Laplacians and continuous linear functionals.')
By NoreertT Wiexer (Cambridge, U. s. A).

A classical theorem of F. Riesz®) gives as the general repre-

sentation for the continuous linear functional of a function f(x)
of the single variable x the StieLTjes integral

ff(x)da(x)

where a(x) is a functlon of --limited total variation. Evans and
others have given an analogous representation of the linear func-
tional of a function f(x,,..., x,) of n variables, in the form of a .
multiple StieLTies integral : :

J‘J‘ LA J‘f('xl‘ X, - - 'b: xn) dxlv X9y 01 Xg « (xl» Xgy oot xn);

where « is again in a certain sense a function of limited total
variation.?) This representation suffers under the disadvantage of -
involving the particular choice of axes x,,x.. ...,x, that is, of

1) Following a conversation 1 had with Prof. NORBERT WIENER
about the subharmonic functions and their roll in ihe theory of t}ie potential,
he had the kindness to write at my request the present note for my own
use, 'in which he gives an outline of the methods invented by him in
researches covering a period of several years. In the hope, that Prof. WIENER
will give a systematical- exposé of these researches, 1 asked him to consent
to the publication of the present note. . F.R.

2) Sur les opérations fonctionnelles linéaires, Comptes rendus de I'Aca-
démie des Sciences de Paris, 29 nov. 1909; Sur certains syst¢émes singuliers -
d’équations intégrales, Annales de VEcole normale supérieure, t. 28, 1911, pp.
33—62; Démonstration nouvelle d’un théoréme concernart les opérations
fonctionnelles linéaires, ibid. t. 31, 1914, pp. 9—14.

8) See for instance CH. DE LA VALLEE Poussiy, Les fonctions A vari-
ation bornée et les questions qui 8’y raltachent, Bulletin des sciences -mathé-
matiques, (2), 44, pp. 267—296, 1920. ’
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not being vectorial. The problem of this paper is to give™a vec-
torial, invariantive representation of the continuous linear functional
of a function of n variables. We shall take for conveniance n = 3.

The simplest vectorial differential operator in three variables
is the Laplacian 7. The simplest vectorial integral operator on a
scalar function of a vector x is the ‘anti-Laplacian, which yields -

==k [[] 1

- The operator which bears to the Laplaeran the same relation which
the difference operator ( f(x+ h) f(x) does to the deriva-
tive is the operator B

i | D as —1o) {
lti=h

In order to see this last fact, let us suppose that f.(x) is repre-
~ sentable by the triple Fourier integral

f(x)r-vf”F(u)em T dn.
~Then (at least formally)

Jf(x) NJ” —|u2F(u) _ei”'xdu,

and . . ‘
e F 0 ds — s )|~
lsi=h ©
~ ﬂf sin f’“'l’” —1{ F ¢~ du.

Ifboth F(u) and |#®| F (u) are summable and of summable square,
it is then easy to prove, by appealing to the three-dimensional
form of the PLANCHEREL theory of Fourier transforms,*) that '

4,,,,2ﬂf(x+1)d8 ~1){ =5

fsl=h

l.m —
=0 h2

4) Contribution 4 P’étude de la représentation d’une fonction arbitraire
par des intégrales définies, Rendiconti di Palermo, 30 (1910), pp. 289—335.
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'The total variation of a function f(x) which always has f(x)
between f(x4 0) and _f(x——O) may be written in the form

iim j TG+ =1 dx.

It 1s hence reasonable to consider
V(f):hl_iT0 U‘ w17 h"f f(x+1)dS f(x) dx
isl=h -

as the three- dlmensnonal total variation of a function f (). Similarly
to the STIELTJE: integral (

f f@dagg= im [f—(,i‘)—(e(x+h)—a(x)>dx,

—@

there corresponds what we shall write

1060, T et 065 )
—a0 |z =
We wish to prove the following analogue of Riesz theorem : Let ,
a (x) be a function of limited totaf variation. Then
rf(x)4a(x)
is defmed and finite for every function f(x) which is bounded and
continuous and vanishes as |x|—»oc by any route. We have

Ff(x)Ja(x)<max|f(2)|V(a).
Conversely, let F}{ f } be a linear functional defined for all functions

f (x) whidh are bounded and continuous and vanish as |z |=#co by
any route, and let there be a number K such that

Fif} <kmax|f(z)].

Then there is a function a(x) of limited total variation such that

F UVfl=rf@ 1a(x).
This function a (x) is unique except for an additive arbitrary har-
"monic function. '
Proof. To begin with, let us find a function g(z) such.
‘that g (¢) =0 for all sufficiently large values of.r, that ./g exists
everywhere and is bounded and continuous, and that '

f@)—g@)|<e
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for all x. This is possible, by general theorems on approxlmatlon.
- We have

Vg(x).da(x)— lim Jf 6’%’) (47”2 Ua(x+1)d8—a(x))dx_

ltl—

nh—n-: 0.[[ Gf;lg-z‘) ( ppre ﬂg(x—i—;)ds —g(x)) (A)

Isl—

= J‘J.J. «(x)1g(x)dx.

