
Università di Pisa

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in Veicoli Terrestri e Sistemi di
Trasporto, XXV Ciclo

Settore Scientifico Disciplinare ICAR/05

SIMULATION OF A CAR-SHARING
TRANSPORT SYSTEM FOR URBAN MOBILITY

Dottorando:
Alessandro Farina

Relatore:
Dott. Ing. Elvezia Maria Cepolina

Coordinatore del Dottorato:
Chiar.mo Prof. Ing. Roberto
Roncella

Pisa, Febbraio 2013

INDEX

LIST OF SYMBOLS

LIST OF FIGURES

LIST OF TABLES

SUMMARY

ABSTRACT

INTRODUCTION 1

1. THE CONTEXT 5

Introduction 5

1.1. Urban mobility 6

1.1.1. Main problems related to road congestion in urban areas 6

1.1.1.1. Air pollution 6

1.1.1.2. Road accidents 6

1.1.2. The development and the main problems of historical city centres 8

1.2. Current trends. 13

1.2.1. Massive growth of urbanization 13

1.2.2. The ageing of society 14

1.3. Policies and strategies to improve sustainable mobility in cities 16

1.3.1. Policies aimed to reduce the emissions of vehicles 16

1.3.2. Measures aimed to discourage private transport 17

1.3.2.1. Restriction of private transport in some zones of the cities 17

1.3.2.2. Road pricing, park pricing 17

1.3.3. Improvement of public transport 18

1.3.3.1. Improvement of conventional public transport 18

1.3.3.2. Car sharing 19

1.3.3.3. Bike sharing 20

1.4. The PICAV transport system 21

1.4.1. The PICAV vehicle 22

1.4.1.1. The power system 24

 I

1.4.1.2. The traction and the roll control mechanism 25

1.4.1.3. The seat 25

1.4.1.4. The sensors 26

1.4.1.5. The human machine interface 26

2. STATE OF THE ART ON CAR-SHARING SYSTEMS 29

Introduction 29

2.1. Car sharing systems 29

2.1.1. Overview 29

2.1.2. History 31

2.1.3. First generation car sharing systems 32

 2.1.3.1. Some examples of first generation car sharing systems 33

2.1.4. Second (new) generation car sharing systems 37

 2.1.4.1. Main features of the new generation car sharing systems 37

 2.1.4.2. Some examples of new generation car sharing systems 37

 2.1.4.3. Operator based relocation strategies 38

 2.1.4.3.1. Where and when a relocation is required? 38

 2.1.4.3.2. Which is the supporting station? 38

 2.1.4.3.3. Performance of the criteria used for selecting the

 supporting station 39

 2.1.4.3.4. Demand forecasting 40

 2.1.4.3.5. How is the relocation performed? 40

 2.1.4.3.6. Performance of the ridesharing relocation techniques
 41

 2.1.4.4. User based strategies 43

 2.1.4.5. Autolib’ 43

2.1.5. Third generation car sharing systems 46

 2.1.5.1. Some examples of third generation car sharing systems 46

2.2. Bike sharing systems and their relocation procedures 48

2.2.1. Bike sharing in Italy 48

2.2.2. The Barclays Cycle Hire 50

2.2.2.1. Operation 51

 II

2.2.2.2. Docking stations 51

2.2.2.3. Relocations 52

2.2.2.4. Costs 52

3. THE PROPOSED TRANSPORT SYSTEM 54

Introduction 54

3.1. Main characteristics of the proposed transport system 55

3.1.1. The network representation 55

3.1.2. Trip typologies. 55

3.1.3. Communication and system management. 56

3.1.4. Maintenance and refuelling 57

3.1.5. Night rebalancement 57

3.2. Relocation strategies 57

3.2.1. The first management strategy: flexible users 57

3.2.2. The second management strategy: automated vehicles 59

3.2.3. The third management strategy: capillarity 61

3.2.4. Transport system modelling and simulation 61

4. MODELLING AND SIMULATION OF THE PROPOSED TRANSPORT SYSTEM
 63

4.1. Introduction on modelling and micro simulation 63

4.2. Object-oriented programming 65

4.2.1. From non structured programming to object oriented 66

4.2.2. Object oriented programming vs. procedural programming 66

4.2.3. Classes, objects, attributes and methods 66

4.2.4. Abstraction 68

4.2.5. Relations among classes 68

4.2.6. Encapsulation 69

4.2.7. Polymorphism 69

4.2.8. Cohesion and coupling 69

4.3. The modelization of the proposed transport system 70

4.3.1. The main aspects taken into account 70

 III

4.3.2. Object-oriented programming vs. simulation: objects and methods to
modelize entities and events 71

4.3.3. Permanent and temporary objects. Versatility of the output data provided by
the code 72

4.3.4. Storage of objects in lists and dictionaries 72

4.4. Inputs and outputs of the micro simulator 73

4.4.1. Input data 73

4.4.2. Output data 76

4.5. Description of the micro simulator 77

4.5.1. The file inputdata.py 79

4.5.2. The file OD matrix.py 81

4.5.3. The file distances slopes.py 82

4.5.4. The file attractivity units.py 83

4.5.5. The file input manipulation.py 83

4.5.6. The file Simulatore.py 84

4.5.7. Class Simulator 84

4.5.8. Class User 87

4.5.9. Class Picav 88

4.5.10. Class Parking 90

4.5.11. Class Supervisor 91

4.5.12. Class Sections 91

4.5.13. The file Chiamasimulatore.py 92

4.6. The simulator debugging 93

4.6.1. First simulator debugging 94

4.6.2. Debug performed by checking some specific simulator parameters 97

4.6.3. Modifications to the simulator after debugging. 98

4.7. The sub-models contained in the simulator. 98

4.7.1. The model between vehicle speed – pedestrian density 98

4.7.2. Model of the vehicle battery 100

5. THE OPTIMIZATION PROCEDURE 104

 Introduction 104

 IV

5.1. Optimization 104

5.2. Introduction on heuristic algorithms 108

5.2.1. Constructive algorithms 109

5.2.2. Local search algorithms 110

5.2.3. Meta-heuristic algorithms 111

5.2.4. Simulated Annealing 112

5.2.5. Genetic Algorithms 113

5.2.6. Tabu Search 114

5.3. The optimization algorithm 116

5.3.1. The cost function 116

5.2.1.1. The independent variables for the management strategy involving
flexible users 119

5.2.1.2. The independent variables for the two management strategies
involving automated vehicles 121

5.3.2. The Simulated Annealing procedure 122

5.3.2.1. The cooling schedule 124

5.3.2.2. The transition rule 125

5.3.3. Parallel optimization 125

5.4. Description of the optimization code 127

5.4.1. Description of the code 127

5.4.1.1. Initialization – first iteration: 127

5.4.1.2. Second iteration: 129

5.4.1.3. Body of the algorithm 130

5.4.2. Debug of the algorithm 131

6. CALIBRATION, VALIDATION AND COHERENCE ANALYSIS OF THE
PROPOSED TRANSPORT SYSTEM 133

Introduction 133

6.1. Calibration of the optimization algorithm and of the micro simulator 133

6.1.1. Introduction on the problem 133

6.1.2. Calibration of the micro simulation model 134

6.1.2.1. Calibration of the threshold values 134

 V

6.1.2.2. Calibration of the law of users’ arrivals 135

6.1.2.3. Calibration of the battery management 135

6.1.2.4. Calibration of the models contained in the simulator: the battery
charging and discharging law and the model of interaction PICAV –
pedestrians 135

6.1.3. Calibration of the model of interaction vehicles/pedestrians 136

6.1.3.1. Data collection 136

6.1.3.2. The density-velocity model calibration 137

6.1.4. Calibration of the optimization parameters 140

6.1.4.1. Calibration of the cooling schedule 140

6.1.4.2. Calibration of the transition rule 141

6.2. Validation of the model under study 142

6.2.1. Theoretical introduction on the validation problem 142

6.2.2. Validation of the simulator 143

6.2.3. Validation of the speed-density relationship 144

6.3. Analysis of coherence of the model’s hypothesis 145

6.3.1. Relocation strategy 146

6.3.1.1. Necessity to relocate 146

6.3.1.2. Flexibility of users 146

6.3.1.3. Automation of vehicles 146

6.3.1.4. The opportunity charging technique 146

6.3.1.5. The network representation 147

6.3.1.6. The speed density relationship and its features 147

7. GENOA CASE STUDY 148

Introduction 149

7.1. The scenario under study 149

7.1.1. Transport modes in the urban area of Genoa. 149

7.1.1.1. Conventional public transport 149

7.1.1.2. Car-sharing and bike-sharing systems. 149

7.1.1.3. Private transportation 151

7.1.2. The historical city centre 154

 VI

7.1.2.1. Tourist attractions. 154

7.1.2.2. Commercial activities. 154

7.1.3. The representation of the scenario under study 156

7.2. The transport demand 159

7.2.1. The total transport demand 159

7.2.2. Interviews. The share of the transport demand in trip typologies 159

7.2.3. Temporal distribution of the transport demand 162

7.2.4. Spatial distribution of the transport demand 163

7.2.5. The assessment of the choice set of flexible users 167

7.2.6. Demand OD matrixes 168

7.2.7. Arrival time instant 169

7.3. The network 171

7.4. Calibration of the micro simulator’s parameters, determination of the remaining
inputs 173

7.5. Output data 174

7.5.1. Performances of the proposed transport system 174

7.6. Conclusions 178

8. BARREIRO CASE STUDY 181

8.1. Introduction. The study case. 181

8.2. Data collection. 184

8.2.1. The transport demand 184

8.2.1.1. Road transport 186

8.2.1.2. Bus transport 187

8.2.1.3. Rail transport 188

8.2.1.4. Fluvial transport 189

8.2.1.5. The assessment of the demand OD matrix 190

8.2.2. The network 191

8.2.3. Calculation of the other micro simulator’s inputs 192

8.3. Output of the simulator and conclusions 193

9. SENSITIVITY ANALYSIS 195

 VII

 VIII

Introduction 195

9.1. Sensitivity analysis for what regards fleet dimension and thresholds 195

9.1.1. No relocation 196

9.1.2. First management strategy: flexible users. Genoa case study 196

9.1.3. Second management strategy: automated vehicles. Genoa case study
 196

9.1.4. Second management strategy: automated vehicles. Barreiro case study
 201

9.1.5. Third management strategy: capillarity. Genoa case study. 203

9.2. Sensitivity analysis on the transport demand 206

9.2.1. Increase of all the transport demand by 30%. 206

9.2.1.1. Genoa case study 206

9.2.1.2. Barreiro case study 207

9.2.2. Unbalancement of the transport demand. 207

9.2.2.1. Genoa case study 207

9.2.2.2. Barreiro case study. 207

CONCLUSIONS AND FUTURE WORK 208

REFERENCES 211

APPENDIX A. Code of the micro simulator

1. The file “inputdata.py” 217

2. The file “OD_matrix.py” 219

3. The file “distances_slopes.py” 221

4. The file “input_manipulation.py” 222

5. The file “simulatore.py” 235

6. The file chiamasimulatore.py 282

APPENDIX B. Code of the optimization algorithm 284

LIST OF SYMBOLS

I Instance of a minimization problem

zA(I) Value of the solution provided by the heuristic algorithm A.

z*(I) Optimum value of the instance

S Solution of an optimization algorithm

P Optimization problem

f Generic objective function

F Feasible region in an optimization algorithm

N(s) Neighbourhood of a solution s

pij Probability of moving from a solution i to a solution j in a Simulated

Annealing algorithm

δE Increase in energy in Simulated Annealing algorithm

k Boltzmann constant in Simulated Annealing algorithm

T Temperature in Simulated Annealing algorithm

T Tabu List in Tabu Search algorithms

t Tabu tenure in Tabu Search algorithms

z Cost function, which has been minimized in the thesis, and which takes

into account system’s cost and users’ cost

g(s) Constraint of the optimization problem of the thesis

Cd

 s Transport system’s cost in the objective function z

Cd

 u Users’ cost in the objective function z

50
wt 50th percentile of users’ waiting times, in minutes

 IX

90
wt 90th percentile of users’ waiting times, in minutes

95
wt 95th percentile of users’ waiting times, in minutes

f

dC Cost of the fleet in the objective function z

run
dC Cost of system’s running in the objective function z

su
dC Cost of system’s setup in the objective function z

man
dC Cost of system’s management in the objective function z

ts
dC Cost of the tickets in the objective function z

nv PICAV fleet dimension

cv PICAV fleet purchase cost

r Discount rate in the objective function

lt PICAV vehicle lifetime in years in the objective function

r
dC Daily cost of relocation in the objective function z

cr Cost of each minute of relocation

trj Time spent in relocation by the jth vehicle

cw Cost of a unit of waiting time = 0.10 €/min in the objective function

t wi Waiting time of the ith user in minutes in the objective function

s Vector solution of the optimization algorithm. Its components are: the

number of vehicles at each station at the beginning of the simulation for the
first management strategy; fleet dimension, low critical threshold and low
buffer threshold for the other two strategies

f(s) Cost function, equal to z but without the flat terms

Na Research space; for the first management strategy a = number of stations

 X

h(s) Cost function value, with the penalty term

gi (s) i-th constraint (i = 1, 2 or 3) of the optimization problem

μ̂ Weight of the penalty function (penalty factor)

β Multiplicative coefficient of the penalty coefficient: namely 1k kμ βμ+ =

α Coefficient of temperature reduction: usually 0.7 ≤ α ≤ 0.95

p0 Probability of accepting the worse solution at the initialization of the

Simulated Annealing algorithm.

T0 Starting temperature of the Simulated Annealing algorithm

Tk Temperature at the generic step k of the Simulated Annealing algorithm

p Probability of choosing a worse solution in the Metropolis algorithm

sn The new vector solution in the Simulated Annealing algorithm

s* Current vector solution and departure point for the successive iteration of

the parallel optimization. Or, vector solution which minimizes the penalty
function hk in a given iteration. See section 5.3.1.1. for further details.

fob Cost function in an optimization problem

cv Daily amortization cost of each vehicle

μ Penalty coefficient

k Pedestrian density (pedestrian/m2)

new
obf Objective function calculated at the current iteration of the Simulated

Annealing algorithm

old
obf Objective function calculated at the previous iteration of the Simulated

Annealing algorithm

ra Initial acceptance ratio of the Simulated Annealing algorithm

 XI

v PICAV vehicle’s speed

a Acceleration of the vehicle in the vehicle – pedestrian model and in the

formula for calculating resistances to motion

g Variable which can assume only two values, either 0 or 1, in the vehicle –

pedestrian model

a, b, c, d, e Coefficients of the polynomial vehicle – pedestrian model

a, b Coefficients of the exponential or logarithmic vehicle – pedestrian model

ko Threshold in the density for what regards the discontinuous linear model

vehicle – pedestrian

P Weight of the vehicle and of the occupant in kg in the formula for

calculating resistances to motion

g Constant of universal gravitation

cr Rolling coefficient: i.e. specific resistance to rolling, in the formula for

calculating resistances to motion

i Average slope in ‰, in the formula of the resistances to motion

ρa Air density

Cx Aerodynamic coefficient

S PICAV vehicle section, in the formula of the resistances to motion

R Total resistance to motion

SOC State of charge of the battery

Qe Quantity of electricity supplied

C Battery capacity

Um Battery voltage

Ee Energy supplied by the battery

 XII

 XIII

PDC Power in entrance to the inverter

Fr Force at the wheels

ηc Efficiency of the inverter

ηm Efficiency of the engine

Pr Power at the wheels

LIST OF FIGURES

Fig. 1.1. death index according to the various typology of vehicles. As shown in the figure,
the “weak” users, such as bicycles and motorbikes, register the higher percentage of deaths.
(Source: ISTAT, 2012).

Fig. 1.2. The project for the urbanization of Miletus, traditionally attributed to Ippodamus
(Miletos Stadt Plan).

Fig. 1.3. An access gate of the Early Middle Aged walls conglobated in the buildings.

Fig.1.4. The development of Bologna historical city centre: the Roman city (contoured by
the blue line in its final development), the early-middle aged city (contoured by the red line,
the walls were built in year 1000), the outer walls (the black line). The outer walls were
built in the thirteenth century and have been demolished at the beginning of the twentieth
century. (Source: archeobo.arti.beniculturali.it)

Fig. 1.5. A screenshot of the most inner part of Bologna centre. The Roman city is the part
circled in blue, the early middle aged city is circled in red. The roads clearly show the
characteristics described above (Source: archeobo.arti.beniculturali.it).

Fig. 1.6. A plastic, visible in the Civic Medieval museum of Bologna, which represents the
development of the city in the Early Renaissance: the inner part of the city is inside the first
city walls. As all the space inside was consumed (the free spaces refer to private gardens)
some new quarters have been built outside the walls, along the main roads. A moat and an
embankment are visible outside the urbanized area, in the places in which the new walls
will be built.

Fig. 1.7a-b-c. Roads and squares in historical city centres in Italy.

Fig. 1.8. Projection of the old-age dependency ratio for year 2030 in Europe. (Source:
European Demographic Data Sheet 2012).

Fig. 1.9. London road pricing zone. (Source: Transport For London).

Fig. 1.10. The PICAV vehicle

Fig. 1.11. The PICAV vehicle in a road in Genoa centre (DIME, 2012)

Fig. 1.12. Internal view of the PICAV battery for traction (DIME, 2012).

Fig. 1.13. The capability of the vehicle’s wheels to allow the vehicle travel with two wheels
in the sidewalk and two wheels on the road. Thanks to that, the user can be kept in a
horizontal position (DIME, 2012).

Figure 1.14. The functionality of the seat. It accompanies the user when he raises and when
he sits down, allowing mobility impaired people to sit and raise without using their muscles
(DIME, 2012).

 XIV

Fig. 1.15. The sensorial system installed on the PICAV (DIME, 2012).

Fig. 1.16. The PICAV perception system through the sensors mounted on the vehicle
(DIME, 2012).

Fig. 1.17. The buttons of the human machine interface (DIME, 2012).

