
Laplacians and continuous linear functionals.') 
B y NORBERT WIENER (Cambridge , U. S. A.). 

A classical theorem of F. RIESZ4) gives as the general repre-
sentation for the continuous linear functional of a function f ( x ) 
of the single variable x the STIELTJES integral 

where a(x) is a function of limited total variation. EVANS and 
others have given an analogous representation of the linear func-
tional of a function f ( x , , . . . , x„) of n variables, in the form of a 
multiple STIELTJES integral 

where « is again in a certain sense a function of limited total 
variation.8) This representation suffers under the disadvantage of 
involving the particular choice of axes x¡, x2. ...,x„ that is, of 

]) Following a conversation I had with Prof. NORBERT WIENER 
about the subharmonic functions and their roll in the theory of the potential, 
he had the kindness to write at my request the present note for my own 
use, in which he gives an outline of the methods invented by him in 
researches covering a period of several years. In the hope, that Prof. WIENER 
will give a systematical exposé ot these researches, I asked him to consent 
to the publication of the present note. F. R. 

s) Sur les opérations fonctionnelles linéaires, Comptes rendus de l'Aca-
démie des Sciences de Paris, 29 nov. 1909; Sur certains systèmes singuliers 
d'équations intégrales, Annales de l'École normale supérieure, t. 28, 1911, pp. 
33—62 ; Démonstration nouvelle d'un théorème concernant les opérations 
fonctionnelles linéaires, ibid. t. 31, 1914, pp. 9—14. 

3) See for instance CH DE LA VALLÉE POUSSIN, Les fonctions à vari-
ation bornée et les questions qui s'y rattachent, Bulletin des sciences mathé-
matiques, (2), 44, pp. 267—296, 1920. 

jf(x)da(x), 
b 

a 
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not being vectorial. The problem of this paper is to give~a vec-
torial, invariantive representation of the continuous linear functional 
of a function of n variables.. We shall take for conveniance n = 3. 

The simplest vectorial differential operator in three variables 
is the Laplacian J . The simplest vectorial integral operator on a 
scalar function of a vector x is the anti-Laplacian, which yields 

\y 
— 00 

The operator which bears to the Laplaeian the same relation which 

the difference operator ~ ( f ( x h) — f(x)) does to the deriva-

tive is the operator 

IK1 
In order to see this last fact, let us suppose that f.(x) is repre-
sentable by the triple FOURIER integral 

00 
f(x)~H\F(u)eiu*du. 

00 

Then (at least formally) 
00 

J f ( x ) ~ j ] J — I « , 2 F(u) i u x d u , 

and 

A2 4 n h 
l s l = A 

^ f { x + x ) d S - f ( x ) 

— 00 

If both F(u) and \ui\F(u) are summable and of summable square, 
it is then easy to prove, by appealing to the three-dimensional 
form of the PLANCHEREL theory of FOURIER transforms,4) that 

*) Contribution à l'étude de I? représentation d'une fonction arbitraire 
par des intégrales définies, Rendiconti di Palermo, 30 (1910), pp. 289—335. 
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The total variation of a function f ( x ) which always has f ( x ) 
between / ( x + 0) and f ( x — 0) may be written in the form 

!!5o \ \ \ f ( x + h ) - f ( x ) \ d x -
h 

— CO 

It is hence reasonable to consider 
X 

li| =A 
as the three-dimensional total variation of a function f ( x ) . Similarly 
to the STIELTJES integral 

8 x 

j f (X) d a (X) = J _ i m o J (a(x + h ) - a (X)) dx, 

— X —X 
there corresponds what we shall write 

X 

r f ( x ) J « ( x ) = J i m o J J J 6 ^ j } « ( * + V) < / S - « ( x ) ) dx. 

I s i =h 
We wish to prove the following analogue of RIESZ' theorem: Let 
a (x) be a function of limited totaf variation. Then 

r f ( x ) J a ( x ) 
is defined and finite for every function f ( x ) whidi is bounded and 
continuous and vanishes as \x\—>-00 by any route. We have 

r f ( x ) J a (x) < max \ f ( x ) \ V(a). 

Conversely, let F \ f \ be a linear functional defined for all functions 
f ( x ) which are bounded and continuous and vanish as \x\—y<x> by 
any route, and let there be a number K such that 

F\f\<Kmax\f(x)\. 
Then there is a function a (x) of limited total variation such that 

F \ f \ = r f ( x ) J a ( x ) . 
This function a (x) is unique except for an additive arbitrary har-
monic function. 

