface, bounded by r, the area of which is equal to a(r). 

The condition o ( r ) < + oo is satisfied, in particular, if r is 
such that it has a simply covered convex curve as its central or 
parallel projection upon some plane.12) In this case, on account 
of the uniqueness theorem of § 2, No. 5, the minimal surface is 
also unique. 

2. Consider now the piece of surface 

x^3u + 3uv2-u3, ) 
(3.1) y = — 3v—3u*v + v*, ) 0<zuz + v*^r*, l < r < f 3 . 

z=.3u»-3v>, I 
This'is (see § 1, No. 8) a minimal surface, bounded by a JORDAN 
curve, the area of which is not a minimum. On the other hand, 
as x „ , . . . , ¿„ are bounded, the area of this surface is finite, and 
so the existence theorem of § 3 , No. 1 guarantees the existence 
of a minimal surface, bounded by the same JORDAN curve, the 
area of which is a minimum. That is to say, the equations 

x = 3rcostp—r3tos3<p ) 
(3.2) j/ = — 3rsin9>—/^sinSy, } 0 ^ < p < 2 n , 

z — 3r2cos2<p, I 

determine, provided 1 < r < f3, a Jordan curve which bounds at 
least two distinct minimal surfaces. 

While the catenoids give explicit elementary examples of 
distinct multiply connected minimal surfaces with the same boun-
dary curves,13) it seems that no elementary example has yet been 
given for simply connected minimal surfaces. In our own example, 
one of the two minimal surfaces, bounded by the JORDAN curve 
(3. 2), is explicitly given by the equations (3.1), while a second 
minimal surface is only known to exist.1*) It would be interesting 
to find an elementary explicit example of two minimal surfaces, 
of the type of the circle, bounded by the same JORDAN curve. 

. l s ) Loc. cit. 6), in particular p. 265. 
13) See, for instance, the beautiful chapter IV in the book of G. A. B u s s , 

Calculus of Variations, No. 1 of the Carus Mathematical Monographs (Chicago, 
1925). 

M) The situation is similar in the examples which I was able to find 
in the literature. 

2 
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3 . SCHWARZ, after having shown that a minimal surface gene-
rally does not have a minimum area, asked for conditions under 
which a given piece of a minimal surface does have a minimum 
area. While his methods are restricted to the case of a relative 
minimum,15) we have the following theorem concerning an absolute 
minimum, as an obvious consequence of the statements in § 3, 
No. 1 and § 2, No. 5. 

T h e o r e m . Let there be given a minimal surface 3J2 bounded 
by a Jordan curve r, such thât r has a simply covered convex 
curve as its central or parallel projection upon some plane. Then 
the area of 9Ji is a minimum if compared with the areas of all 
continuous surfaces, of the type of the circle, bounded by r. 

Consider then, in particular, a minimal surface in the 
usual sense of differential geometry. The vicinity of every point 
of 2Jt can be then represented, if for instance the (x, y)-plane is 
parallel to the tangent plane in that point, by an equation z = z(x, y), 
where z(x,y) is single-valued in the vicinity of the (x, ^ - p r o -
jection of the point under consideration. Consequently we have 
on SIK a JORDAN curve r , surrounding the given point, the pro-
jection of which is convex upon the (x, j)-plane. Hence, every 
point on a minimal surface, in the usual sense of differential 
geometry, is comprised in a portion of the surface the area of 
which is a minimum if compared with the areas of all continuous 
surfaces of the type of the circle and with the same boundary. 
Shortly : the area of a minimal surface is an absolute minimum in 
the small. 

4. As a last application, we are going to discuss a general 
statement of S . BERNSTEIN concerning the partial differential equation 
(3.3) ( l+<? 2 ) r -2 /><7s -V( l+ />V = 0. 
Given, in the (x, j>)-plane, a JORDAN curve C, and a continuous 
set of values on C, the boundary value problem for (3. 3) requires 
the determination of a function z(x,y), continuous in and on C, 
analytic inside, and which takes on the given set of values on C. 
S . BERNSTEIN stated, without complete proof, that the-problem is 
always solvable if C is convex, and that the problem is generally 
not solvable if C is not convex.16) We can easily verify this statement. 