Fig. 2.1. The Zipcar map. It tells the user the state of each station in terms of number of
vehicles available and number of free spaces. It also allows users to book and reserve a
vehicle. This map refers to Los Angeles (www.zipcar.com).

Fig. 2.2. The similar map for CityCarClub, London. Clicking on the station, informations
about its state are provided. (www.citycarclub.co.uk).

Fig. 2.3. The map of stations of Stadtmobil, in Frankfurt. Clicking on the station (the blue
arrow) the information about the station’s state is provided. (www.stadtmobil.de).

Fig. 2.4. The interactive map of Respiro’s stations in Madrid. Again, clicking on the
stations the information about them are provided. (www.respiromadrid.es).

Fig. 2.5. The interactive map of CityCarShare.org stations in San Francisco. Again, clicking
on the stations the information about them are provided. (www.citycarshare.org).

Fig. 2.6. The performance of the three techniques for demand forecasting: the case study is
the Coachella Valley in California: non predictive relocation, historical predictive
relocation, exact predictive relocation. In the x axis the vehicle to trip ratio is reported. In
the y axis the total average waiting time (Barth and Todd, 1999).

Fig. 2.7. Values of wait time and number of relocation with reference to the vehicle to trip
ratio. The case study is the Coachella Valley in California. In the x axis the vehicle to trip
ratio is reported. In the y axis the total average waiting time (Barth and Todd, 1999).

Fig. 2.8. The towing technique, in a mechanical way, through a tow-bar (Barth et al., 2004).

Fig. 2.9. A map of UCR IntelliShare, with the location of the stations (Barth et al., 2004).

Fig. 2.10. Performance of UCR IntelliShare relocation techniques: (a) trip joining; (b) trip
splitting; (c) both. In the x axis the fleet dimension is reported, in the y axis the number of
required relocations (Barth et al., 2004).

Fig. 2.11. The Autolib’ stations map (https://www.autolib.eu/stations/).

Figure 2.12. A screenshot of Car2Go finder (www.car2go.com).

Fig. 2.13. A screenshot of DriveNow finder (www.drive-now.com).

Fig. 2.14. A station of “C’entro in bici”, with mechanical access through a key (Ceccarelli,
2010).

 XV

Fig. 2.15. A station of the bike sharing programme Bicincittà (Ceccarelli, 2010).

Fig. 2.16. The booking interface at a docking station (www.tfl.gov.uk).

Fig. 2.17. A docking station in the Barclays Cicle Hire (www.tfl.gov.uk).

Fig. 2.18. A screenshot of the BCH map in London city centre (www.tfl.gov.uk).

Fig. 4.1. Inputs and outputs of the micro simulator

Fig. 4.2. The demand OD matrix for type A trip (trip chains with origin and destination on
the border of the area) in an hour of the off-peak period. Origin and destination are both
stations.

Fig. 4.3. The demand OD matrix for single trip in an hour of the off-peak period. Origin
and destination are both stations.

Fig. 4.4. Scheme of the micro simulator structure. In bold the name of classes is reported.
Below each class name, the methods are written.

Fig. 4.5. Scheme of the interaction between the simulator and the GUI.

Fig. 4.6. The fundamental diagram for pedestrians as reported in the HCM (HCM 2004). In
the y axis the pedestrian speed is reported; in the x axis the free space, expressed in m2 per
pedestrian, is reported.

Fig. 4.7. General scheme of the components: battery, inverter, engine, wheels (from left to
right). PDC is the power in output of the battery; PAC is the power in output of the inverter,
Pr is the power to the wheels.

Fig. 5.1. The single-peak function is easy for calculus-based methods (Goldberg, 1989).

Fig. 5.2. A multi peak function causes a problem: which hill to climb (Goldberg, 1989).

Fig. 5.3. Many functions are noisy and discontinuous and thus unsuitable for search by
traditional methods (Goldberg, 1989).

Fig. 5.4. Many traditional schemes work well in a narrow problem domain. Enumerative
schemes and random walks work equally inefficiently across a broad spectrum. A robust
method works well across a broad spectrum of problems (Goldberg, 1989).

Fig. 5.5. General scheme on the evaluation of the objective function. At each iteration, the
optimization code recalls the micro simulation. The simulation’s outputs are used to
calculate the cost function.

Fig. 5.6. The parallel methodology implemented in the optimization procedure. In the
figure, the fleet dimension is referred as Fl, and the low critical and low buffer threshold
values are referred as Th.

 XVI

Fig. 6.1. General scheme of inputs and outputs of the simulator.

Figure 6.2. The electric scooter in the pedestrian area of Via San Luca

Figure 6.3. The area filmed in via di Canneto

Fig. 6.4. The recorded data vehicle speed – pedestrian density in via San Luca.

Figure 6.5. Model of pedestrian density with reference to scooter velocity

Fig. 6.6. The pedestrian model’s validation. Data coming from the observations in via
Canneto are the blue squares. The expected values of velocity (from the model) for the
given value of density is represented by the yellow triangle. The red line represents the
model, the blue line is the average velocity recorded in via Canneto.

Fig. 7.1. Genoa and the intervention area. The intervention area is circled in red.

Fig. 7.2. The bus lines around Genoa historical city centre. The underground, reported with
a dashed orange line, has been prolonged to the station “Brignole” (Cepolina, 2009).

Fig. 7.3. The underground. In red, the underground line currently in exercise. In yellow, the
underground line under construction. The stations under construction are drawn in green
(www.amtgenova.it).

Fig. 7.4. Localization of car sharing and bike sharing systems (Cepolina, 2009).

Fig. 7.5. Blue Area, ZTL and Road Pricing in Genoa (Cepolina, 2009).

Fig. 7.6. Attractions in Genoa historical city centre.

Fig. 7.7. Location of the commercial activities (Cepolina, 2009).

Fig. 7.8. Map of the intervention area. In red, the roads in which PICAV system can operate
are underlined. The blue squares are the PICAV stations. Stations 8 and 9 do not exist in the
third management strategies. The blue line circles the intervention area.

Figure 7.9. Possible sites for the stations 1 and 8.

Figure 7.10. An example of the questionnaire proposed (Cepolina et al., 2010).

Figure 7.11. Summary of the data collected in the questionnaires (Cepolina et al., 2010)

Fig. 7.12. Percentages of arrivals at the parking lots from outside the intervention area;
redistribution of the demand exiting from the intervention area to the stations on the border
(Bonfanti, 2010).

Fig. 7.13. The parking lots attractivity: redistribution of the demand exiting from the border
to inside the intervention area (Bonfanti, 2010).

 XVII

Fig. 7.14. The stations’ influence area and the location of all the attractors. (Bonfanti,
2010).

Fig. 7.15. The position of units in the intervention area and the location of attractors for
short term stops (Bonfanti, 2010).

Figure 7.16. The users’ choice sets. The red circles refer to the stations belonging to the
west choice set; the grey circles to the east choice set; the blue circles to the north choice
set (Bonfanti, 2010).

Fig. 7.17. The intervention area and the parking lot positions (above). Longitudinal profile
of the path between parking lots 4 and 6 (below)

Fig. 7.18. Number of PICAVs in each state against time in the first management strategy
(flexible users).

Fig. 7.19. Number of PICAVs in each state against time in the second management strategy
(automated vehicles).

Fig. 7.20. Number of PICAVs in each state against time in the third management strategy
(vehicles available also along the roads).

Fig. 7.21. Waiting times distribution in the first management strategy

Fig. 7.22. Waiting times distribution in the second management strategy

Fig. 7.23. Waiting times distribution in the third management strategy

Fig. 8.1. Map of Barreiro municipality: the intervention area is circled through a red line.

Fig. 8.2 a-b. Images of sidewalks in Barreiro.

Fig. 8.3. The PICAV intervention area.

Fig. 8.4. Trips from Barreiro municipality in the morning peak for work/study reasons
(Ferreira, 2009).

Fig. 8.5. Position of car parking places in the PICAV intervention area (Ferreira, 2009)

Fig. 8.6. Position of bus stops within the intervention area (Ferreira, 2009).

Fig. 8.7. Number of passengers on the trains arriving to or departing from Barreiro A
station. In green the trips by train from Barreiro (A and fluvial terminal) to Setubal, and in
yellow the trips by train from Setùbal to the two stations of Barreiro (Ferreira, 2009). In the
x axis are the hours of the day, in the y axis is the number of trips.

 XVIII

 XIX

Fig. 8.8. Number of passengers entering and exiting at Barreiro fluvial station in each hour
of the day. All these trips have Lisbon as origin or destination (Ferreira, 2009). The bars in
the left refer to entrances to the fluvial station, the bars on the right refer to the exits.

Fig. 8.9. Number of vehicles in each state during the simulation period.

Fig. 8.10. Distribution of user’s waiting times.

Fig. 9.1. Values of the objective function with reference to the fleet dimension, for the first
management strategy

Fig. 9.2. Values of the objective function with reference to the fleet dimension, for the
second management strategy. Thresholds are kept fixed and equal to their optimized values

Fig. 9.3. Values of the objective function with reference to the low critical thresholds, for
the second management strategy. The fleet dimension is fixed and equal to the optimized
value. Low buffer thresholds are also kept fixed and equal to their optimized values. Genoa
case study.

Fig. 9.4. Values of the objective function with reference to the low buffer thresholds, for the
second management strategy. The fleet dimension is fixed and equal to the optimized value.
Low critical thresholds are also kept fixed and equal to their optimized values. Genoa case
study.

Fig. 9.5. Values of the objective function with reference to the fleet dimension. The low
critical and low buffer thresholds are taken constant and equal to their optimized values.
Barreiro case study.

Fig. 9.6. Values of the objective function against low critical thresholds. Fleet dimension
and the low buffer thresholds are kept constant. Barreiro case study.

Fig. 9.7. Values of the objective function against low buffer thresholds. Fleet dimension
and the low critical thresholds are kept constant. Barreiro case study.

Figure 9.8. Values of the objective function with reference to the fleet dimension, for the
third management strategy. Thresholds are kept fixed and equal to their optimized values.
Genoa case study.

Figure 9.9. Values of the objective function with reference to the low critical thresholds, for
the third management strategy. The fleet dimension is fixed and equal to the optimized
value. Low buffer thresholds are also kept fixed and equal to their optimized values. Genoa
case study.

Figure 9.10. Values of the objective function with reference to the low buffer thresholds,
for the third management strategy. The fleet dimension is fixed and equal to the optimized
value. Low critical thresholds are also kept fixed and equal to their optimized values.
Genoa case study.

LIST OF TABLES

Table 1.1. Road accidents in years 2001-2010. (Source: ISTAT, 2012). Years 2001 – 2010,
absolute values, mortality index and percentual variations.

Table 1.2. Accidents in Italy according to the typology of roads. (Source: ISTAT, 2012).
Year 2011 (absolute values, mortality index and variations in change 2011/2010).

Table 1.3. Killed persons in road accidents within countries of the European Union (EU27).
Years 2010 and 2011 (absolute numbers and variations in change) (a) (Source: ISTAT,
2012).

Table 1.4. The ageing of population (Source: European Demographic Data Sheet 2012).

Table 1.5. Median age of the population (Source: European Demographic Data Sheet 2012)

Table 1.6. Old age dependency ratio. (Source: European Demographic Data Sheet 2012)

Table 2.1. Usage charges of the Barclays Cycle Hire scheme.

Table 4.1. LOS measurement based on the statistical distribution of waiting times.
(Castangia and Guala, 2011).

Table 4.2. Characteristics of the battery (Mazel, 2011).

Table 4.3. Characteristics of the engine (Mazel, 2011).

Table 7.1. Sample OD matrixes. They refer to the second management strategy (i.e. origin
and destination at stations, automated vehicles) and off-peak period.

Table 7.2: Lengths and gradients of some routes between stations

Table 7.3. Number of vehicles in each parking lot at the beginning of the simulated day, in
the first car sharing system.

Table 7.4. The optimized value for the objective function, and its components, in the three
management strategies

Table 8.1: Number of passengers entering and exiting in each bus stop during the peak
morning period (Ferreira, 2009).

Table 8.2. Demand OD matrix for the morning period

Table 9.4. Sensitivity analysis on the low critical and low buffer thresholds. Barreiro case
study.

Table 9.5. Values of the objective function with reference to the fleet dimension for the
third management strategy. The optimum values are reported in bold. Genoa case study.

 XX

 XXI

SOMMARIO:

La presente tesi consiste nella progettazione e simulazione di un sistema di
trasporto innovativo di tipo car sharing per la mobilità urbana. Il sistema oggetto
dello studio è basato su di una flotta di veicoli intelligenti, monopersona,
accessibili a tutte le categorie di utenti e progettati per operare nelle aree pedonali
dei centri storici urbani; questi veicoli sono chiamati PICAV (Personal Intelligent
City Accessible Vehicle). Il sistema di trasporto proposto non richiede
prenotazione, non richiede che sia specificato l’orario in cui il veicolo verrà
restituito, e non richiede che il veicolo venga restituito nella medesima stazione da
cui è stato preso. Queste caratteristiche garantiscono agli utenti un elevato grado di
flessibilità; d’altra parte, però, le stazioni possono essere sbilanciate in diversi
periodi della giornata: alcune stazioni hanno un elevato numero di veicoli
disponibili, metre altre hanno un elevato numero di utenti in coda. Perciò, è
necessaria la riallocazione. Tre diverse strategie di riallocazione vengono proposte:
nella prima strategia le riallocazioni vengono compiute direttamente dagli utenti
del sistema, mentre nelle altre due i veicoli riallocano automaticamente senza
necessità di essere guidati. Nelle prime due strategie di gestione, i veicoli sono
accessibili esclusivamente in corrispondenza delle stazioni. Nella terza strategia, i
veicoli sono accessibili da qualunque punto dell’area di studio.

Allo scopo di fornire ai decisori politici uno strumento utile per testare il
sistema di trasporto in diverse realtà, è stato sviluppato un micro simulatore, basato
sulla logica ad oggetti. Il micro simulatore fornisce in output le performance del
sistema di trasporto, in termini di distribuzione dei tempi di attesa degli utenti e di
efficienza del sistema, che è inversamente proporzionale alla dimensione della
flotta e al numero di riallocazioni. E’ stato poi sviluppato un algoritmo meta
euristico di ottimizzazione, finalizzato ad ottimizzare le caratteristiche del sistema
di trasporto. L’algoritmo di ottimizzazione richiama il micro simulatore per
calcolare i suoi dati di input.

Il micro simulatore è stato calibrato e validato, e successivamente è stato
applicato a studiare due scenari: ossia il centro storico di Genova, e la parte vecchia
di Barreiro, in Portogallo. Infine, è stata realizzata un’analisi di sensibilità al fine di
studiare le performance del sistema al variare della domanda, della rete, della
dimensione della flotta e delle caratteristiche del sistema di trasporto

 XXII

ABSTRACT

An innovative car-sharing systems for urban areas is proposed. The proposed
system is based on a fleet of Personal Intelligent City Accessible Vehicles
(PICAVs). The following specific services are provided: instant access, open ended
reservation and one way trips. All these features provide users with high flexibility,
but create a problem of uneven distribution of vehicles among stations. Therefore,
relocations must be performed. Different relocation procedures are proposed: in the
first relocation scheme relocations are performed by users while in the other two
vehicles relocate automatically thanks to their automation. In the first two
management strategies vehicles can be accessed and returned only at stations while
in the last one they can be accessed also along the roads. In order to provide
transport managers with a useful tool to test the proposed systems in different
realities, an object-oriented micro simulator has been developed. The simulation
gives in output the transport system performance, in terms of distribution of user
waiting times, and the transport system efficiency, which is inversely proportional
to the fleet dimension and the number of relocation trips. A meta heuristic
optimization algorithm has been developed to optimize the transport system’s
characteristics. The optimization algorithm recalls the micro simulator to calculate
the optimization’s input data.
The micro simulator has been calibrated and validated, and afterwards applied to
study two scenarios: Genoa historical city centre, Italy, and Barreiro old town,
Portugal. Finally, a sensitivity analysis has been performed in order to study the
performances of the system according to modifications of the demand, or of the
fleet dimension or of the transport system characteristics.

 1

Introduction

The concept of vehicle sharing has begun to emerge as a novel and popular
mobility concept.

In car sharing schema, individuals gain access to vehicles by joining an
organization that maintains a fleet of vehicles that are parked in designated, leased
spaces in a network of locations. Vehicles are accessed on an as-needed basis, and
members are typically charged each time they use a vehicle (Shaheen and Cohen
2007). Vehicles can be reserved minutes or months in advance for specific blocks
of time, online or by phone. To use a car sharing vehicle, members simply walk to
the car at the reserved time, use a wireless security keycard to unlock the door, and
drive as usual. As the reservation ends, they return the car to its exclusive-use
parking space, lock it with their keycard, and walk away. An onboard computer
collects and wirelessly transmits trip data. Charges are either automatically billed
to the member's credit card or deducted from their bank account.

From the point of view of non users, in cities with high population densities,
car sharing exhibits great promise in decreasing parking demand, lowering
emissions and guarantee mobility for all (Britton et al., 1999).

According to recent North American studies (Millard-Ball et al., 2005), each
car sharing vehicle removes an average of 15 privately owned cars from the
community, as participants sell a vehicle or forgo a planned purchase. The resulting
decrease in local parking demand creates opportunities to permanently reallocate
the land for additional green space, new mixed-use development, or other
community needs. Furthermore, the vehicles these members sell or avoid
purchasing tend to be the oldest, most polluting, and least reliable on the road.
They are replaced by a relatively small number of high-efficiency, low-emission
vehicles, including gasoline-electric hybrid cars, creating even greater
improvements in local air quality, noise, and emissions.

Shared cars also generate social benefits, creating an affordable alternative to
ownership for lower-income workers, students, and seniors. Those otherwise at risk
of being marginalized can affordably maintain their mobility and participate fully
in society.