P r o o f . To begin with, let us find a function g(x) such 
that g (x) = 0 for all sufficiently large values of x, that Jg exists 
everywhere and is bounded and continuous, and that 

\f(*)~g(*)\<£ 
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for all x. This is possible, by general theorems on approximation. 
We have 

P M j - w . - ! * J J J ^ t - ^ J J - c + d - s - f w ) . * . -
-» |r| =h 

- » s J ^ w J f a + a ' W M ) * - (A: 

w 

=-\\\«(x)Jg(x)dx. 
—00 

It follows that Pg (x) Ja (x) exists. Furthermore 

lim 
Ù-4-0 

Pg(x)J«(x) — 

<LeV(a). 
Id =A 

As f is arbitrarily small, 
• 0 0 

Pf(x)J«(x) = Hm J j j * № (^JJ«C*+r)</S-«<*, ) 
- » - Ps 1 

exists. The fact that 
P f ( x ) /¡a (x) <. max \ f (x) \ V («) 

is obvious. 
We now proceed to the second part of the1 theorem. Let F\f \ 

be a linear functional and let there be a number K such that 
F\f\<Kmx\f(x)\. 

If / is positive, we make the definition 
G \ f \ = upper bound F j g } 

and we extend the definition of G linearly to non-positive functions. 
It is easy to show that G is a well-defined non-negative linear 
functional, and that 

G{f\<:Kmax\f(x)\. 
If / is positive 

G \ / \ - F \ f \ > 0 . 
Thus every continuous linear functional is the difference between 
two linear functional of positive type. We may hence without 
essential restriction suppose that F is of positive type. 
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We now form the auxiliary function tpr(x), in conformity 
with the conditions 

f - l í T í r [ W 2 r ) 

The functions xpr(x) are all negative, and do not increase with 
decreasing r. Let 

ar(x) = Fl yr(x—v). 

We see that all functions ar(x) are negative, ahd that the sequence 
«r (x) is monotone non-increasing in r. It is easy to show that it 
follows from the continuity of tpn that J jJ xfjr (x —1 r) dx can be 

R 

approximated to uniformly by a finite sum of ipr's, if R is any 
bounded region. From this we can readily conclude that 

J J J « , < ^ = 4 J J « V < r - H to > - F , K f - p ^ p 

R R R 

which is finite. Hence the functions aT(x) form for r - f O a mono-
tone non-increasing sequence with bounded integral, and by a 
familiar theorem from the theory of the LEBESOUE integral, have a 
limit-function a(x), integrable over any R. 

The operator F may readily be extended from continuous 
functions to their limits.5) If we represent the Laplacian as the 
limit of a differencequotient, it follows at once from the continuity 
of F that 

á «r (x) = Fs Jx i/v (x—r) =. FK xr (x—r), 
where 

I 61 b | - 3r . . , . . . 

l\b\ = r] 

It follows that 

4nr3 

0 [ | 6 | > r ] 

J J J * r < 6 ) r f B = l . 
— 00 

Thus if f ( x ) is a continuous function vanishing at infinity, 
5) Cf. P. J. Daniel), Annals of Mathematics. 1920. 
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We have 

Furthermore 

f /J21 Anh 

00 00 

F \ f \ = üm F {JJf/fo) Xr (x— v) dx\ = lim ff dx. 

oo 

— 00 

l i l = A 

r J J V , ( * - 9 + i ) < / S - < / v ( * - i ) ) ) j = 

! s l = A 
OP 

- F ' & ( - ¿ F i f ' Í J Í Í ' 1 S T " * ) + 
I i i = A OD 

=~ i MM) ^ - l ' [ 4^JJ f r ^ ~ 
l s l = A 

00 

= /?» (ÍU Xr(x-\)-y)Zb(y)dy\.. 

Hence 

l l l = A 

= \iiixr(x-V-y)Z*(y)dy | =F,Xb{*-\))=-J«b(x). r—r 0 —oo 
It follows that 

00 

l s l = A 

Thus our fundamental theorem is proved. 
It remains to show that « ' i s unique. This is equivalent to 

showing that if « is of limited total variation and 
F / (x) J a (x) = 0 

for every admissible / , then « is harmonic. We have by (A) 
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« (x) G (x) dx = 0, 
— 00 

whenever G (x) is a continuous distribution generating a potential 
vanishing zt infinity and itself vanishing at infinity. Hence it follows 
by considering special types of / (functions / which depend only 
on the distance from a fixed point) that the mean value of « is 
constant on concentric spheres. By a simple application of K O E B E ' S 

form of the inverse of GAUSS' lemma,6) it follows that a (x) is harmonic-
Let ji(x) be such that 

1 
w\j\jß(x+x)dS-ß(x) 4n№ 

I s l = A 

is non-negative for all x and h. We than call ¡i subharmonic. Let 
us consider a subharmonic function ¡i(x) vanishing as \x\—>-oo 
in such a manner that for all sufficiently large values of R, 

^ ß ( x ) d S ^ O { M R * ) . dR \R». 
M = * 

Then p is of limited total variation. 
To show this, let us consider ¡ih. It is easy to show that this 

satisfies at infinity the same condition with regard to the radial 
derivative of its mean as ¡i itself. Let us put 

:/? Ul —h 
dx. 