It follows that Fg (x) da (x) exists. Furthermore
Vg(x)de(x) —

_ﬂfﬁf(x)(4 . ﬂ a(x-—l-r)dS-a(x))dx

lsl=h

lim
-0

<eV(a).

As' ¢ xs arbltranly small,

7f(x)da(@)= lim H J @) ( . hzﬂa(er r)dS—a(x))

. fsl=

exnsts The fact that
. ¥ f(x)de(x) < max|f(z)| V()
is obvious, - , o

We now proceed to the second part of the' theorem. Let F{ f}
~ be a linear functional and let there be a number K such that

. Fif} <K max|f(z)|.
lf fis posmve, we make the definition

Gift= upper bound Flg}

and we extend the definition of G lmearly to non-positive functlons,
It is easy to show that G is a well-defined non- negatwe lmear
functional, and that. '

Gift<Kmax|f(z)|

Girt—Fift>o.

Thus every continuous linear functional is the difference between-
two linear functionals of positive type. We may hence without.
essential resiriction suppose that F is of positive type.

If f is positive
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We now form the auxlhary function 1, (), in conformity
‘with the conditions :
[
[~ ggars Uz
"”'(’):l 2|z —3r| 2|
4nrd
The functions vy, (z) are all negah_ve,i and do not increase with
decreasing r. Let

s [lzl<rl.

e () =F Y (x—1). -
“We see that all functions «,(z) are negative, and that the sequence
«.(x) is monotone non-increasing in r. It is easy to show that it
follows from' the continuity of v, that ([[y,(x —1)dx can be
R

approximated to. uniformly” by a finite sum of y,’s, if R isany -
bounded region.' From this we can readily conélude that

Jﬂ o @) dzr—F; ﬂf Velw iz - fﬂ =R

'whxch is flmte Hence the functions e, (x) form for r—+0 a mono-_
fone' non-increasing sequence with bounded integral, and by a
familiar theorem from the theory of the Lesesaue integral, have a
limit-function e(x), integrable over any R.

, The operator F 'may readily be -extended from continuous
functions to their limits.5) If we represent the Laplacian as the
limit of a differencequotient, it follows at once from the conhnuny
of F that

Z“r(x);:FE ‘Jx l/’r(x‘—lf):F;xr(x—_".t),

where ] |
' {6|b|—23r
—2aiys) 0 L101<r]
z'(b):l = (TR
' 0 -~ [Ibj>r]
It follows. that : -)

ﬂ 2 (6)db6=1.
. Thus if f(x) is a continuous functlon vanishing at mf:mty,

8) Cf. P. J. Daniell, Annals of Mathematics, 1920.
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Fifl= iim F {_ﬁ[ f@) 2 (x—1) dz) -=rnmof[l'/(x).f_a,(x) dx.
We have
lp,(x) JIJ O %r (.r r)dr.

g ] et ds—“r(‘)) -

ltl=h

=F, ) % (zﬂlﬁﬂtﬁ.(x—twy)ds - t/',(x—t)))z =

igl=

h
—F,zh2(4 higg ( 4,,H T Zr(x—y+1— y)dy)
| -FMﬂJ T x.(x t)—y)dy 2
- —%Fv'g%ﬂ"'(’ Y [mnilghmu i Tl“k

=F, {_m 1(x—y—3) is(y)dy }

Furthermore

Hence

h°(4 h'ﬂ “ot ‘)ds"“("))

Itl=h
== hm F., ””z,. x—x)—y)x,,(y)dy}:F.,x,,(x—x)) Ja,,(x)

It follows that

Fift = lim ﬂ 61;1(,“’)( . J J a(x-{—l)dS—a(x))dx—ff(x)Ja(x)
: lst=h
. Thus our fundamenlal theorem is proved,
It remains to show that «’is unique. This is equivalent to.
showing that if « is of limited total variation and
Ff(x)da(x)=0 :
for every admissible f, then « is harmonic. We have by (A)
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. ®

m «(x) G(x)dx — 0,

whenever G (z) is a continuous distribution generating a potential

vanishing 2t infinity and itself vanishing at infinity. Hence it follows

- by considering special types of f (functions f which depend only

on the distance from a fixed point) that the mean value of « is

constant on concentric spheres. By a simple application of Koese’s

form of the inverse of Gauss’ lemma,9) it follows that e (x) i is harmonic-
Let /f(x) be such that :

o || Ble+0as -5

lsi=h
is non-negative for all » and h. We than call g subharmonic. Let
us consider a subharmonic function #(x) vanishing as |x|—>oo
in such a manner that for all sufficiently large values of R,

dR R,J_ﬂ()as = O(U/RY)

Then @ is of limited tolal variation.