From the point of view of users, they gain some of the benefits of private
vehicle use without the costs and responsibilities of ownership. These benefits
include comfort and the possibility to travel without unknown people. Privacy in
fact is an important factor in the current society, and it will be even more in the
future because of aging society.

However, from the point of view of users, car sharing is yet less flexible than
private cars. In fact traditional car sharing schemas require: booking in advance
and at the booking time, the returning time has to be specified. Trips by shared cars

 2

have to start and end in stations which are in limited number in the territory; users
have to return the vehicle at the pick-up station.

One of the scopes of this research is to develop a car sharing system which

provides users high flexibility: booking is not required and users can access the
vehicles at the spur of the moment, users can keep the shared cars as long as they
want and one way trips are possible. This flexibility puts severe problems in the
transport system management since the distribution of vehicles in the territory can
become unbalanced. This can lead to long queues of users waiting for a vehicle in
some stations and long queues of unused vehicles in other stations. To avoid these
situations, huge fleets can be necessary or a consistent number of operators is
required to move vehicles between stations with a surplus of vehicles and stations
with a lack of vehicles. Both these solutions have a high cost that often has
determined the failure of car sharing systems. To limit this cost, three fleet
management strategies are proposed in this thesis: they are alternative strategies
that can solve the unbalancement problem in flexible car sharing systems in
different realities.

In the first one, vehicles are always driven by users, and the uneven

distribution of vehicles at the stations is overcome through users’ redirection.
Vehicles are available only at stations and also must be returned at stations.

The other two management strategies require instead vehicles to move in a
fully automatic mode during relocation trips. In the second car sharing system,
vehicles again can be accessed only at stations and returned only at stations.

In the third management strategy, instead, vehicles can be accessed both at
stations and along the roads, and can also be returned at both. The user gives his
position at the system manager and he delivers a vehicle to the user.

To check the performance of the proposed management strategies, a

microscopic simulator has been developed following an object – oriented logic and
the code has been written in Python language. The simulator receives in input the
transport demand, the characteristics of the network, the relocation strategy and the
PICAV fleet. It allows to track the second-by-second activity of each PICAV user,
as well as the second-by-second activity of each vehicle. The simulator gives in
output the transport system performances, in terms of Level Of Service provided to
users and in terms of efficiency from the management point of view.

The microscopic simulator is a decision support tool that will help car sharing

operators to plan and manage flexible car sharing schemas in different realities.
Using this tool, planners can explore the consequences of proposed planning

decisions through the creation of alternative scenarios. The process of using the
tool to explore the full consequences of potential decisions and assumptions

 3

enhances understanding of the system and of the real trade-offs among different
alternatives. The microscopic simulator does not prescribe "best" solutions.

Since the input data are several and some of them cannot be directly
quantifiable by observations on the field, an optimization procedures has been
developed. It aims to find “good” values for critical management parameters.

The transport system this thesis deals with is a flexible car sharing system for

historical city centers and pedestrian areas. The fleet is composed of PICAV
vehicles. A PICAV vehicle is a one person electrically powered vehicle with very
small dimensions. It has been designed to be fully accessible from people with
mobility impairments. It provides driving assistance as well as automatic driving. It
is able to move on uneven pavements and to move with agility in pedestrian flows.

 Such a transport system aims to improve accessibility to all and release part of
the repressed pedestrian mobility: people that have difficulties in covering long
distances by foot, not only because of disabilities but also because, for example, of
heavy items to carry, are excluded by performing activities in such areas which are
often very attractive but where very often alternative transport modes cannot
operate.

The proposed transport system has been planned and designed for two areas:

Genoa historical city centre, Italy, and Barreiro old town, Portugal. The two areas
are very different, either from the morphological point of view and the transport
system organization. The first area is characterized by narrow and steep roads with
steps, and high pedestrian flows; the second scenario instead is characterized of
wider and flat roads. The proposed transport system integrates with different modes
of transport. In particular, in the first scenario it integrates with public transport,
such as bus and underground. In the second scenario, it integrates with both public
and private transport.

Some of the transport system parameters have been optimized for the two areas
under study.

The thesis is organized as follows.
Chapter 1 focuses on the context of the research: an overview on the main

characteristics, mobility problems and adopted solutions for urban areas and,
specially historical city centers, is provided. The PICAV vehicle is then introduced
with its technical characteristics.

In chapter 2, a state of the art on vehicle sharing systems is given, with
particular focus on the relocation procedures.

In chapter 3, the proposed transport system is described in detail. Particular
focus is given to the three proposed management strategies.

In chapter 4, the modeling and the micro simulation is described. Firstly, an
overview about simulation and object-oriented logic is provided. After, the
modelization of the system and the micro simulator code are described in detail.

 4

In chapter 5, the optimization procedure is described in detail. Because of the
problem characteristics, a meta heuristic algorithm has been chosen.

In chapter 6, the calibration of the simulator’s parameters and its validation
are reported.

In chapter 7 and 8, the simulator has been applied to study two scenarios: the
historical city centre of Genoa and the old town of Barreiro.

In chapter 9, a sensitivity analysis is described.

The research has been funded by the European Commission, specifically by
the European project PICAV (Personal Intelligent City Accessible Vehicles) (FP7-
SST-2007-RTD-1).

Chapter 1. The context

Introduction

Urban areas are highly congested, in particular historical city centres. The main
reasons of congestion regard: the high level of urbanization (about 75% of the
European population lives in cities); and the conformation of historical city
centres, characterized of narrow roads, in some cities also steep and with steps,
where also conventional public transport operates with difficulty.

Congestion causes delays in trips: it is estimated that about 1% of the
European GDP is lost by considering the cost associated to urban congestion
(Lindholm and Behrends, 2010). Congestion, as side effects, also increases the
number of road accidents, and causes pollution, whose long-term effects are
dangerous for people’s health.

Therefore, a shift from private to public transport is desirable. This can be
achieved through limitations on private transport, and through improvements of
public transport. In order to avoid the decrease of the transport demand, public
transport must be attractive and provide a high quality service.

Moreover, the population is ageing. Transport systems must therefore take into
account the mobility needs of all categories of users.

It is in this context that the proposed transport system has been developed. The
system proposed is a car sharing one, and it is aimed to provide users high comfort
and flexibility, as similarly as possible to private car. It makes use of small electric
vehicles, called PICAV, which are: non pollutant, thanks to their electric
propulsion; ergonomic, designed for being accessible also by people with some
impairments; and capable of travelling in the majority of urban environments,
thanks to their capability to climb steps and overcome high slopes. PICAV vehicles
are personal and therefore satisfy also the need for privacy of the users; this aspect
is particularly relevant for aged people.

The chapter is organized as follows. Firstly, an overview on the main problems
related to urban mobility is performed. Focus has been given to the main problems
related to congestion, i.e. pollution and accidents, and to the main characteristics of
historical city centres. Afterwards, the current trends, in terms of high growth of
urbanization and ageing of society, are presented. Moreover, the policies aimed to
perform a shift from private to public transport, and therefore reduce the number of
circulating vehicles, are presented. Furthermore, the main advantages of car
sharing and bike sharing systems are presented. Finally, the main characteristics of
the proposed transport system and of the vehicle are presented.

 5

1.1. Urban mobility.

1.1.1. Main problems related to road congestion in urban areas

1.1.1.1. Air pollution.
Results of a research performed by OMS-ARPAT (2006) show that more than
8,000 deaths per year occur in Italy because of long-term effects of pollution. The
European directive 99/20/EC has set a limit for the year 2010 of 20 μg/m3 for the
concentration of PM10. The chronicle effects of PM10 pollution are co responsible
of 742 deaths/year for lung cancer, 2562 for heart attack and 329 for stroke. In year
2005 several northern Italian cities have reached 35 days of excess of 50 μg/m3
only in the months January – March (ARPAT news n° 107-2006).

The fine particulate, i.e. PM10, is a pollutant composed by particles which may
be both solid and liquid and are in suspension in the air. These particles are varied
for dimension, composition and origin, and their properties are summarised in their
aerodynamic diameter. The smallest particles are called PM 2.5, whose diameter is
smaller than 2.5 μm, they are not removed by precipitations and therefore can
remain in the atmosphere also for several days. The most dangerous particulate is
the PM 2.5, as they penetrate in the pulmonary alveoli. The main components of
the particulate are sulphate, nitrate, ammonia, sodium chloride, carbon, mineral
powders and water.

1.1.1.2. Road accidents.
In year 2010, 211,404 accidents have been registered in Italy, with 4,090 deaths
and 302,735 injuries. Compared to 2009, a slight decrease is registered in the
number of accidents (-1.9%) and injuries (-1.5%) and a more consistent decrease in
the number of deaths (-3.5%). Compared with the target set by the European Union
in the White Paper of 2001, which provided the reduction of deaths by 50% until
2010, Italy has reached a 42.4% of decrease in the number of deaths, which is
conformed with the EU27 average, equal to -42.8% (ISTAT, 2012).

In urban roads, in Italy, 160,049 accidents have been registered in year 2010,
with 218,383 injuries and 1,759 deaths. In motorways accidents have been 12,079
and 20,667 injuries and 376 deaths. In extra urban roads, accidents have been
39,276 with 63,685 injuries and 1,955 deaths. The most serious accidents happen in
extra urban roads, with 5 deaths in 100 accidents; in urban roads this index is much
less, i.e. 1.1 deaths by 100 accidents. The category of vehicles most involved in
road accidents are: cars (67.8%), motorbikes (18.8%) and bicycles (3.9%).
Statistical data about road accidents are provided in the tables 1.1 – 1.3 and in
figure 1.1.

About 60% of accidents in Italy are concentrated in the biggest cities, such as:
Torino, Milano, Verona, Venezia, Trieste, Genoa, Bologna, Firenze, Roma, Napoli,
Bari, Palermo, Messina, Catania. Accidents in large metropolitan areas constitute a
high quota of the overall incidentality in Italy: Roma 8.7%, Milano 5.7%, Genoa
2.3% and Torino 1.8%. The highest mortality rate is registered in Verona and

 6

Palermo, with about 1.6 – 1.7 deaths per 100 accidents, while the lowest is
registered in Milano and Bari (0.5).

Table 1.1. Road accidents in years 2001-2010. (Source: ISTAT, 2012). Years 2001 – 2010,
absolute values, mortality index and percentual variations.

Fig. 1.1. death index according to the various typology of vehicles. As shown in the figure,
the “weak” users, such as bicycles and motorbikes, register the higher percentage of deaths.
(Source: ISTAT, 2012).

(a) The mortality index is calculated from the ratio between number of deaths and number of
vehicles, by vehicle category, by 100

(b) From calculation of deaths and injuries pedestrians are excluded.

 7

Table 1.2. Accidents in Italy according to the typology of roads. (Source: ISTAT, 2012).
Year 2011 (absolute values, mortality index and variations in change 2011/2010).

Table 1.3. Killed persons in road accidents within countries of the European Union (EU27).
Years 2010 and 2011 (absolute numbers and variations in change) (a) (Source: ISTAT,
2012).

1.1.2. The development and the main problems of historical city centres
European cities have a specific conformation given by historical reasons: the inner
zone is the oldest part, around which the new city has been built in a concentric
manner in successive phases. The old town is characterized of narrow and

 8

congested roads, with reduced dimension, uneven pavements and high pedestrian
flows.

The historical city centre has developed in the centuries, from the Roman age
to the beginning of the Industrial Revolution, when the new quarters were built. A
full description of the development of cities can be found in Astengo (1966). The
following parts can be observed in historical city centres:

Fig. 1.2. The project for the urbanization of Miletus, traditionally attributed to
Ippodamus (Miletos Stadt Plan).

- The Roman city. It is the most inner part. Roman cities are of squared

shape, with perpendicular roads. This shape recalls the disposition of
military camps – several Roman cities had been Roman military camps
before – and it has the merit of allowing quick trips inside the urban areas.
There were two main roads, called cardo and decumano, which were
perpendicular with each other and crossed in correspondence of the main
square. All the other roads were parallel to these and also crossed in
perpendicular. This specific shape of the cities has been introduced by
Ippodamo from Mileto, a Greek architect, who made some urbanization
plans for Selinunte, Priene and Mileto (see fig. 1.2). However, outside the
city walls all the roads, which connected the city to the other cities and
villages, were radial, in order to reduce the travel time. Obviously when
natural constraints existed this did not happen, but in all the Roman cities

 9

of the Po valley the roads outside the city were radial. This aspect is very
important for the following.

- The medieval city. It grew around the Roman city, and all the new quarters
were organized with radial roads. These new quarters indeed grew around
the old extra urban Roman roads, which in fact had this conformation.
These improvements of the city dimension however occurred as all the
space inside the walls was consumed.

- Further improvements in the Renaissance and Modern Age. After all the
space inside the city walls was consumed, other new quarters were built
around the city walls, and one or two newer city walls were built, to protect
the new quarters. The old walls were usually conglobated in the new
houses. Therefore it is not unusual to see some parts of the city walls
which have become walls of a house, and also it sometimes happens to see
along the roads of the city centre some “isolated gates” which were the
former access gates of the cities (see fig. 1.5). The newly built roads
continued the older ones, and the new quarters maintained the shape of the
old ones. The roads in the oldest quarters were usually much narrow
because all the available space has been exploited for construction before
increasing the dimension of the city – and the needs of mobility in those
periods were much different from nowadays. A screenshot of the
development of Bologna in the thirteenth century is provided in figure 1.6.

The development the historical city centre of Bologna in the centuries is shown in
figures 1.3 and 1.4.

Fig. 1.3. A screenshot of the most inner part of Bologna centre. The Roman city is the part
circled in blue, the early middle aged city is circled in red. The roads clearly show the
characteristics described above (Source: archeobo.arti.beniculturali.it).

 10

Fig.1.4. The development of Bologna historical city centre: the Roman city (contoured by
the blue line in its final development), the early-middle aged city (contoured by the red line,
the walls were built in year 1000), the outer walls (the black line). The outer walls were
built in the thirteenth century and have been demolished at the beginning of the twentieth
century. (Source: archeobo.arti.beniculturali.it)

Fig. 1.5. An access gate of the Early Middle Aged walls conglobated in the buildings.

Then in the nineteenth century, because of the industrial revolution, a massive
urbanization took place and the conformation of the cities has been completely
altered. A first phase occurred in which besides all the industrial areas, grown
outside the city walls, new poor and unhealthy houses were built for the factory
workers.

After this first period of expansion, architects developed expansion plans
devoted to rebuilt all the new quarters in a more healthy and efficient way. New
residential areas were built outside the city walls.

The urban population continued to increase, residential quarters were built
outside the city walls. Besides, the growth of the first fast means of transport, such
as the automobile, created different needs of transport and therefore the new

 11

quarters had wider roads. In several cities, the walls were demolished to make
place for the ring roads, and also in the historical city centres old houses were
demolished to make place for new wide roads. In Paris, Napoleon III demolished
several old parts of the city and replaced the narrow and often unhealthy roads with
wide boulevards. Nowadays much historical and artistic patrimony is lost because
of this “wild” demolition.

Fig. 1.6. A plastic, visible in the Civic Medieval museum of Bologna, which represents the
development of the city in the Early Renaissance: the inner part of the city is inside the first
city walls. As all the space inside was consumed (the free spaces refer to private gardens)
some new quarters have been built outside the walls, along the main roads. A moat and an
embankment are visible outside the urbanized area, in the places in which the new walls
will be built.

This demolition however luckily regarded only some parts of historical city
centres, while the rest of the city centre still has the original buildings, and the
original roads, which are very narrow. Moreover, this demolition happened in
several cities, such as London and Paris, but in several small cities and villages,
some of which are located in central and southern Italy, the historical city centre is
still intact. And the roads in historical city centres, for the reasons exposed above,
are much narrow, their width is sometimes less than 2 metres, and have uneven
pavements, like cobbled stones. Moreover some Italian cities grew on the hills,
therefore roads are often characterized of high slopes (sometimes also 7–10% as
registered in the historical centre of Genoa) and steps. Traditional public transport

 12

therefore cannot operate or operates with difficulty in such environments. On the
other hand, city centres are characterized of high demand of transport, because:
offices, activities and schools are concentrated there; and several tourist attractions,
such as museums and monuments, are present. Moreover monuments and old
houses can be seriously damaged by pollution and by the vibration created by
heavy road traffic (like long buses). Therefore, new and greener modes of transport
must be designed, in order: on one hand to satisfy the transport demand, and on the
other hand to cope with all these infrastructural and physical limitations.

Fig. 1.7a-b-c. Roads and squares in historical city centres in Italy.

1.2. Current trends.

1.2.1. Massive growth of urbanization
The level of urbanization will grow dramatically in the next years. From a research
performed by Yale University, in the next 18 years urbanized areas are expected to
grow by 1.8 millions of km2, and the cost of the necessary new infrastructures will
be about 30,000 billions of dollars. This phenomenon will involve all continents; in
Africa, the urbanized surface will be 600% more than in year 2000. In Italy, the
areas mostly involved in the urbanization will be the Po Valley, Rome and Napoli.

 13

1.2.2. The ageing of society.
The mobility is equal to the distance that people can reach in a given time. The
accessibility is equal to the opportunities which can be reached by people in a
given time. The accessibility can be improved through an improvement of the
mobility.

The number of aged people or of people with some impairment is high and it is
growing with time. As a result, all future transport systems will have more and
more to ensure accessibility to everybody, with particular attention to people’s
impairment. Several European projects, such as Ask-IT (www.ask-it.org),
MEDIATE (www.mediate-project.eu), Access2All (www.access-to-all.eu),
AENEAS (www.aeneas-project.eu), have been developed in order to understand
the needs of all categories of users. In Italy in year 2004, 2,600,000 people older
than 6 years suffered from disability, which accounted for 4.8% of the overall
Italian population. About 46% of people with impairments have more than 80
years, and about 80% of people with impairments is older than 65 years.
Data about people’s impairment have been collected from the European
Demographic Data Sheet 2012. Three categories of impairments have been
considered:

- difficulty in movement
- difficulty in everyday life functions, e.g. self care
- difficulty in communication, i.e. sight, hearing, speaking.