Then 

M l P . A M ' - J W « -

uniformly in h. The result is immediately obvious. 
The author wishes to follow the lead of the ordinary theory 

of functions of limited total variation in connecting his work up 
with the theory of trigonometrical developments. For this he needs 

P. KOEBE, Herleitung der partiellen Differentialgleichung der Poten-
tialfunktion aus deren Integraleigenschaft, Sitzungsberichte der Berliner mathe-
matischen Gesellschaft, 5. Jahrgang, 1906, pp. 39—42. 
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the three-dimensional analogue of FEJ^R 'S theorem. The whole point 
of FEJ£R 'S .theorem consists in finding a positive kernel K(x—y), 
which has a trigonometric development approximating in form to 

09 
that of ^ c o s k x cos ky as n—•»oo. 

i 
We form the corresponding three-dimensional kernel in the 

following manner: the FOURIER transform of the function <pr(x) 
defined by 

i ; [ k l < r ] . 
*'<*>= 0 ; [ \x\>r ] 

is 

— 00 — r-

Hence the FOURIER transform of 

^ W - j j f ^ A ^ - ^ J - i T - w + l S l i i - i ^ 
1 0 [ k l > 2 r l 

is 
\Anr f s in \ u \ r . , Yf 

II follows that if 
00 

f ( u ) ~ \ \ \ F ( x ) e i x u d x . 
— 00 

we have 
» 

\x\<21 
An argument precisely like that used to prove the ordinary FEJÉR'S 

theorem will then show that if f (u) is a continuos function which 
is sutnmable and of summable square, 

If in addition 

¡¡¡\F(x)nx*d*=o(r), 
\x\Sir 
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a simple application of the SCHWARZ inequality will show that 

and hence that 

as a convergent infinite integral. 
In proving this theorem, we can replace the continuity of / 

by the weaker condition 

So 4 
\i\~h 

If / has ai bounded Laplacian, we have indeed 

lim 
/r—M 

lim 
h - V o 

AnK1 

\t\~h 
An intermediate condition is 

i)dS-f(x)\=o{\lh) (C) 

UI=A 
uniformly \n x. 

In the study of functions of limited total variation, the author7) 
has found the notion of the quadratic variation of a function very 
useful. The quadratic variation of f ( x ) is 

00 

lim \~\f-(x+h)-f(x)\*dx. 
a — J n — 00 

An analogous expression in the three-dimensional case is 
oo 

- a JJ3* I *>is- H'" -
w 

oc 

f(x)~\tfF(u)elu-*<tu, 

7) N. WIENER, The quadratic variation of a function and its Fourier 
coefficients, Journal of Mathematics and Physics of the Massachusetts Insti-
tute of Technology, 3, pp. 72—94. 
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we have 

a ^ - A F j i W - ' r i w ^ 
— 00 

It is easy to see that (C) implies that Qi (/) = 0. Under these 
conditions, we see at once that 

l i m h f l f \n\*\F(u)\*du = 0. 

It is thus clear that if f ( x ) is a function of limited total 
variation, and is summable and of summable square, and if condi-
tion ( C ) is fulfilled, then the FOURIER integral of f converges uni-
formly to f . 

The expression Qi(f) is one of the hierarchy of expressions 

Id 
00 

Iii=A 

» » - J S . i J i f l ^ r i i / c + ^ s - m A—M 
1-51=A 

2 
dx. 

If / is of limited total variation, it is easy to show that Qi(f) .is 
finite, and if the distribution generating / contains point charges, 
Qa and Q s are infinite. If the charges of the charge distribution 
generating / are distributed continuously on a smooth curve Q3 is 
infinite If the charges of the charge distribution generating / are 
distributed continuously on a smooth surface, all three are finite. 
We can thus regard the functions of limited total variation for 
which Q3 and Qi respectively are finite as the natural generaliza-
tions of finite line and finite surface distributions, respectively. 

(,Received October 20, 1926). 