To show this, let us consider 3. It-is easy to show that this
satisfies at mfmlty the same condition with regard to the radial
denvatlve of its mean as ‘i itself. Let us put

Jﬂ /?’ ’ Anh® ﬂﬁ(xﬂ)ds—#(x)'dx

it|=Ah

Then
v,,_ﬂ Jﬂh(x)dx_-ﬂ ”"(x) dS—
<R
"”d;e R2 fﬂ.,(x)dS( o),
z

umform]y in h The result 1s 1mmed1ately obvious.
~ The author wishes to follow the lead of the ordinary theory
of functions of limited tofal variation in connecting his work up
- with the theory of trigonometrical developments. For this he needs

8} P. KoesE, Herleitung der partiellen Differentialgleichung der Poten- .
tialfunktion aus deren Integraleigenschaft, Sitzungsberichte der Berliner mathe-
matischen Gesellschaft, 5. Jahrgang, 1906, pp. 39—42.
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the three-dimensional analogue of Fejer’s theorem. The whole point
of Fejer’s theorem consists in finding a positive kernel K(x—y),
which has a trigonometric development approximating .in form to

that of 2 COS kX COS ky as n—»oo,

We form the corresponding three- dimensional kemel in the -
following manner: the Fourier transform of the function (p,(x)
defined by '

s [xl<r),

)= o} el 1]

-ﬂfrp,(x)e dx—jno —mel*far— (%'{‘—"—coslu!r)-

Hence the FouRiER transform of .

: 4r 2 EdN
0.-(#)=JHq>,(g)¢p,(x-—g)dg=’_{n(——"l |+ ) [lz|<2n]
- 0 [l+]>2A

18

'll follows that lf
(u)ijjr(x) =g

we have : ' |
Wffjf() [— -g|4[Silr‘li:rf[r—coslu_—v]r]?@=_‘
—ﬂ [ F(x)( 3| lelt) e g,

l#|<2r
An argument precisely like that used to prove the ordinary Fejer’s
theorem will then show that if f (%) is a continuos funchon whrch
is summable and of summable square,
s [ - e
o g2 ’ C
If - m addition

- JiF@rie *dx—o(r)

|xl<2r
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a simple application of the Scuwarz inequaliiy will show that

' 3|z 'xis) lx.u ,
el
|lxig2r -

and hehce that

ﬂ:l Fo)e**de—f(u |

as a convergent infinite integral. :
.In proving this theorem, we can replace the contmulty of f
by the weaker. condition

Jlim. 4nhzjf(x+g)d3 —f).
© lzl=h

If f bas a bounded Laplacian, we have indeed

: 1 ]
';.I-m-:o (W.’[[f(x+1j)d8 _—f(x)g = O(i/R?).
lei=h
“An intermediate condition is ‘
v (f ] ' '
:.I-I-To W;U,,f(x+ 1 dS ——-f(x)_ =0 (1/h) (C‘)
L k=

umformly in 2. :

' In the study of functions of limited total variation, the author?)
has found the notion of the quadratic variation of a functlon very
useful. The quadratic variation of f(x) is :

-

lim J,,lf(x+h) £ 2dx.

An analogous expressnon in the three-dimensional case is

@

Q) ——;l'm J]I e

If .

|2
gy J]-f(x—{- 1) dsS— f(x)I de.

lgl=h

f(x) fgl_[l' F(u) ™ * du,

7) N. Wiexer, The quadratic variation of a function and its Fourier
coefficients, Journal of Mathematics and Physics of the Massachuselts Insti-
{ute of Technology, 3, pp. T2—94.
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we have
sin h|#|

&0 ’,,,'_‘To FU " hlul

It is easy to see that (C) implies that Q, (f) =0. Under lhese'
conditions, we see at once that

lim h |f|u|4|F(u)|2du—o
" <y
It is thus clear that 1f f(x) is a function of limited total
variation, and is summable and of summable square, and if condi-
_ tion (C) is fulfilled, then ihe Fourier integral of f converges uni-

formly to f.
The expression Q,(f) is one of the hierarchy of expressions

-

2
- 1‘ |F(1) 2 dse

2

@)= im &[] | | 1e+0ds - 1|0

-0
— Izl=h

2

) Q,(ﬂ;hwo hifﬂ #[ fa1)dS—F @) dx;'

] —o - ltl=h
.6 ( 1 ' ) z
Qs(f) =,hl—l-n;0 T[ﬁ m-_l'—lff(:&‘—}- 1‘) dS—f(x) dr.

~ If f is of limited total variation, it is easy to show that Q,(f) is
finite, and if the distribution generating f contains point charges,
Q. and Q, are infinite. If the charges of the charge distribution
generating f are distributed continuously on a smooth curve Qs is
-infinite If the charges of the charge distribution generating f are
distributed continuously -on a smooth surface, all three are finite.
~We can thus regard the functions of limited total variation for
which Q, and Q, respectively are finite as the naiural generaliza-
tions of finite line and finite surface distributions, respectively.

(Received October 20, 1926).