Table 1.4. The ageing of population (Source: European Demographic Data Sheet 2012).

About 700,000 people have difficulties in movement, which is equal to 1.3%
of people older than 6 years. About 376,000 people, equal to 0.7% of people older
than 6 years, have serious difficulties in performing self care. People with
impairment related to communication, i.e. sight and hearing, are to 217,000, equal
to 0.4%. About 1,200,000 people have disabilities in at least two of the three

 14

typologies exposed above, which accounts for 1.9% of the overall European
population. Moreover, about 0.5% of people older than 6 years suffer from all the
three categories of disabilities. On the whole, about 44% of people older than 80
years suffer from some form of disability.

The population is ageing, specially in Europe, as displayed in table 1.4.
(Source: European Demographic Data Sheet 2012). Currently, in the European
Union, about 17.5% of the population is older than 65 years but this percentage is
expected to increase to about 30% in 2050. In tables 1.4 to 1.6 and in figure 1.8,
some data about the ageing of the population are provided.

Table 1.5. Median age of the population (Source: European Demographic Data Sheet 2012)

Table 1.6. Old age dependency ratio. (Source: European Demographic Data Sheet 2012)

 15

With reference to tables 1.4 – 1.6, the old-age dependency ratio is defined as
the number of people aged 65 or older to the number of people aged 20 to 64:

number of people aged 65 or olderold age dependency ratio =
number of people aged 20 to 64

Fig. 1.8. Projection of the old-age dependency ratio for year 2030 in Europe. (Source:
European Demographic Data Sheet 2012).

1.3. Policies and strategies to improve sustainable mobility in
cities.

Several policies are currently being adopted by local administrations, in order to
reduce the degree of congestion and pollution in urban areas. These measures
regard: limit for the emission level of vehicles, measures to discourage private
transport modes, improvement of conventional public transport, settlement of
innovative public transport modes.

1.3.1. Policies aimed to reduce the emissions of vehicles
Several measures have been taken by local administrations in order to reduce the
emission level of vehicles. Vehicles have been classified according to it. For
vehicles running with petrol, the following classifications exist: non catalysed (pre
Euro), Euro 0, Euro 1, Euro2, Euro3, Euro4, Euro5. Local administrations have
prohibited the circulation for the majority of the day time to some classes of
vehicles, such as pre Euro and Euro 0. When the concentration limits of PM10 are

 16

reached, local administration establish days of complete stop to private vehicles
circulation, except for Euro4 and Euro5 petrol cars, vehicles running with gas,
Diesel vehicles with anti-particulate filter. There is however great debate as the anti
particulate filter of Diesel vehicles is effective for the biggest among PM10
particles; PM2.5 particles are not blocked by ant particulate filter, and these has
shown to be the most dangerous for citizens’ health.

1.3.2. Measures aimed to discourage private transport
Drivers are often not aware of the higher cost of private transport with respect to
public transport: a car costs not only in terms of fuel, but also tyres, brakes,
mechanical parts to replace, insurance, etc. Moreover they assign a high cost to the
disutility of public transport, which for its nature shows little flexibility. The result
is that in small and medium-sized Italian cities only a small percentage of
commuters perform their trips through public transport. The low level of demand
forces public administrations to reduce the offer of public transport. This decreases
the quality of public transport, which again results in a further decrease of transport
demand. Therefore, in order to shift a consistent level of demand to public
transport, it is necessary both to improve public transport and to discourage the
usage of private car. Several measures have been adopted by local administrations
with this aim. These measures are normative, i.e. restrictions to private car in some
zones of the city, or aimed to increase the cost of private transport, such as road
pricing and park pricing.

1.3.2.1. Restriction of private transport in some zones of the cities
These measures consist on the establishment of the so-called “restricted traffic
zones” and of pedestrian areas. Restricted traffic zones are areas restricted to
private car, except for residents. In all the major Italian cities, the greatest part of
the historical city centre is a restricted traffic zone. Pedestrian areas instead are
zones restricted to everyone, except people having special permissions, and usually
coincide with the most narrow roads with highest pedestrian flows, and with the
most inner part of historical city centres.

Besides, some major roads of city centres and of the closest suburbs are
completely dedicated to public transport, or have dedicated lanes. This policy is
taken in order to decrease the travel time of buses with respect to private car.

1.3.2.2. Road pricing, park pricing
The road pricing measure limits the possibility of entering in some zones of a city
provided of the payment of a fee. London city centre, for example, is subjected to
road pricing.

A measure similar to road pricing is the park pricing: parking is charged and
the amount of charge depends on the location of the car park. Some zones such as
historical city centres, the closest suburbs, the areas in proximity of the main
railway stations are usually the most expensive.

 17

Usually the revenues from road pricing and from parking fees are used by
public administrations to improve the quality of public transport.

The road pricing zone in London is shown in the figure 1.9.

Fig. 1.9. London road pricing zone. (Source: Transport For London).

1.3.3. Improvement of public transport.
The measures aimed to discourage the usage of private car are not effective if a
high quality public transport is not provided to users. These measures therefore
may result only in the decrease of the transport demand and on the settlement of
some activities and residents in other areas, and not in a real shift from private to
public transport.

In order to perform a high quality public transport, all the segments of demand
must be satisfied, specially people living in far and low populated residential areas
and people aged or with some disability.

1.3.3.1. Improvement of conventional public transport.
In order to better capture percentages of transport demand, conventional public
transport must be improved. Public transport is of high quality for users if it is:

- fast, i.e. transit times should be kept low;
- reliable, i.e. it should cross the stops and stations at the scheduled time.

Reliability assume extreme importance when user trips involve different

 18

means of transport: for example they have to take different bus lines, or
tranship from train to bus or from bus to underground;

- capillar, i.e. it should reduce walking distances and therefore be capable to
board the user as close as possible to his origin, and bring him as close as
possible to his destination;

- frequent, at least 4 services by hour for urban areas; however if frequencies
overcome 12 services by hour, there is no longer a benefit to users;

- with a reduced number of transhipments: much time is lost when users
commute between different means of transport; moreover time spent
waiting is perceived in a worse manner than time spent on board.

High quality of transport can be achieved through several measures; for example:
- build new lines of underground or improve the existing lines, when

required
- develop bus lanes in some major roads interested with high traffic flows

and provide public transport a priority phase in signalized intersection, in
order to decrease the journey time. This also result in a decrease of
management costs as fewer vehicles are necessary to perform the service

- in small and medium cities, where the demand is not enough for building
an underground or other fast transit solutions, rapid bus lines, with only
few stops, should developed.

- Build parking spaces in peripheral areas in proximity of public transport
stops. Therefore commuters reach the urban area by private car and after
commute to public transport.

Some small villages located in proximity of cities, or in isolated and low populated
residential areas, where also the demand of transport is low, cannot be served by a
high quality and frequent transport line. Therefore, for such situations on-demand
services must be developed. In several small cities, some public transport lines
have a main path and several areas around to serve on-demand. These lines have a
high frequency, and deviate from the main path as they receive a request.

1.3.3.2. Car sharing.
Car sharing is a model of car rental where people rent cars for short periods of
time, often by the hour. They are attractive to customers who make only occasional
use of a vehicle, as well as others who would like occasional access to a vehicle of
a different type than they use day-to-day. The organization renting the cars may be
a commercial business or the users may be organized as a democratically
controlled company, public agency, cooperative, ad hoc grouping. Today car
sharing services are widely spread worldwide, with over a thousand cities globally
where car sharing services are available.

The principle of car sharing is that individuals gain the benefits of private cars
without the costs and responsibilities of ownership (Shaheen et al., 1998). Instead a
household accesses a fleet of vehicles on an as-needed basis.

With reference to the usage of private car, car sharing has the following
advantages (Shaheen et al., 1998):

 19

1. Cost effectiveness. Car sharing is generally not cost-effective for
commuting to a full-time job on a regular basis. Most car sharing
advocates, operators and cooperating public agencies believe that those
who do not drive daily or who drive less than 10,000 kilometers
annually may find car sharing to be more cost-effective than car
ownership (CityCarShare, 2007).

2. More environment friendly. Car sharing can help reduce congestion and
pollution. Replacing private automobiles with shared ones directly
reduces demand for parking spaces. The fact that only a certain number
of cars can be in use at any one time may reduce traffic congestion at
peak times. Moreover, often car sharing systems involve electric
vehicles or vehicles running with gas; and shared vehicles are usually
smaller than privately owned vehicles (Shaheen et al., 2009).

With reference to conventional public transport, car sharing shows the following
advantages:
1. Flexibility. Users can reduce the distances to access the system and do not

have to change different means of transport to reach their destination.
Moreover, car sharing is ideal for leisure trips as the driver can decide where
to go on his own.

2. Privacy. The user can travel alone or decide the travel mate, similarly to
private car.

3. Better accessibility of low populated areas.
4. Car sharing provides better service than conventional public transport: for

aged people or for people with some disability. In 2008 CityCarShare
introduced the first wheelchair carrying car share vehicle, the Access
Mobile, specifically designed as a fleet vehicle shared with wheelchair
users.

Several cities have organized car sharing services at railway stations. This can be
very useful as visitors do not have to learn the location of public transport lines and
stops, but they simply reach their destination by taking the shared vehicle
(www.icscarsharing.it).

The main problem related to car sharing regards the unbalancement of vehicles
among the various locations. Indeed, it may easily occur the situation where in
some stations there is a large number of vehicles available, while in others there are
several users in queue. This problem, together with all the rebalancing techniques,
will be treated in detail in the following sections.

1.3.3.3. Bike sharing.
A bike-sharing system is a service in which bicycles are made available for shared
use to individuals who do not own them. Bicycle sharing systems are aimed to
provide free or affordable access to bicycles for short-distance trips in an urban
area as an alternative to motorized public transport or private vehicles, thereby
reducing traffic congestion, noise, and air pollution. Bicycle sharing systems have

 20

also been cited as a way to solve the “last mile” problem and connect users to
public transit networks (Shaheen, Guzman, Zhang, 2010).

Bike sharing systems can be divided into two general categories: public bike
sharing programmes organized mostly by local community groups or non-profit
organizations; and government-run bike sharing programmes implemented by
governments, sometimes in a public-private partnership.

Public bike sharing programmes address some of the primary disadvantages to
bicycle ownership, including loss from theft or vandalism, lack of parking or
storage, and maintenance requirements. However, by limiting the number of places
where bicycles can be rented or returned, the service itself essentially becomes a
form of public transit, and has therefore been criticised as less convenient than a
privately owned bicycle capable of point-to-point transport. Government-run
bicycle sharing programmes can also prove costly to the public unless subsidised
by commercial interests, typically in the form of advertising on stations or the
bicycles themselves (Shaheen, Guzman, Zhang, 2010).

Bike-sharing systems have undergone changes which can be categorized into
three key phases, or generations. These include:

- the first generation, called white bikes (or free bikes): free of charge;
- the second generation of coin-deposit systems, which is a simple bike

rental;
- and the third generation, or information technology based systems.

Recent technological and operational improvements are also paving the way for a
fourth generation, known as the demand-responsive, multimodal system.

As of May 2011 there were around 136 bike-sharing programmes to be
launched in 165 cities around the world, made of an estimated fleet of 237,000
bicycles. The countries with the most systems are France (29), Spain (25), China
(19), Italy (19), and Germany (5). (Shaheen and Guzman, 2011).

Further details about bike sharing systems will be provided in chapter 2.

1.4. The PICAV transport system.

It is in this scenario, that the proposed transport system is developed. This system
has been developed with the aim to provide accessibility for all, especially for
people with some mobility impairment, to the urban historical city centre, in
particular in those areas where traditional public transport cannot operate. The
proposed transport system is an on-demand system and it is based on the car-
sharing concept.

The proposed transport system makes use of small personal electric vehicles,
called PICAV, i.e. personal intelligent city accessible vehicles. They are one-
person vehicles and are specifically designed to occupy as less space as possible
but without compromising mechanical stability. Their inner part, the seating system
and the controls to motion have been designed to cope with all people’s
impairments. The vehicles’ dimension is about 1.1 m wide and 1.3 m long (Masood

 21

et al., 2012). A picture of the PICAV vehicle is provided in fig. 1.10 and 1.11.
These vehicles have been designed for accessing any typology of environment,
such as small roads with high pedestrian flows, uneven pavements and some indoor
parts of buildings. They are able to swall steps and to adapt to various typology of
slopes, both longitudinal and lateral.

The proposed transport system is planned to work in pedestrian-only
environments and to easily interface with conventional public transport and private
car. The stacks of available PICAV vehicles will be conveniently placed in
locations all around pedestrian areas close to interchange points with public
transportation, like bus and underground stops, railway stations, etc.; and with
private car parks.

Fig. 1.10. The PICAV vehicle

1.4.1. The PICAV vehicle.

The PICAV vehicle is an electrically powered, automatic, one person vehicle,
which ensures accessibility for everybody and some of its features are specifically
designed for people whose mobility is restricted for different reasons, particularly
(but not only) elderly and disabled people.

PICAV vehicles are specifically designed for urban pedestrian environments
where usual public transport services cannot operate because of the width and slope
of the infrastructures, uneven pavements and the interactions with high pedestrian
flows.

The prototype of the vehicle has been developed in the European project
PICAV, Personal Intelligent City Accessible Vehicle, FP7-SST-2007-RTD-1.
Grant agreement no.: SCPS-GA -2009-233776. Starting date: 1st August 2009. End

 22

date: 30th September 2012. (http://www.dimec.unige.it/pmar/picav/). Partners
involved:

- DIME (Coordinator) (Department of Mechanics and Machine Design),
University of Genoa, Italy

- INRIA (National Institute for Research in Computer Science and Control),
France.

- UCL (University College London), UK.
- University of Pisa, Italy
- TCB (Serviços Municipalizados de Transportes Colectivos do Barreiro),

Portugal
- ZTS VVU KOSICE, Slovakia
- Mazel Ingenieros, Spain.

The PICAV vehicle shows the following specific characteristics (DIME, 2012):
- Size and Weight: all the dimensions of PICAV vehicle prototype were kept as

small as possible (1.1 m wide and 1.3 m long) but compatible with ergonomic
user needs and environmental infrastructure. The partnership tried to keep the
vehicle mass as low as possible.

- Agility: dexterous operation in narrow roads and short corners; ability to
overcome steps up to 200 mm; ascend and descend a maximum longitudinal
incline of 25 degrees; a maximum tilt of 25 degrees without toppling; turning
radius smaller than 1m.

- Zero emission of pollutants.
- Noise emission less than 45 dBA (for comparison, the legal maximum noise

level for a small motorcycle is 77 dBA and 45 dBA is about the level of a quiet
urban area without traffic of any kind and with few pedestrians walking
around).

- Personal comfort and Ergonomics: the vehicle components and sub-assemblies
were tested by representative sample of potential users. They were be asked to
sit in the vehicle, to drive it in a given scenario and to give feedback. The level
of satisfaction about comfort and easy driving also in transient conditions
(breaking, turning, acceleration) was good.

- Safety: the vehicle maximum velocity is lower than 6 m/s thus no crash tests are
foreseen. Stability is an important issue for safety. With reference to the agility
performances, the vehicle guarantees roll and tilt in an angular range of ±12
degrees. It was verified that the user’s exit from the vehicle is possible in case
of overturning in any direction. Safety issues were addressed considering
robustness of the control and redundancy of sensing, actuation and control
systems. The design of the vehicle exterior ensured that the surfaces are smooth
with no protuberances that could injure passing pedestrians.

- Energy efficiency: The power system architecture and specific algorithms were
developed to improve the vehicle energy efficiency.

 23

http://www.dimec.unige.it/pmar/picav/

Fig. 1.11. The PICAV vehicle in a road in Genoa centre (DIME, 2012)

1.4.1.1. The power system
The battery system is made up of Lithium-polymer cells. Each cell has a nominal
voltage of 3.2V and its capacity is 5Ah. The nominal current is 5A. The battery
pack configuration is made by 15 blocks connected in serial and each block has 16
cells connected in parallel. When the battery is fully charged, the voltage is 54V.
Nominal voltage is 48V and cut off voltage is 45V. We could storage all the energy
in a volume of 20 litres with a weight of 40Kg. An internal view of the PICAV
battery is shown in the figure 1.12.

Fig. 1.12. Internal view of the PICAV battery for traction (DIME, 2012).

 24

1.4.1.2. The traction and the roll control mechanism
The traction of the vehicle is made by actuators directly attached to the wheels,
similarly to the new in-wheel motors available in the market. The vehicle has 4
driving wheels designed in such a way to allow the vehicle to climb steps.

Fig. 1.13. The capability of the vehicle’s wheels to allow the vehicle travel with two wheels
in the sidewalk and two wheels on the road. Thanks to that, the user can be kept in a
horizontal position (DIME, 2012).

The roll control mechanism of the PICAV vehicle is designed in a way so that
the vehicle is capable of adjusting the height of the wheels module with respect to
the terrain. Taking into account the urban scenarios in which part of the city is atop
a hill, it has to be considered that the PICAV will circulate in roads with a lateral
incline. The roll mechanism permits that with a lateral incline the body of the
vehicle maintains horizontality and it becomes virtually impossible to turn over.
Furthermore, the vehicle needs to be capable of circulating in different
environments including pedestrian areas. PICAV is capable of going with one
wheel module above the sidewalk and the other below on the road, and of
maintaining at the same time the driver in a horizontal position, as shown in figure
1.13.

1.4.1.3. The seat
The seat module has been designed taking into account the state of the art on
ergonomics of automotive seats and the needs of impaired user. It envelopes the
user at the shoulders and legs; while the size ensures comfort for users of any
height and size.