15) See loc. cit. 2). 
16) S. BERNSTEIN, Sur les équations du Calcul des Variations, Annales 

de t École Normale, (3) 29 (1912), pp. 431—485; see in particular pp. 484—485. 
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Concerning the second, negative half of the statement, an 
example which allows a simple and complete discussion may be 
obtained, for instance, in the following way. Denote by A, B, C, D 
the vertices of a regular tetrahedron and by r the quadrilateral 
with the sides AB, BC, CD, DA. The orthogonal projection of r 
upon properly chosen planes is then obviously simply covered and 
convex, and consequently (see § 3 , No. 1) there exists a unique 
minimal surface 2Ji bounded by r . Let us first show that 2ft pos-
ses through the center of the tetrahedron A,B,C,D.17) Denote by 
p the plane through A, C and parallel to the edge BD. The ortho-
gonal projection of r upon p is then the simply covered perimeter 
of a square, that is to say the projection is convex. Hence, it . 
follows from the lemma in § 2 , No. 12, that every point interior 
to this square is the projection of exactly one point of 2ft. Apply-
ing this remark to the center of the square, it follows that the 
straight line g, connecting the centers of the edges AC and BD, 
intersects 2ft in exactly one point, which we denote by P. Rotate 
how the figure around the axis g through 90 degrees, and then 
reflect upon the plane passing through the center of the tetra-
hedron and perpendicular to g. Then r is carried into itself, and 
consequently 2ft is carried into itself. For 2ft is carried into a 
minimal surface, bounded again by r , and 2)1 is the only minimal 
surface bounded b y T . The point P is therefore carried into a 
point P' also situated on 2)1. As g is obviously carried into itself, 
P' is also situated on g. But ^ intersects 9ft in exactly one point, 
and thus P and P' must coincide, which is the case if and only 
if P coincides with the center 0 of the tetrahedron A, B, C, D. 
So we see that 9ft passes through O. 

Choose now the plane through A, B, C as the (x, y)-plane, 
and let the z-axis be perpendicular to this plane. The projection 
of the vertex D of the tetrahedron upon the (x, y)-plane is {Sen 
the center O* of the equilateral triangle ABC, and O* is also the 
projection of the center O of the tetrahedron A, B, C, D. 

17) This surface has been explicitly determined by SCHWARZ in his 
paper, Bestimmung einer speciellen MinimalflSche, pp. 6—91 of the Gesam-
melte mathemaiische Abhandlungen. He also stated, without proof, that the 
surface is unique. The fact that the surface passes through the center of the 
tetrahedron can also be seen by using the explicit equations of the surface 
in terms of elliptic functions. It seemed interesting to me that this fact also 
follows by elementary geometry from the uniqueness of the surface. 
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The orthogonal projection of r upon this (x, j>)-plane is the 
simply covered quadrilateral AB, BC, CO*, 0*A. The ¿-coordinate 
of a variable point of r is then a continuous function on this 
quadrilateral, and we assert that using this function as the given 
boundary function, the corresponding boundary value problem is 
not .solvable for the partial differential equation (3.3). Indeed, if the 
solution z(x, y) would exist, the equation z = z(x, y) would define 
a minimal surface, bounded by r and such that no straight line 
parallel to the z-axis intersects the surface in more than one point. 
This minimal surface would coincide with 9ft, as 2JI is the unique 
minimal surface bounded by I,18) and 9K is intersected by the 
parallel to the z-axis through the center of the tetrahedron A, B, 
C, D in two points, one of which is the vertex D, and the other 
one the center O. 

• The" proof of the first, positive half of the statement of 
S. BERNSTEIN is immediate. If the curve C, bearing the given con-
tinuous boundary values, is convex, then the boundary value 
problem requires to determine a minimal surface, given by an 
equation z=z(x,y) and bounded by a JORDAN curve r of which 
C is the simply covered convex orthogonal projection. The exis-
tence theorem in § 3, No. I and the lemma in § 2, No. 12 secure 
therefore directly the existence of the solution of the boundary 
value problem.19) 
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is) Several examples for the non-existence of the solution of the bound-
ary value problem, discussed in the literature without using arguments similar 
to our, uniqueness theorem in § 2, No 5 and our lemma in § 2, No 12, seem 
to be incomplete. 

19) While we only require the mere continuity of the given boundary 
values, previous results have been obtained under more restrictive conditions. 
See, also for references, A. HAAS, Ober das Plateausche Problem, Math. 
Annalen, 97 (1927), pp. 124—258. 