The motion of the seat is delivered by two actuators. A first linear actuator
enables the forward movement of the seat inside the vehicle. The second one starts
to work when the seat is completely out of the vehicle and raises the seat. When the
user is leaning in the seat, the procedure is reversed accompanying the user in the

 25

inner drive position. This gives the possibility to mobility impaired users to be
carried inside the vehicle in an autonomous way without having to use their
muscles. The actuation of this motion is commanded by the user by the buttons
located in the armrest. Figure 1.14 shows the functionality of the seat

Fig. 1.14. The functionality of the seat. It accompanies the user when he raises and when he
sits down, allowing mobility impaired people to sit and raise without using their muscles
(DIME, 2012).

1.4.1.4. The sensors
Different sensors are used to provide driving assistance and automated drive. Three
front laser scanners are used for the obstacle, steps and stair detection. Moreover, 4
ultrasonic sensors and a vision camera were used for the rear detection in the back
driving maneuvers. Two inclinometers were used to keep the comfort in the
driving. The stair detection system is composed of three laser sensors. The two
laser sensors dedicated to the step detection have a vertical orientation in order to
scan the altitude profile of the environment. For the obstacle detection, another was
placed in the middle of the vehicle in horizontal position. The system has been
designed as the vehicle is supposed to be able to cross over a stair and steps. The
sensorial system installed on PICAV is shown in figure 1.15. The PICAV
perception system is shown in figure 1.16.

1.4.1.5. The human machine interface
The human machine interface (HMI) is in charge of transmitting the command
from the user to the vehicle. The HMI developed allows three main tasks: joystick,

 26

buttons and monitoring. The software is installed on an onboard tablet. The
onboard tablet has installed a wifi-card, and through this connection the command
can be read by other computers: in fact, the HMI can run in different external
computers that have access. However, the simultaneous use of each task is
prohibited

Fig. 1.15. The sensorial system installed on the PICAV (DIME, 2012).

Joystick. A touchscreen of the smartphones has been used to control the

steering and the speed on the PICAV. However, from a standard computer (with a
mouse) the joystick can also works properly. A low past filter is added in order to
avoid jumps or peaks to the PICAV actuators. When the user lifts the finger from
the touchscreen of the HMI, the filter smooths the signals.

Buttons. Figure 1.17 shows the six buttons used by the HMI. The different
tasks defined are: chassis (up and down); cover (open and close); seat (forward and
backward); seat (up and down); lights (on and off).

Fig. 1.16. The PICAV perception system through the sensors mounted on the vehicle
(DIME, 2012).

 27

Fig. 1.17. The buttons of the human machine interface (DIME, 2012).

 28

Chapter 2. State of the art on vehicle sharing systems

Introduction

In this chapter, the main aspects about car and bike sharing systems and their
evolution are provided. Car and bike sharing systems have the advantage of
providing users a high level of flexibility, which aims to be as similar as possible to
privately-owned vehicles. On the other hand, the necessity to rebalance vehicles
among stations arises. This is a key aspect for what regards vehicle sharing systems
and in this chapter the focus is provided to that.

There are however other aspects related to car and bike sharing systems, that
are not treated in this chapter. These aspects regard:

- membership and registration;
- booking techniques: for example online booking;
- check in and check out methodologies: for example through smart card;
- techniques for the identification of the users;
- techniques for payment;
- security for vehicles robbery;
- pricing systems and integration with pricing of conventional public

transport;
- system management;
- techniques for the localization of vehicles;
- techniques for communication between vehicles, users and system

manager.
The chapter is structured in the following way.
Section 1 provides an overview of car sharing systems and of their

rebalancement techniques. The first subsection explains the main characteristics of
car sharing systems. Car sharing systems can be classified in three generations
according to the level of flexibility provided to users. Subsection 2 concerns the
origin of car sharing systems and a general introduction of their main
characteristics. Subsections 3, 4 and 5 show the main features and problems of the
three generations of car sharing systems.

Section 2, describes the main features of new generation bike sharing systems
and their main characteristics. Relocation for bike sharing systems does not
constitute a problem because cycles can be successfully carried on vans in great
quantity and therefore staff costs are kept low.

2.1. Car sharing systems

2.1.1. Overview
Car sharing is a model of car rental where people rent cars for short periods of
time. "Carpooling" or "ride sharing" refers to the shared use of a car for a specific

 29

journey, in particular for commuting to work, often by people who each have a car
but travel together to save costs. The principle of car sharing is that individuals
gain the benefits of private cars without the costs and responsibilities of ownership
(Shaheen et al. 1998). Instead a household accesses a fleet of vehicles on an as-
needed basis. Car sharing may be thought of as organized short-term car rental. Car
sharing has sprung up in different parts of the world and operations are organized
in many different ways in different places. Sizes of organizations vary, from one
shared car and only a handful of sharers, to organizations that serve a complete
urban area.

Car sharing differs from traditional car rentals in the following ways (Shaheen
et al., 1998):

• Car sharing is not limited by office hours.
• Reservation, pickup, and return is all self-service.
• Vehicles can be rented by the minute, by the hour, as well as by the day.
• Users are members and have been pre-approved to drive (background

driving checks have been performed and a payment mechanism has been
established).

• Vehicle locations are distributed throughout the service area, and often
located for access by public transport.

• Fuel costs are included in the rates.
• Vehicles are not serviced (cleaning, fuelling) after each use, although

certain programs such as Car2Go continuously clean and fuel their fleet
The technology of CSOs varies enormously, from simple manual systems

using key boxes and log books to increasingly complex computer-based systems
(e.g. partially automated and fully automated systems) with supporting software
packages that handle a growing array of back office functions (Shaheen et al.,
2005). The simplest CSOs have only one or two pick-up points, but more advanced
systems allow cars to be picked up and dropped off at any available public parking
space within a designated operating area.

While differing markedly in their objectives, size, business models, levels of
ambition, technology and target markets, these programs share many features. The
more established operations usually require a check of past driving records and a
monthly or annual fee in order to become a member. The cost and maximum time a
car may be used also varies (Shaheen et al., 2005).

To make a reservation, one can either make a reservation online, by phone, or
by text messages depending on the company’s flexibility. Then the company
usually asks all the necessary information such as: the beginning time of the trip,
the end time of the trip, the best place for picking up the car, which car is preferred.

There is a small card reader mounted on the windshield. Once the customers
place their membership card on the reader, it will use what is called blink
technology to activate the time and unlock the car. The reader will not work until it
is time for that specific reservation. Depending on the company, the customer may

 30

be provided with a key to a lock box that contains the ignition key itself. Once the
customer is set, they are off to their next destination.

Although members are often responsible for cleaning the car and filling up the
tank when low, the car sharing company is generally responsible for the long-term
maintenance of the vehicles. Members have to make sure that when they are
finished, the car is ready for the next user.

Many car sharing companies, are now investing in plug-in hybrid electric
vehicles (PHEV) and in fully electric vehicles.

2.1.2. History
The earliest origin of shared use vehicle systems is in 1948, in Zurich, which has
been performed by a cooperative called “Sefage”, but there was no known formal
development of the concept in the next few years. By the 1960s as innovators,
industrialists, cities, and public authorities studied the possibility of high-
technology transportation, mainly computer-based small vehicle systems (almost
all of them on separate guideways), it was possible to spot some early precursors to
present-day service ideas and control technologies (Shaheen et al., 1998).

The early 1970s saw the first whole-system car share projects. A shared
vehicle system, ProcoTip, has been settled in 1971 in Montpellier. The ProcoTip
system lasted only about two years. A much more ambitious project called the
Witkar was launched in Amsterdam in 1973. A sophisticated project based on
small electric vehicles, electronic controls for reservations and return, and plans for
a large number of stations covering the entire city, the project endured into the
mid-1980s before finally being abandoned (Shaheen et al., 1998). All these
experiences therefore have been unsuccessful.

However, in the 1980s several other initiatives have been launched, such as
“Mobility Car-Sharing” in Switzerland, and “Stattauto” in Berlin. In these car
sharing system usually members need to book cars beforehand and the time the car
will be dropped off should be specified (fixed-period reservation); besides,
generally cars must be returned to the same location where they were picked up
(two-way trips). In 1990s, the car-sharing concept has become popular also in the
U.S., where several pilot projects have been performed.

After, to overcome the barriers of traditional car-sharing systems, a new
generation of car-sharing systems has been developed which provides the
following specific services: instant access; open-ended reservation and one-way
trips. Among these new systems, UCR IntelliShare at the University of California
at Riverside (Barth and Todd , 2003; Barth at al., 2000), CarLinkI and CarLink II
in Dublin-Pleasanton (Shaheen and Rodier, 2005); in Paris (Autolib’); and in
Singapore (Honda ICVS). The features provided by the new generation systems on
one hand provide users great flexibility, but on the other hand create a serious
problem, which is the unbalancement of vehicles available at the various stations,
therefore in some stations there is an excess of vehicles, while in others there is
lack of vehicles.

 31

The target of a relocation strategy is twofold: firstly to reduce management
costs and secondly to provide users high flexibility and low waiting times.

Relocation strategies could be classified in two main categories: operator-
based and user-based. Operator-based strategies resolve the balancement problem
by operators that manually relocate a vehicle or a platoon of vehicles from stations
having vehicles in excess to stations having lack of vehicles. In user based
strategies, instead, relocations are performed by the trips of the transport system
users. In this thesis, a new strategy in which some users accept to be told to which
stations return the vehicle, according to the system needs, is shown.

The activities performed by the operators are: maintenance: the staff is
performing vehicles maintenance such as refueling, cleaning, etc.; movement: the
staff moves from the station in which is currently present to the station in which he
is needed to perform the relocation operations; and relocation: the staff relocates
the vehicle. The great majority of shared vehicle systems involve operator-based
strategies. This category includes also some strategies which could be also partially
user-based: some users may be available in performing few of the required
relocations if motivated by a reduction in the transport price. Only a few partially
user-based strategies have been developed. In IntelliShare the integration of
operator-based strategies and partially user-based strategies has been considered
(Barth and Todd, 2003). In the strategies belonging to the second category, all the
relocations are performed by users and therefore operator’s costs could be saved.

Recently, some “third generation” car sharing systems, such as Car2Go
(Firnkorn and Müller, 2011) and DriveNow, have been developed. In these
systems, vehicles can be accessed also along the roads and be returned to the
system at any point of the intervention area. They have been specifically designed
for those residential areas where the population is low and sparse and therefore
users may have a quite long walking distance to reach the closest station.

The performance of a relocation strategy is generally assessed as a function of
users waiting times and number of relocations. Several authors, such as Shaheen et
al (2009), focus on modal split issues: the capability of these new transport systems
to attract users from private transport modes.

2.1.3. First generation car sharing systems
These car sharing systems, which are called first generation, require registration
and booking in advance. Moreover, they show several drawbacks:

1. distances among stations: the shared car must always be left at the same
station in which it has been taken, which often is uncomfortable to reach.
Some CSOs however apply fares that allow to use the car for an evening
and return it in the following morning without any added cost;

2. single trips are impossible: it is always necessary to return the vehicle at
the same station or bay from which it has been taken;

3. it is necessary to book before accessing the shared vehicle;

 32

4. possibility of not finding any vehicle of the required typology when
needed;

5. non flexibility: the user must return the vehicle at the end of the period
booked. This may constitute a problem if some impedances in the trips
occur, such as traffic jams;

6. share of the car with other users: the user cannot leave in the car personal
objects that he always needs but he has to take them with him.

In order to improve the degree of flexibility for users, new generation shared
vehicle systems are proposed. These systems remove the constraint of booking in
advance, and allow to perform single trips and return the vehicle as the user has
finished his trip or trip chain. These systems, called second generation car sharing
systems, will be described in the section 2.1.4.

2.1.3.1. Some examples of first generation car sharing systems
Today carsharing services are widely spread worldwide, with over a thousand cities
where carsharing services are available. Existing services include:

1. Zipcar: (www.zipcar.com) developed in Spain (Barcellona), Canada
(Toronto and Vancouver), UK (Bristol, Cambridge, London, Maidstone,
Oxford), U.S. (Atlanta, Austin, Baltimore, Boston, Chicago, Los Angeles,
Miami, New York, Philadelphia, Pittsburgh, Portland, San Francisco,
Seattle, Washington). As of November 2012, Zipcar has 767,000 members
and offers 11,000 vehicles throughout the North America and Europe,
making it the world's leading carsharing network.

2. EasyMotion.pl (www.easymotion.pl) in Poznan (Poland).
3. City Car Club (www.citycarclub.co.uk), developed in the UK in the

following cities: London, Bristol, Southampton, Leeds, York, Manchester,
Sheffield, Birmingham, Glasgow, Edinburgh, Cardiff.

4. Ibilek (www.ibilek.es): developed in Spain, in Bilbao, Donostia, Vitoria.
5. Respiro (www.respiromadrid.es): developed in Madrid, Spain.
6. Stadtmobil (www.stadtmobil.de): developed in Germany in the following

areas: Berlin, Hannover, Rhein-Ruhr, Rhein-Main, Rhein-Neckar,
Karlsruhe, Stuttgart.

7. CityCarShare.org (www.citycarshare.org), in San Francisco area, U.S.
8. NTUC Incarne Car Ca-op, CitySpeed and WhizzCar in Singapore (Barth et

al., 2006).
9. In Japan: ITS Mobility system in Osaka, Tourist Electric Vehicle System

in Kobe, Ebina Eco-Park & Ride (for commuters of a railway station),
Inagi EV-Car Sharing for residential areas, Minato–Mirai 21 in Yokohama
(Barth et al., 2006).

However, some of these companies, such as Zipcar, allow users to book the
car shortly in advance, and prolong the booking period if some impedances, such
as queues or traffic jams, occur during the trip. But in all cases the vehicles must be
returned in the same pick-up stations.

 33

Fig. 2.1. The Zipcar map. It tells the user the state of each station in terms of number of
vehicles available and number of free spaces. It also allows users to book and reserve a
vehicle. This map refers to Los Angeles (www.zipcar.com).

In websites of the companies cited above, the location of the stations and their
state, i.e. the availability of vehicles and of free spaces, is provided to the users. In
figure 2.1, the application of Zipcar is shown, which allows users to check the
stations’ state and book and reserve a vehicle. In figures 2.2 - 2.5, the analogous
applications for CityCarClub, Stadtmobil, Respiro and CityCarShare.org are
available.

In Italy, several cities have a car sharing system. The Italian Ministry of
Environment has launched a circuit called CarSharing Initiative (ICS, i.e. Iniziativa
Car Sharing), where members registered to one of cities taking part in the initiative
can make use of the car sharing in all the other cities. Currently the Italian cities
taking part in this initiative are: Torino and its province, Alessandria, Milano and
province, Monza and province, Brescia, Milano, Venezia, Padova, Bologna,
Modena, Parma, Reggio Emilia, Rimini and province, Genova, Savona, Firenze
and metropolitan area, Perugia, Pescara, Roma, Bari, Taranto, Palermo
(www.icscarsharing.it). All cities of ICS have a web site in which the location of
the stations is reported. However, the state of each station, i.e. the availability of
vehicles or of free spaces, is never shown. With the initiative called “IoGuido”,
there are promotions like high discount in prices of car sharing systems, aimed to
encourage people to visit cities by train + car sharing instead of private car.

Other Italian cities have minor car sharing systems, which do not take part in
the initiative.

 34

All Italian car sharing systems do not allow booking shortly in advance.

Fig. 2.2. The similar map for CityCarClub, London. Clicking on the station, informations
about its state are provided. (www.citycarclub.co.uk).

Fig. 2.3. The map of stations of Stadtmobil, in Frankfurt. Clicking on the station (the blue
arrow) the information about the station’s state is provided. (www.stadtmobil.de).

 35

Fig. 2.4. The interactive map of Respiro’s stations in Madrid. Again, clicking on the
stations the information about them are provided. (www.respiromadrid.es).

Fig. 2.5. The interactive map of CityCarShare.org stations in San Francisco. Again, clicking
on the stations the information about them are provided. (www.citycarshare.org).

 36

2.1.4. Second (new) generation car sharing systems.
New generation car sharing systems have been developed to overcome the barriers
of traditional car-sharing systems. These systems provide the following specific
services: instant access; open-ended reservation and one-way trips.

2.1.4.1. Main features of the new generation car sharing systems
As stated above, new generation systems provide users the following services:

Instant access: The system can be accessed by users without any need of a
booking. The registration or however some form of identification of the users is
necessary.

Open ended reservation: The user does not have to specify a return time when
he accesses the vehicles. Therefore, he can return the vehicle at any time, when he
has finished all his trips. This feature is extremely useful as, because of
contingencies, it is usually impossible to forecast the time required to perform a
given trip or trip chain. For example, if the vehicle is used to go shopping in the
city centre, the duration of the trip depends on: the traffic, the time spent at each
shop, etc.

One way trips: The user can return the vehicle in a station different from the
pick-up one.

The features provided by the new generation systems on one hand provide
users great flexibility, but on the other hand create a serious problem, which is the
unbalancement of vehicles available at the various stations, therefore in some
stations there is an excess of vehicles, while in others there is lack of vehicles.

Therefore, relocation is necessary.
Relocation strategies can be distinguished in two main groupings: operator

based and user based. Operator-based strategies resolve the balancement problem
by operators that manually relocate a vehicle or a platoon of vehicles from stations
having vehicles in excess to stations having lack of vehicles. In user based
strategies, instead, relocations are performed by the trips of the transport system
users.

2.1.4.2. Some examples of new generation car sharing systems
Several pilot projects have been developed at the end of 1990s and beginning of
2000s in the U.S. In particular, it is worth to mention:

- The Coachella Valley system (Barth and Todd, 1999): it has been settled in
a Californian holiday resort.

- UCR IntelliShare (Barth and Todd, 2003), settled at the University of
California at Riverside.

- CarLink I, settled in the Dublin Pleasanton Bay Area, and its continuation
CarLink II, settled in Palo Alto, California (Shaheen and Rodier, 2005).

Another new generation car sharing system, Honda ICVS, has been established
in Singapore. However, it has been recently removed due to high staff costs.

 37

Finally, another system, Praxitéle, has been developed as a pilot project in Paris
in year 2000, and now another system, called Autolib’ (www.autolib.eu), is
operating in Paris and Ile de France, and recently it has been settled also in Lyon.

2.1.4.3. Operator based relocation strategies

2.1.4.3.1.Where and when a relocation is required?
The relocation is required when a critical situation occurs. A critical situation
occurs when the actual number of vehicles idle at a station equals one of the
station’s critical thresholds. Two thresholds could be defined for each station
(Barth and Todd, 1999):
− the low critical threshold. If the number of vehicles in a given parking lot goes

below the low critical threshold, the station is in shortage of vehicles and some
users may be in queue at the current time instant. This situation is referred as
ZVT, i.e. zero vehicle time (Kek et al., 2006). When this condition takes place,
a request for a vehicle is generated.

− the high critical threshold. If the number of vehicles in a given parking lot at a
given time instant goes above the high critical threshold, the station has
reached its capacity. This situation is referred as FPT, i.e. full port time (Kek
et al., 2006). When this condition takes place, users who want to return the
vehicles to the congested station need to be redirected to other stations.

The high critical threshold is upper limited by the space available in the station.
Some authors (Kek et al., 2006) calibrate the high critical threshold in such a way
to minimize the space occupancy. The low critical threshold could be assumed
constant in time or a function of time.

2.1.4.3.2. Which is the supporting station?
If a ZVT situation takes place, a vehicle needs to be allocated to the station in short
supply. The point is: which is the station which provides it? Kek et al. (2006)
introduce a new threshold: the low buffer threshold which is the minimum number
of vehicles that a station needs to have in order to be able to send vehicles.
According to these authors, the vehicle request could be addressed only to stations
where the number of vehicles is above the low buffer threshold. Among these
stations, the providing station could be selected according to several criteria: the
nearest station (shortest time criterion), or the station having the highest number of
vehicles (inventory balancing).

If a FPT situation takes place, vehicles in excess at the station need to be
moved to another station. The point is: which station is able to accept them? Kek et
al. (2006) introduce a new threshold: the high buffer threshold which is the
maximum number of vehicles that a station can have in order to be able to accept
new vehicles. According to these authors, vehicles could be sent only to stations
where the number of vehicles is below the high buffer threshold. Among these
stations, the accepting station could be selected according several criteria: the

 38

nearest one, the closer one (shortest time criterion), or the station having the lowest
number of vehicles (inventory balancing).

2.1.4.3.3. Performance of the criteria used for selecting the supporting station
The shortest time criterion relates mainly to service levels, while the inventory
balancing mainly focuses on cost efficiency. Therefore, an appropriate choice of
relocation technique should be made according to the current system situation. In
periods of low usage, the most appropriate relocation technique is by inventory
balancing. In periods of high usage, then the shortest time technique performs best.

 In reality, the results of these techniques depend also on several set-ups, such
as the number of stations, that should be kept as little as possible in order to reduce
the number of relocations. Also the number of parking spaces at each station
should be quite big in order to maintain the station capacity high, and therefore
again to reduce the number of relocations.

The application of these relocation techniques to existing systems has shown
that ZVT occurs more frequently than FPT and that individually changing any of
the above parameters does not significantly improve system performance, because
of the high interrelation among each other.

Other two parameters that should be considered, besides the relocation
technique, are:

- The vehicle-to-trip ratio, i.e. the ratio between the fleet dimension and the
total number of trips performed in a day. This ratio provides a coefficient
of vehicles usage: as this ratio decreases, the utilization of vehicles
increases. Barth and Todd (1999) have reported that for the majority of
existing new generation car sharing systems, the vehicle-to-trip ratio
assumes a value between 0.03 and 0.06.

- The vehicle-to-trip-station ratio, i.e. being v the number of vehicles
composing the fleet, s the number of stations, and t the number of trips per
day, this ratio is equal to v / (t s) . A lower ratio means that vehicles have
been utilized more heavily, or are spread out in more stations (Kek et al.,
2006).

The concepts of shortest time and inventory balancing have been implemented in
Honda ICVS in Singapore, which is an operator-based car-sharing system. For this
system, through simulation, the inventory balancing and shortest time criteria have
been studied under various operating parameters, e.g. staff strength, number of car
park lots in each station and threshold values (Kek et al., 2006). The interesting
outcome is that a reduction of resources usually is expected to worsen the service
levels, i.e. number of situations occurrences ZVT and FPT. But in reality when this
reduction is balanced with the right combination of relocation techniques and
operating parameters, performance indicators can even be improved. In particular,
the use of inventory balancing technique in situations of low resources is able to
keep low the number of relocations while maintaining satisfactory levels of ZVT
and FTP. The use of the shortest time technique instead brings to an increase of the

 39

number of relocations, but also on the other hand some improvements in ZVT,
while FTP levels are maintained.

All authors agree that to exceed in the number of parking spaces at each station
is not good because of the amount of space consumed, therefore the ratio between
the maximum number of idle vehicles at a station and the number of parking spaces
should be kept close to 1. But on the other hand to reduce in an excessive way the
number of parking spaces makes the two critical thresholds nearer to each other,
therefore the number of relocations increases relevantly.

2.1.4.3.4. Demand forecasting
In general, the operator based relocation is performed by an operator who manually
relocates vehicles among the various stations. Therefore it should be very useful to
know in advance the need of vehicles at the various stations and therefore optimize
the operator’s route.

In order to perform the most efficient relocation procedure, Barth and Todd
(1999) have hypothesized two techniques: historical predictive relocation and exact
predictive relocation.

The historical predictive relocation takes into account the trips that generally
occur day by day in a given period between each pair of stations and arranges the
relocations by forecasting the demand. It is worth to underline that in this scenario
all relocations are performed by some operators and therefore it is extremely
important to optimize the operators’ trips, in order to keep on one hand the staff
reduced, and to satisfy on the other hand the customers’ needs.

The exact predictive relocation tries to determine the transport demand, on
hourly basis, between each pair of stations in the different periods of the day.

In fig. 2.6, the performance of the three techniques for demand forecasting is
shown. In fig. 2.7, the total average wait time and the number of relocations versus
the vehicle to trip ratio is shown.

The non predictive relocation is based on the thresholds mentioned above.

2.1.4.3.5. How is the relocation performed?
The two relocation techniques which have been analyzed in the IntelliShare (Barth
and Todd, 2003) are towing and ridesharing. In the towing technique, vehicles are
towed from a location to another using a dedicated towing vehicle or simply
another vehicle which is part of the system. Towing can be both mechanical,
through tow bars, or electronic, through some sensors. This is an operator-based
technique but, thanks to improvements in “vehicle intelligence” and vehicle’s
sensors, in a short time vehicles will be able to tow on their own, without the need
of an operator. Ridesharing is when separate drivers take separate vehicles in some
ride, and the same vehicle in some other ride. Drivers could be operators or
eventually users. Therefore this technique could be operator-based or partially
user-based. In the first case, some system operators relocate vehicles through
sharing the ride or splitting into different vehicles. If the system operator needs to

 40

get to another station without moving a vehicle, a small scooter is available to
travel between stations. This scooter can be mounted on the towing hitch. The
towing technique through a towbar is shown in figure 2.8. Ridesharing can be
performed also via a regular user trip. Therefore, if two or more users travel from a
station with a shortage of vehicles to a station having an excess of vehicles, they
are encouraged, through high price reduction, to joint together in the same vehicle
(trip joining), while in the opposite case they are encouraged to split into different
vehicles (trip splitting). Also in the reservation process, users are encouraged in
telling in advance if they accept to joint their trip or to split their trip. In fig. 2.9,
the map of UCR Intellishare is reported.

Fig. 2.6. The performance of the three techniques for demand forecasting: the case study is
the Coachella Valley in California: non predictive relocation, historical predictive
relocation, exact predictive relocation. In the x axis the vehicle to trip ratio is reported. In
the y axis the total average waiting time (Barth and Todd, 1999).

2.1.4.3.6. Performance of the ridesharing relocation techniques
The effectiveness of the two techniques of trip splitting and trip joining on the
number of relocations has been analyzed Barth et al (2004). The evaluation
procedure by Barth et al (2004) refers to the Campus of the University of
California at Riverside. The relocation strategy is base on constant critical
thresholds. The number of vehicles has been varied between 22 and 30. The overall
travel demand volume is about 200 trips / day. The percentage of users who accept
to rideshare has been assumed equal to 100% because users, being university
students, have no problem in ridesharing, even less if this leads to a discount on the
transport cost. In this evaluation, the main interest was to assess the number of
relocations necessary during the day to keep the system balanced. The simulation
 41

results show that trip joining reduces the number of relocations by 11%, trip
splitting by 26%, and the two techniques implemented together by 42%. The
analyzed transport system performed very well. However, if the willingness to
rideshare is less, the performance drops. In the case of Honda ICVS in Singapore,
the willingness to rideshare has been assessed nearly 0%, because Asiatics evaluate
much more privacy than monetary cost. In fig. 2.10, the performance of ridesharing
in UCR IntelliShare is reported.

Fig. 2.7. Values of wait time and number of relocation with reference to the vehicle to trip
ratio. The case study is the Coachella Valley in California. In the x axis the vehicle to trip
ratio is reported. In the y axis the total average waiting time (Barth and Todd, 1999).

Fig. 2.8. The towing technique, in a mechanical way, through a tow-bar (Barth et al., 2004).

 42

Fig. 2.9. A map of UCR IntelliShare, with the location of the stations (Barth et al., 2004).

2.1.4.4. User based strategies
All the management strategies exposed above are based completely or partially on
operators. In this thesis, a relocation strategy fully based on users is proposed.
Relocations occur when a user is available in performing it. This type of strategy,
works if we make on users the hypothesis of flexibility, i.e. that they accept to be
told by the system manager to which station return the vehicle. All details about the
proposed user based strategies will be provided in section 3.2.1.

2.1.4.5. Autolib’
Differently from all the other mentioned systems, Autolib’ (www.autolib.eu) does
not have a relocation system: the user is provided with an application, in which the
location of stations and the state of each station is shown. This application helps
the user for accessing and returning the vehicle:

- For what regards accessing the vehicle, the user is informed about the state
of each station, in terms of number of vehicles available, therefore he
reserves the desired vehicle and reaches the station on his own.

- Regarding returning the vehicle, the user is informed about the free space
available. If at the destination station there is no longer space available, he
returns the vehicle at another station.

 43

Fig. 2.10. Performance of UCR IntelliShare relocation techniques: (a) trip joining; (b) trip
splitting; (c) both. In the x axis the fleet dimension is reported, in the y axis the number of
required relocations (Barth et al., 2004).

 44

This management scheme avoids the relocations. However, it creates a disutility to
users, which is the necessity to cover major distances on their own, and it results
more expensive for installation costs, because, as clearly shown in the website of
Autolib’, the stations are quite close, with a distance of about 600 – 800 metres,
and the number of vehicles is huge. Moreover, this system cannot work if the
demand is low, as or the offering in terms of vehicles and stations is greater than
the demand, or users have to travel for quite long distances to reach the nearest
available vehicle. Furthermore, as reservation and booking is performed through
this application, the access to the Autolib’ system may result quite difficult for an
aged person. In fig. 2.11, the interactive map of Autolib’ is reported.

Fig. 2.11. The Autolib’ stations map (https://www.autolib.eu/stations/).

 45

2.1.5. Third generation car sharing systems

In Ciari et al (2009) and in Schwieger (2003), the adequate level of capillarity of a
car-sharing system is discussed. The capillarity is meant by these authors as the
degree of diffusion of vehicles within the application area of the transport system,
therefore vehicles are available not only at the stations but also along the roads. A
higher capillarity of the system can better capture all the potential demand by
making the shared system more competitive and more similar to private car. This
aspect is particularly suitable for residential areas. A high degree of capillarity
results also in a less amount of space needed for the stations, because some
vehicles, as stated before, are not placed at the stations but along the streets. This
can be bring to the farthest case in which stations are only meant to vehicles
maintenance, such as refuelling, and vehicles are available at any point of the
intervention area. Capillarity should not be confused with the scale, in terms of
number of vehicles composing the fleet. It is clear that an increase in the number of
stations better satisfies the user needs but it increases the number of required
relocations.

Several newest car sharing systems have been developed according to this
concept. In such systems vehciles can be accessed and returned at any point of the
area. These systems are called of third generation.

Several third generation car sharing systems have been applied on the field. In
all these systems vehicles can be accessed with only a reservation performed just a
couple of minutes before accessing the vehicle; moreover the vehicle can be
returned at any point of the area. Vehicles can also exit the intervention area, in
Car2Go can also be used abroad. However, they must be returned in the
intervention area. No relocation is necessary. Users have real time information on
the position of the vehicles, through an application for computers and i-phones:
they reserve the vehicle they prefer and reach the vehicle’s position on their own.

In such systems, as stated above, relocation is not necessary. However, this is
achieved because:

1. the user must reach the vehicle’s position on this own; this can also
constitute a high discomfort if the nearest vehicle is quite far;

2. the fleet dimension is kept very high to satisfy the users’ demand, and the
utilization rate of each vehicle is low, much lower than in the transport
system proposed in the thesis.

2.1.5.1. Some examples of third generation car sharing systems
Third generation relocation systems are much diffused nowadays. The most
important are Car2Go, DriveNow and Greenwheels. In all these systems, an
application is available to users (both for computers and mobile phones) in which
the position of vehicles, fuel stations, registration kiosks, etc., is shown on the map.
These applications for what regards Car2Go in Ulm and DriveNow are respectively
shown in figures 2.12 and 2.13.

 46

Figure 2.12. A screenshot of Car2Go finder (www.car2go.com).

Fig. 2.13. A screenshot of DriveNow finder (www.drive-now.com).

Car2go (www.car2go.com) has been initially settled in Ulm, Germany, and

now is diffused in other cities in Germany, The Netherlands, England, U.S. and
Canada: Amsterdam, Austin, Berlin, Calgary, Dusseldorf, Koln, Hamburg,

 47

London, Miami, Portland, San Diego, Seattle, Stuttgart, Toronto, Vancouver,
Vienna, Washington.

DriveNow (www.drive-now.com) is diffused in particular in Munchen,
Berlin, Dusseldorf, Koln, San Francisco.

Greenwheels (www.greenwheels.nl) instead is diffused all over The
Netherlands.

2.2. Bike sharing systems and their relocation procedures

As reported in chapter 1, four stages, or “generations”, of bike sharing programmes
could be seen:
- first generation, called white bikes (or free bikes): free of charge, bicycles can

be rented for free; it is a simple bike rental;
- second generation of coin-deposit systems, which is also a simple bike rental;
- third generation, or information technology based systems: the state of each

station is available, the bicycle can be accessed through a card or a magnetic
key;

- fourth generation, known as the demand-responsive, multimodal system: it is
developed in order to successfully interact with the other means of transport.

In the first two generation of bike sharing systems, the cycles must be returned at
the pick-up station. In the last two generations, bicycles often can be returned at
any station of the area.

Bike sharing systems do not show the same problems as car sharing, for what
regards relocation. Because of the little space occupied by the bicycle, the
relocation is performed efficiently by a van.

Bike sharing systems are now much diffused. Several bike sharing schemes
exist in Italy. However, they are not much popular, although the Milan bike sharing
system performs very well. Instead one of the most popular bike sharing systems is
the London Cycle Hire Scheme.

2.2.1. Bike sharing in Italy.
Nowadays, in Italy there are about 130 bike sharing systems, mainly diffused in the
municipalities of the north and of the centre. The regions in which bike sharing are
mainly diffused are: Emilia Romagna (19), Veneto (16), Piemonte (15) and
Lombardia (13). (Ceccarelli, 2010). These are third generation bike sharing
systems.

These systems are distinguished in two typologies according to the typology
of access:
- mechanical access through a key
- magnetic access through a card.
In mechanical access systems, the bicycle must be returned at the same pick-up
place, but no time limit for returning is given to users. The user is provided with a

 48

key that he has to consign when he accesses the bike. When the user finishes his
ride, he can have the key back. The systems through keys are often for free.

In systems accessible through magnetic card, the bicycle can be returned in
any other parking space. In all these systems, short rides are encouraged: in all
Italian municipalities excluded Rome, the fare allows the first half an hour of usage
for free. In Milano, the maximum limit of usage is four hours.

In Italy, the access through keys is provided by the agency “C’entro in bici”
(fig. 2.14); the access through magnetic card is provided by “Bicincittà” (fig. 2.15).
C’entro in bici is mainly diffused in Emilia-Romagna and Veneto and it regards
2/3 of the total number of bike sharing settlements. Bicincittà regards 1/3 of the
total bike sharing settlements and is mainly diffused in Piemonte and Lombardy.

The biggest bike sharing system in Italy is diffused in Milano (called
BIKEMI) (www.bikemi.com), which has been launched in November 2008 and
now is composed of 1300 bicycles distributed in 100 stations in the historical city
centre of Milano (Ceccarelli, 2010). Now is under development its expansion in the
peripheral areas, in particular university campuses and the railway and bus stations
mostly used by commuters. This expansion plan forecasts 170 new stations and
5000 bicycles. All new stations will have 33 places for bicycles. An i-phone map
allows the user to see the nearest station of the bike sharing and the availability of
the bicycles.

Fig. 2.14. A station of “C’entro in bici”, with mechanical access through a key (Ceccarelli,
2010).

 49

Fig. 2.15. A station of the bike sharing programme Bicincittà (Ceccarelli, 2010).

In Genoa, in April 2009, the system MOBIKE has been launched, and it

consists on 55 bicycles distributed in 6 stations. It regards mainly bicycles with
assisted driving because of the topography of the territory, with high slopes.

Now in Italy the most important bike sharing systems (of third generation) are
diffused in: Milano, Brescia (200 bicycles), Ravenna (140), La Spezia (135),
Bergamo (120), Trento (88), Genoa (55) (Ceccarelli, 2010).

For what regards the other cities, there are several bike sharing systems of
second generation, i.e. bike rentals, with very little dimensions. This is mainly due
to the peculiarity of Italian territory: several small cities. This situation does not
allow big enterprises to make fruitful investiments.

2.2.2. The Barclays Cycle Hire.

Barclays Cycle Hire (BCH) is a public bicycle sharing scheme, launched on
30 July 2010 in London, England.

The initial feasibility of the scheme was assessed in “Feasibility study”
(2008). This report showed that London was ready for this kind of scheme. In fact
the number of cyclists on London’s roads is increasing and the number of injuries
and deaths to cyclists is reducing. Several other bike sharing systems are already
developed in Europe: in order to be competitive the London Cycle Hire Scheme
should have:

- A deposit mechanism
- An annual subscription or registration process
- A strategic pricing structure
- A smartcard system

 50

- Innovative docking stations to make use of available space
- Very secure and easy-to-use docking stations
- Robust bicycles
- Minimum use of vehicles to re-distribute bicycles
- Simple maintenance
- A visible and easily identifiable scheme
- Availability for tourists

Initially, BCH required initial payment of registration and membership fees to
be paid in exchange for an electronic access key, but from the beginning of 2011
this was changed to allow casual cycle hires by non-members who have a valid
credit or debit card.

2.2.2.1. Operation
Regular users of the scheme can register on the TfL website and sign up for one of
three levels of access: daily, weekly or yearly. Users are then sent a key which they
must activate before they use it for the first time. A key costs £3, and up to four can
be registered under a single account. Scheme members insert the membership key
into a docking point key slot; an amber light indicates that the account is being
verified, then a green light indicates that the cycle can be undocked.

From 3 December 2010 the scheme has also been made available to casual
users who have not registered with TfL. It is sufficient to have a credit card: on the
docking station, on the terminal, are reported all the procedures to follow. Once the
user has purchased his access period (for either 24 hours or seven days) the first 30
minutes of any journey will be free of usage charges (www.tfl.gov.uk). An
interface for booking a cycle is shown in fig. 2.16.

2.2.2.2. Docking stations
Docking stations consist of a terminal and docking points where users pick up and
return cycles. The terminal at each docking station contains a screen allowing users
to:
- hire a cycle if the user does not have a key;
- print a record of their journey;
- find other nearby docking stations – if one is full or empty;
- get extra time if they need to return the cycle to another docking station; and
- see a local street map, review scheme costs, the code of conduct and translated

information.
During high load hours the bikes are moved from the busiest stations to the
emptiest using electric vehicles with zero CO2 emissions. There are a number of
applications for mobile phones to help users find the nearest station. A docking
station is shown in figure 2.17. The interactive map of the stations in London is
shown in figure 2.18. Clicking on the station, you can receive the information
about the station’s state: number of cycles available, number of free spaces.

 51

http://www.tfl.gov.uk/

2.2.2.3. Relocations
As shown above, relocation does not constitute a problem, bicycles of the BCH are
relocated through a van from stations having bicycles in excess to stations having
lack of vehicles. Despite this is an operator based scheme, this relocation is quite
cheap as a high number of vehicles can be carried in a single relocation trip.

Fig. 2.16. The booking interface at a docking station (www.tfl.gov.uk).

Fig. 2.17. A docking station in the Barclays Cicle Hire (www.tfl.gov.uk).

2.2.2.4. Costs
Users of the scheme must pay both an access fee and usage charges.
The access fee costs £2 for a 24-hour access, £10 for a seven-day access and £90
for an annual access. The usage charges are summarized in table 2.1. Source of
data: www.tfl.gov.uk. The first half an hour of usage is free.

 52

http://www.tfl.gov.uk/

Table 2.1. Usage charges of the Barclays Cycle Hire scheme.
Time period between picking up and returning a cycle Charge (£)
Up to 30 minutes 0
Up to an hour 1
Up to an hour and a half 4
Up to 2 hours 6
Up to 2 and a half hours 10
Up to 3 hours 15
Up to 6 hours 35
Up to 24 hours (maximum) 50

Fig. 2.18. A screenshot of the BCH map in London city centre (www.tfl.gov.uk).

 53

Chapter 3. The proposed transport system.

Introduction

The proposed transport system is a new multimodal shared use vehicle system for
urban pedestrian environments and it involves a fleet of automated personal
vehicles. PICAV vehicles are specifically designed for urban pedestrian
environments where usual public transport services cannot operate because of the
width and slope of the infrastructures, uneven pavements and interactions with high
pedestrian flows.

The proposed car-sharing system overcomes some restrictions of traditional
car-sharing (first generation) where members need to book cars beforehand and the
time the car will be dropped off should be specified (fixed-period reservation);
besides, cars must be returned to the same station where they were picked up (two-
way trips).

The proposed system provides users with more flexibility thanks to:
- instant access: users can access directly to an available vehicle, without the

need to make a reservation;
- open-ended reservation: users can keep the PICAV vehicle as long as needed;
- one way trips: users can drop the vehicle off at any station.

The main problem of the proposed car sharing system is that it may quickly
become imbalanced with respect to the number of vehicles at the stations. Due to
uneven demand, some stations during the day may end up with an excess of
vehicles whereas other stations may end up with none.

New generation car sharing systems often resolve the unbalancement problem
through operator based relocation. But operator based relocation has shown to be
extremely expensive in terms of staff and management costs, therefore some
systems have turned out into a failure, while others only remained pilot projects
and have never been settled on a wide scale.

Three new relocation strategies have been studied.
This chapter is organized in the following way. Paragraph 3.1 summarizes the

main characteristics of the proposed transport system. Paragraph 3.2 describes the
three proposed relocation strategies that aim to solve the unbalancement problem
of the proposed transport system.

This part of the thesis has been published in several papers: Cepolina and
Farina (2012a), Cepolina et al. (2011a), Cepolina and Farina (submitted to TRB).

 54

3.1. Main characteristics of the proposed transport system

3.1.1. The road network representation.
Trips by PICAV can have origin or destination either in a station or in a unit.

Stations
Stations are distributed at different locations through an area, and play the role of
origin and destination of user trips and battery charging points. The stations are
conveniently placed in locations close to both intermodal exchange points and
attractors. Intermodal exchange points may be for example: bus stops, underground
stations, railway stations, parking areas. Attractors are points where long term
activities can take place: for instance, museum, offices, schools, etc. Each station is
characterised by an attractivity that is a function of the number and the typology of
the attractors within the station’s influence area.

Units
For simplicity of representation, the roads in the intervention area have been
divided in sections of a given length. Each road section is represented through a
node, called unit, placed in a baricentric position of the road section. All the
information regarding the road section, i.e. transport demand, number of users
waiting, number of vehicles parked, is assigned to the unit. Each unit is also
characterised by an attractivity. The unit’s attractivity is a function of the number,
typology and attributes of the attractors localized in the related section. In this case
attractors are places where a short term activity takes place: for example, shops.
Units can both play the role of localization of short term stops, and of origin and
destination of the trips. Units are not placed on the border of the intervention area.

A trip by PICAV could be a travel on board the PICAV vehicle (single task
trip) or a sequence of travels on board and activities that require short term parking
(less than 1 hour) along the street (multi task trip).

If during a trip the user makes a stop that lasts more than 1h, the vehicle will
need to be returned. If the stop duration is less or equal to 1h a short-term parking
is permitted and the vehicle does not have to be returned.

3.1.2. Trip typologies.
We consider four types of trips in the intervention area:

Type A is a multi-task trip: the user has a sequence of short term activities to
perform in the intervention area, with the origin and the destination of the trip on
the border of the intervention area. The user reaches the intervention area border on
his own, he picks-up a PICAV vehicle, he makes an activity travel pattern with
short term stops (like shopping, visits to: banks, post office, etc.), he returns the
vehicle and he goes back home again on his own (e.g. by public transport, by car,
etc.).

 55

Type B is a single-task trip, with either origin or destination on the border of
the intervention area. The user has to perform an activity that requires a long stop
in the intervention area. The user arrives on the intervention area border on his
own, he picks up a vehicle at a station, he reaches to the station closest to his
activity place and returns the vehicle there and he reaches the activity place by
foot. Type B trip is also the return trip: the user has finished his activity within the
pedestrian area and wants to go back home. The user thus goes by foot to the
station closest to his activity place, he picks-up a vehicle, he returns the vehicle on
the pedestrian area border in a station and goes back home on his own. In the third
management strategy, the user calls the system manager, requires a vehicle, then
enters the vehicle and reaches the area border by PICAV.

The trip typology D is a single-task having both origin and destination inside
the intervention area.

The trip typology E is a trip chain having both origin and destination inside the
intervention area.

The various trip typologies are shown in the figure 3.1.

Type A
trip

Type B trip

Type D
trip

Type E trip

Fig. 3.1. The various trip typologies: type A (above left), type B (above right), type D
(below left), type E (below right).

3.1.3. Communication and system management.
The PICAV vehicles are networked and can communicate through a cellular GPRS
technique with each other, with the system manager, with the city infrastructure
and with public transport in the surrounding area, which allows a high level of
intermodal integration. The communication among vehicles is important for users
who travel together. The communication between vehicles and system manager is
important:

- for relocations,
- to provide the user real time data about: waiting times at public transport

stops, traffic flow values, unpredictable events (e.g. street closures etc.).
- for booking, check in and check out of vehicles.

 56

The system manager deals with all the activities of the system management, such
as:

- reservation of vehicles, check in and check out;
- communication with the PICAV user;
- make automated vehicles relocate in the required time;
- make automated vehicles reach the user’s position;
- constantly monitor the state of each station: the number of vehicles

available, the number of users in queue, the number of vehicles whose
charge level is less than the minimum: it is necessary for performing the
relocations;

- constantly monitor the position and the state of each vehicle: available,
unavailable but in charge, occupied by user, relocating.

3.1.4. Maintenance and refuelling.
The activities of vehicles maintenance regard: cleaning and refuelling. For what
regards refuelling, vehicles are electric and therefore refuelling consists on battery
recharge. Two battery charging techniques have been hypothesized.

1. The first technique is called “opportunity charging”: the vehicle is put in
charge whenever and wherever power is available. As a vehicle reaches a
station, it is put in charge. This technique, as will be exposed more in detail
in the following sections, is very efficient as it allows vehicles to always
maintain a high level of charge and therefore all the fleet is available in the
peak demand periods. However, this technique is good as the vehicle has a
battery without memory effect.

2. The second technique requires that the battery is used always in its interval
of maximum performance: i.e. the charge level should never go under
40%, and when the 80% of charge is reached, the battery is unplugged, as
to reach the 100% of recharge a long amount of time is needed. This
technique is not efficient as the previous one, however it is the best from
the point of view of the battery.

3.1.5. Night rebalancement
At the end of a working day, vehicles must be redistributed among the stations.
Given the PICAV vehicles characteristics, they will be able to relocate themselves
among the stations and therefore perform by themselves this rebalancement

3.2. Relocation strategies

3.2.1. The first management strategy: flexible users
The first management strategy admits the existence of a system supervisor who is
in charge of addressing at least part of the users (flexible users) to specific stations.

Vehicles can be accessed only at stations and they need to be driven by a
person (they do not move in a fully automatic way). A fully user based relocation

 57

strategy is proposed. A system supervisor is in charge of addressing a subsection of
users, who are called flexible users, to specific stations. A flexible user is a person
that has a final destination outside the pedestrian area and reaches it by public
transport; therefore a flexible user has a set of stations that are equally suitable for
returning the vehicle. We call this a user’s choice set. It includes all the stations
close to inter-modal exchange points where public transport services, which are
suitable to reach the user’s final destination, stop. The flexible user agrees to return
the vehicle to any of the stations within his choice set, because from these stations
he can easily reach his final destination.

When a flexible user finishes his mission in the pedestrian area, he calls the
system supervisor and asks where he has to return the vehicle. The supervisor
makes a decision according to the following informations:
- the choice set of the flexible user;
- the current waiting times at the stations within the user’s choice set;
- the travel times between the user’s current position and the stations within his

choice set.
The supervisor assigns a station to the user that results good from both the point of
view of the flexible user (since it belongs to the user’s choice set) and of the
transport system management. More in detail, the destination station is the
following:
- if there are some users in queue in the stations belonging to the choice set, it

has the greatest ratio between: the maximum waiting time, and the distance
from the user’s current position;

- if there are no users in queue in the station belonging to the choice set, it has
the lowest product between: the number of vehicles available, and the user’s
current position.

In this management strategy, when his trip is over, the user calls the system
supervisor and receive the indication of the destination station within his choice
set. The call to the supervisor takes place:
- if the user performs a single mission trip from inside the intervention area to

the border, he calls the supervisor as he enters the vehicle;
- if the user performs a trip chain with destination on the border of the

intervention area, he calls the supervisor as he departs from the last stop of the
trip chain.

The flexible user is supposed to return the vehicle to the station chosen by the
supervisor. This schema should help in keeping a internal balance between the
number of the vehicles at the stations, without the need to have external operators
that, according with relocation mechanisms, transport vehicles from a station with
an excess of vehicles to the station in short supply. This scheme can work in
contexts where the public transport is mainly used for reaching the pedestrian area.
In fact in this case the user can exit the pedestrian area close to any stop where
suitable public transport lines pass. In this case the number of flexible users is
supposed to be consistent. In this management scheme, the transport system

 58

characteristics are: the fleet dimension, and its distribution among stations at the
beginning of the simulation period. Both parameters are described through one
vector, whose number of elements equals the number of stations, and the value of
each element is the number of vehicles at the given station at the beginning of the
simulation time. The fleet dimension is therefore the sum of all the vector’s
elements. These values are assessed through an optimization algorithm.

This first management strategy performs very well and heavily reduces
waiting times and costs with the drawback of a slight disutility to users. But this
strategy works if the demand is balanced, i.e. if during the day the number of users
who have a given station as origin is the same as of users who have this station as
destination. Moreover, all the stations of the area must belong to at least one choice
set of flexible users. For example, Genoa case study, which will be described in
chapter 7, is a problem because the two inner stations do not belong to any choice
set. If therefore the demand is unbalanced and some stations do not belong to any
choice set, the waiting time increases heavily and the whole system collapses.

It is therefore necessary to design other management strategies who do not
have this drawback.

3.2.2. The second management strategy: automated vehicles
In the second management strategy, vehicles can be accessed only at stations and
are assumed to be able to move in a fully automatic way. A fully vehicle based
relocation strategy is proposed: vehicles automatically relocate among the stations
according to the indications of a system supervisor.

This management scheme, despite vehicles have to travel at a much lower
speed, results to be very successful, and the costs of the staff necessary to relocate
vehicles are drastically cut. However, it is still not applicable, as there is a legal
problem of determining the responsible in case the automatic vehicle has an
accident.

When relocations are required, unused vehicles are redirected from a station to
another, according to the system needs and the actual waiting times at the stations.
A relocation is required when a critical situation occurs. A critical situation occurs
either when a station is in shortage of vehicles, therefore users may need to queue;
or when the station has reached the capacity, therefore arriving vehicles need to be
redirected to a close station, because in the destination one there is not space any
more. The first critical situation is called ZVT, i.e. zero vehicle time; the second
one instead is called FPT, i.e. full port time.

As stated in chapter 2, in the same way as operator based procedures, in order
to control the insurgence of these two critical situations, two thresholds have been
introduced, respectively the low critical threshold and the high critical threshold.
Moreover, in order to determine the supporting station, other two thresholds are
introduced: the low buffer threshold and the high buffer threshold.

When a ZVT situation takes place, a request for a vehicle is generated. The
vehicle request is addressed only to stations where the number of vehicles is above

 59

the low buffer threshold. The low buffer threshold is the minimum number of
vehicles that a station needs to have in order to be able to send vehicles. Among the
stations to which the vehicle request could be addressed, the providing station is
selected according to two criteria: the closest station (shortest time criterion) and
the station having the highest number of vehicles (inventory balancing). The
shortest time criterion relates mainly to service levels, while the inventory
balancing mainly focuses on cost efficiency. Therefore, an appropriate choice of
relocation technique should be made according to the current system situation: in
periods of low usage, the most appropriate relocation technique is by inventory
balancing whilst in periods of high usage, then the shortest time technique
performs best.

If the number of vehicles in a given station at a given time instant goes above
the station’s high critical threshold, a request for relocating the vehicle is
generated. The vehicle request is addressed only to stations where the number of
vehicles is below the high buffer threshold. The high buffer threshold is the
maximum number of vehicles that a station needs to have in order to be able to
receive vehicles. Among the possible receiving stations, the supporting station is
again selected according to the shortest time and to the inventory balancing criteria.
If the shortest time criterion is chosen, the supporting station is the closest; if the
inventory balancing is chosen, the supporting station is the one having the least
number of vehicles.

However, despite exceptional cases in which one or two stations have a
particular low capacity for infrastructural reasons, the FPT situation is always
avoided through avoiding the ZVT.

In this management scheme, the transport system characteristics are:
- the fleet dimension: the fleet is assumed equally distributed among stations at

the beginning of the simulation day
- the low critical thresholds: they are given in the form of an array. Each element

of the array refers to a station and it is the value of the low critical threshold for
the given station. Low critical thresholds are assumed constant with time, i.e.
they are the same in all the simulation period.

- the low buffer thresholds: they are given in the same form as the low critical
thresholds.

The dimension of the two above mentioned arrays equals the number of stations in
the area, the value of each vector component is the station’s low critical threshold
or low buffer threshold. The transport system performance is considerably affected
by the fleet dimension and by these two vectors, therefore their values should be
carefully selected. The transport system performance is not affected by the high
critical and high buffer thresholds, apart exceptional cases. Indeed, the high critical
threshold is uniquely fixed through the station capacity. Moreover, a relocation
strategy based on ZVT occurrences, automatically guarantees that FPT occurrences
do not take place.

 60

3.2.3. The third management strategy: capillarity
In this scenario vehicles are available not only at stations but also along the roads.
A trip by PICAV may have, as origin or destination, either a station or any position
along the roads within the intervention area. When the origin of the user’s trip is
not a station, a PICAV reaches the user in a fully automatic way.

A fully vehicle based relocation strategy is proposed. Relocations are required:
1. when the number of vehicles available at stations is below the low critical

thresholds (ZVT situation). In this case, the request for a vehicle could be
addressed:

a. firstly to the stations where the number of vehicles is above the low
buffer threshold (as described in chapter 2); among these stations,
the providing one is selected according to the shortest time or the
inventory balancing criteria.

b. otherwise, to the vehicles parked along the road. In this last case,
the nearest vehicle automatically relocates towards the station in
shortage.

2. when the origin of the user’s trip is not a station. In this case, the system
supervisor assigns to the user the vehicle nearest to the user’s position. If
the nearest vehicle is in a station, it can be provided only if the number of
vehicles available in the station is greater than the low critical threshold of
the station. Results from simulation experiments show that if we refer to
the low buffer threshold instead of the low critical threshold situations
where all the parked vehicles are at stations occur very often as stations are
never capable to provide vehicles.

At the end of their trips, the user can leave the vehicle at any position along the
roads within the intervention area. When a vehicle is returned, if the level of
battery charge is below the minimum charge level, the vehicle automatically
reaches the nearest station to recharge the battery. As soon as it reaches the
minimum charge level, it becomes available and if not required, continues the
charging process.

3.2.4. The transport system modeling and simulation
To test the proposed transport system and particularly the three relocation
strategies, a micro simulator has been developed.

The micro simulator receives in input: a simulation time period, a road
network, a PICAV fleet, the PICAV transport demand and the parameters related to
the relocation strategies (thresholds). The simulator allows to track the second-by-
second activity of each user, as well as the second-by-second activity of each
PICAV vehicle. The micro simulator gives in output the transport system
performances, in terms of level of service (LOS) provided to users and in terms of
efficiency from the management point of view. A full description of the micro
simulator is provided in chapter 4.

 61

 62

The micro simulator aims to be a useful tool for decision makers to evaluate
what if scenarios: for example, what can be the impacts on the proposed systems of
peaks of demand, temporary road closures, station closures, a change in the fleet
dimension or in its distribution among stations.

Chapter 4. Modelling and simulation of the proposed
transport system.

4.1. Introduction on modelling and micro simulation

Simulation can be defined as the representation of reality through informatic
models. The simulation is mainly used as a support to decision problems, in order:
to evaluate the effects of major modifies to existing systems, and to project new
systems (Law and Kelton, 1991).

The usage of models for decisions support has always registered great
development. The first typology of such models are the scale models: they
reproduce the reality at a reduced scale, they are very effective but also extremely
expensive. An example of such models may be a plastic of a building. Other
models are the logic-mathematical ones, which anyway become extremely
expensive as the system becomes more complex.

The main targets of the simulation are:
- To achieve a better comprehension of the system. Indeed several choices

performed in our system are the result of non satisfying results of the
simulation.

- What if analysis on the system, e.g. to check what happens if I modify the
system.

- To compare alternative decisions with each other.
The real world which is subject of the survey is represented through the model,

which is a real-world representation of the reality that we want to study. The first
relevant choice is to determine the system borders, and therefore to decide which is
worth to consider and which is worth to exclude in the future modelization. An
incorrect choice of the system borders may result in relevant changes in the
simulation output data. Outside the system borders is the environment, which
however have some relations with the system (Law and Kelton, 1991).

The system is characterized by some elements, called entities, which interact
with each other. The entities are described through attributes. For example, if the
system to model is a petrol service station, we have the entity “vehicle”, which has
attributes: identifier, arrival time at the service station, begin refurnishing time, exit
time from the station. If the purpose of the simulation is to project a new petrol
station and therefore to decide the number of pumps to install, the colour and the
mark of the car are not relevant and therefore they are not going to be attributes.

The state of the system or of an entity is determined according to the values
assigned to attributes. In the previous example, the state of the system is
determined as the number of free pumps, and the state of each vehicle may be 1 if
it is refurnishing and 0 if it is in queue.

The simulation may be deterministic or stochastic, discrete or continuum. It is
deterministic if the model evolution in time is determined in an unique way from

63

its initial conditions. It is stochastic if instead in the model random variables are
present.

The simulation is continuum if it describes the system through a system of
equations to resolve numerically. It is discrete if it is realized through discrete-
event systems which modify their state at discrete time instants. Examples of
discrete simulation are: queue systems, Monte Carlo simulation, complex systems
on large scale.

The simulation may be event-based, activity-based, process-based and agent-
based.

In the event-based simulation, each event corresponds to a change in the state
of a component (object) of the system. In the case of petrol station, an event may
be the beginning of the service. The activity is comprised between two events: for
example, the waiting in queue, or the refurnishing at the pump, are considered as
activities. Actually, often activities are confounded with the beginning or the
ending of themselves, therefore often they coincide with the events. Elementary
activities can be considered of two typologies: the programmed activities and the
conditioned activities. The conditioned activities take place when some logical
conditions take place. Programmed activities instead must take place in
prearranged times, independently of the state of the system. An example of a
programmed activity may be the opening or closing of a pump at a petrol station at
a given time. Conditioned activities are scanned in each instant of the simulated
time, while programmed activities are scanned only once.

A process is a sequence of activities and events: all the events and the
operations of an entity are joined together in an unique sequence called process. An
example of process may be the sequence of activities of a refurbishment at a pump:
arrival, waiting in queue, refurbishment, waiting for getting into the main road, exit
of the system.

The agent-based simulation is the most recent, and it is considered the best
modelling of a classical problem of simulation: the prey and predator one. In the
agent-based simulation, the system is characterized of agents which interact among
each other and make it evolve. An agent is an entity with targets and properties and
most of all with the capability of taking decisions. The agent interacts with the
system and with the other agents, it is autonomous, flexible and it has memory. The
system instead represents the entities which have an effect on the agents, which are
the effective object of our study. The time advances in regular steps and at each
time step the actions of each agent are executed. In the prey – predator model, for
example, at each iteration in a casual way the direction and the length of the
movement of each agent is determined. If in a given instant the prey is close to the
predator position, at the following time step the prey obviously exits the system.
The last characteristic of agent-based simulation is that an agent, according to its
fertility, can give birth to other agents of the same typology.

The main steps of a simulation modelling are:
1. Analysis of the problem.

64

2. Definition of the targets. The simulation is a representation of the reality
and so it chooses which aspects to model and which to neglect. Some
aspects can be neglected as they are not under study, others can be
neglected because to exceed in the level of detail can be counterproductive.
It is indeed necessary, every time we model something, to keep always the
contact with the reality and with the system we are modelling.

3. Conceptualization of the model. This aspect has already been introduced in
the previous. In this phase we choose what to represent and to simulate of
the system and the model is realized in practice.

4. It is opportune to develop the model before collecting data. A preliminary
collection of information is necessary for the phase 1 (problem analysis) in
order to avoid to misunderstand the problem because of the too few
informations. The real data collection must be performed after developing
the model of the system, given that data collection may be also very
onerous from both economic and of working hours point of view.

5. Development of computer program.
6. Verification that the model has been correctly implemented, i.e. that there

isn’t any programming bug. The verification phase is extremely important,
it is usually required that another person, different from the programmer,
verifies the code and cooperates strictly with the programmer in order to
correct the error presents.

7. Calibration of the model’s parameters
8. Validation: i.e. to verify that the model correctly represents the real world

system. The validation is possible if we have a real world system. In this
case, some approaches to validation may be: comparison of experimental
and real data, evaluation of system’s experts, animation.

4.2. Object-oriented programming

Object oriented programming has been chosen to develop the simulator because it
has several advantages, which will be described herewith. The language chosen is
Python 2.6. The Python language is very simple and friendly, the choice of the
version 2.6 is reasonable because of the great number of packages available. In the
following, details about the object oriented programming will be provided.

Object oriented programming is the newest and nowadays more popular
programming technique. It is the result of several years of research and
improvement of the programming methodology. Before the born of object-oriented
programming, structured and procedural programming was used, but they have
shown several disadvantages, in particular the high quantity of code necessary to
modelize complex systems, and the difficulty to modify the code in a second time,
if e.g. something in the system has changed or new targets of the programme have
been defined.

65

4.2.1. From non structured programming to object oriented
In non structured programming, the code is constitute of an unique block, called
“main”, from which data are manipulated in a fully sequential manner. All data are
represented only through global variables, and therefore are located in the memory
for all the time in which the code remains under execution. This programming
technique is absolutely limited and full of disadvantages: the code may be repeated
several times and the system employs a high amount of resources.

In procedural programming, the parts of code which are repeated several times
are grouped and recalled every time the necessity arises. A procedure is considered
as a sub programme which plays a pre determined role. The main code still exists
but it mainly consists on the invocation to the procedures defined in the programme.
Procedural programming is better because the code is more reduced and therefore
the number of possible mistakes is also smaller.

Modular programming allows to re-use the procedures created by a
programme in order to allow other programmes to make use of them. Therefore,
the idea was to group the procedures having a common purpose, e.g. procedures for
executing a particular mathematical formula, in separated modules.

4.2.2. Object oriented programming vs. procedural programming
In procedural languages, i.e. non-object oriented languages, programming is
mainly oriented to the action, and the function is the programming unit. The
methodology is the functional decomposition. In object oriented languages,
programming is oriented to the object. The programming unit is the class and the
methodology is object oriented decomposition.

Non-object oriented programs may be a long list of statements (or commands).
More complex programs group smaller sections of these statements into functions
or subroutines, each of which performs a particular task. With designs of this sort,
it is common for some of the program’s data to be global, i.e. accessible from any
part of the program. In object-oriented approach the data are not directly accessible
by the rest of the program. Data are indeed accessible by calling specially written
functions, commonly called methods. These act as the intermediaries for retrieving
or modifying the data they control.

The main components of object-oriented programming are: classes, objects
and methods. In object oriented programming concepts are represented as “objects”
that have: data fields, i.e. the attributes that describe the object; and some
associated procedures, i.e. the methods. Objects, which are instances of classes,
interact with each other. An object-oriented program may be viewed as a collection
of interacting objects, opposed to the conventional model, in which a program is
seen as a list of tasks (or subroutines) to perform (Lewis and Loftus, 2008).

4.2.3. Classes, objects, attributes and methods.
Objects have properties (data) and methods (procedures), which operate on the data
of the object itself.

66

Object oriented programming has the purpose of formalizing the objects of the
real world and of building through them a virtual world. The main concept regards
the class: objects of the same class have the same characteristics. For example, if
we are trying to modelize a petrol pump, we create a class “car” which has for
objects all the cars that have entered the system. An other class is “servant”, which
has for objects all the people who serve at the pump.

The part of the real world which is reconstructed virtually through objects is
called “applicative domain”.

A class is the method through which an object is created and identified. For
what regards its informatic “constitution”, a class is a data type, like integers and
strings. Objects are instead the entities of a programme which interact with each
other. Objects are created during the execution of the algorithm and each object is
part of a class. A class can create several objects, each object of the class is
distinguished from the others though they belong to the same typology. An object
is a class instance. To create an object, the instantiation of a class is performed. In
this phase, a part of the memory is reserved to keep the values of the object’s
attributes.

The set of values of an object’s attributes is called state of an object and
generally varies during the simulation time. An object’s attribute, also called
member variable, describes the main characteristics and properties of the object
itself. For example, in the case of a petrol pump, an attribute of the object pump is
the state, i.e. free or occupied.

A method, also called member function, is an action that an object can
perform. The declaration of a function is composed of: name of the method, input
data, output data. A method may be for example, end service at the pump.

In order to communicate with each other, the objects can make use of methods;
an object can also invoke the method of another object. Methods can be
distinguished among: constructors, distructors, accessors, mutators.

The constructor is a particular method which is invoked when an object is
created and which contains all the instructions which are necessary for its
initialization. In the simulator of this thesis, for example, the method “presence
picav” provides to the object vehicle just created all the necessary informations,
such as: station in which it is parked, battery charging level, state = empty, etc.

Distructors play the role of destroying an object. However, several object
oriented programmes, such as Java, C++ and Python, do not have distructor
methods, but the object is automatically removed when it exits from the context.

Mutator methods make a modification on the state of an object. Mutator
methods can be: public, protected and private. Public are those which can be
accessed by any class and object. Protected mutators allow the access only to
classes and objects whose typology is a sub class of the mutator’s class. Private
mutators allow the access only to the objects of the class itself in which the mutator
is used.

67

4.2.4. Abstraction
Programming languages have evolved in such a way that source codes could
abstract completely from the way they are executed. More in detail, a programme
is firstly written, then compiled, i.e. the code is translated in the machine language.
The first languages, such as Cobol, were much close to the machine language. The
newest programmes, such as Java and C++, have an approach of problem solving
as close as possible to real world – and therefore much different from the machine
language.

4.2.5. Relations among classes.
A class which does not interface with the other classes is not significant in object
oriented programming. Objects interact with each other using the exchange of
messages to require the execution of a specific method. This communication allows
to identify inside the programme a series of relations among classes whose
documentation results much useful. For example, if two classes show a similar
behaviour, they can be conglobated in another class of higher level.

The most common relations among classes can be use relationship,
containment relationship, inheritance relationship:

4.2.5.1. Use relationship.
Use relationship is the most intuitive and diffused typology of relationship. In
particular, a class A uses a class B if an object belonging to the class A uses a
method of an object of class B, and sends to it messages. More in detail, in use
relationship it is possible to pass from the objects of class A to objects of class B
simply referring to an object. For example, an object “car” is associated to an
object “petrol pump” because the car refurbishes at the pump, and the relationship
in this case is “refurbishment”.

4.2.5.2. Containment.
The relationship like containment is the following: an object belonging to class A
contains an object of the class B if B is an attribute of A. For example, a class
“service station” contains the class “pump” because the class “service station” is
composed of pumps. Composition is stronger than containment, because it allows a
class contained to be part of only one class container.

4.2.5.3. Inheritance.
The inheritance is used in the phase of development and structuration of the
software and it allows to derive new classes departing from the classes already
defined and therefore it realizes a class hierarchy. A derived class, called subclass
or “son” keeps the methods and the attributes of the base class (or “father”). In
practice, the class son is able to perform all the instructions that a class father is
able to, plus others that the class father cannot perform. Moreover, it can define its
own methods and attributes, and redefine the coding of some inherited methods

68

through the overriding mechanism. When a class inherits from only one class, we
have single inheritance. Otherwise, we have multiple inheritance. Python allows
also multiple inheritance. The inheritance is used to extend and re use some parts
of a code.

4.2.6. Encapsulation.
Besides inheritance, also encapsulation is a key aspect of object oriented
programming. Encapsulation regards putting together in an object all data and
actions that regard a given component. Another form of encapsulation is subdivide
an application in several smaller objects.

A similar concept to encapsulation is information hiding. It allows to access to
an object’s informations only through the object’s methods. This is performed only
if we never allow having public attributes, despite particular exceptions for
attributes of classes and constants. In order to access to attributes from externally,
public methods are inserted which can be called to set or require the attribute value.

4.2.7. Polymorphism.
Polymorphism allows an object to assume several shapes. Polymorphism refers to
the attitude of an object of showing several implementations for a single
functionality. For example, we have a software system which intends to draw
geometric figures. In this case, we have defined a class “father” called
“geometric_figure” and three derived classes “rectangle”, “circle”, “oval”. All
these classes have the same method “draw_figure()” Without polymorphism, it is
necessary to perform a switch construct, which distinguishes the various cases of
the various geometrical figures. Through polymorphism, all is reduced to the
automatic recall of the method draw_figure() of the class “geometric_figure”. If
we want to draw a triangle, with polymorphism it is sufficient to create a new class
“triangle” with the method draw_figure() and the rest comes out automatically.

4.2.8. Cohesion and coupling.
Coupling refers to the connections existing between two different classes of a
programme. If two classes have several details in common, they are strongly
coupled. Cohesion is an information on the quantity and heterogeneity of tasks
whose a class or a method is responsible. In general, through the cohesion it is
possible to establish the tasks that a class is designed for. If a class or method is
responsible for only one task, the method has a strong cohesion.

In the simulator, each task is performed by a different method. However,
some classes are strongly coupled, and this has been unavoidable given the specific
output requested.

69

4.3. The modelization of the proposed transport system

The proposed transport system has been modelled according to an object-oriented
logic, because it is the simplest and the most suitable to our modelization.

The steps followed in the development of the model have been:

1. Analysis of the problem and definition of the targets. The problem under
study was the modelization of a car sharing system with specific strategies
of management. The main targets of this work were to assess the
performances of the proposed transport system, expressed in terms of level
of service and of efficiency. For this purpose, and for the reasons exposed
in chapter 3, it was necessary to know: the distribution of users’ waiting
times, the state of each vehicle during the simulation period.

2. Conceptualization of the model: A detailed description of the system which
has been simulated is already provided in the chapter 3. A description on
how the real system has been modelized will be provided in this section.

3. Development of the computer programme: which classes and methods
have been used, which events have been chosen. A description on this
point is also provided in this section.

Details on how the points 2 and 3 described above have been developed in the
system under study, are provided in this section.

4.3.1. The main aspects taken into account
In order to develop a good model the following steps have been followed during
the development of the code:

1. identification of classes and objects;
2. definition of the semantics of classes: at the end of this phase the structure

of classes is clearly defined;
3. relationship among classes: it is necessary to define all the typologies of

interrelations which exist among the various classes;
4. implementation of the code: during the implementation of the code some

incoherencies can be shown and therefore it is necessary to briefly repeat
all the previous steps and then continue coding.

The purposes of the modelization of the system under study, are to develop a
model which is: simple, easy to understand, easy to modify, and versatile (i.e.
applicable to several scenarios). In order to achieve all these issues, modularity
and simplicity are key aspects. The object oriented approach allows to modify
some parts of the code simply adding or removing methods, without having to
rewrite completely the code, as it happens for non object-oriented programming.

The system under study has been modelized through event-based simulation.
Despite the higher quantity of coding required than the simulation through
processes, the event-based simulation is very easy and very versatile, because it
easily allows to add or remove components of the system, and change the behavior

70

of existing components, simply by introducing or removing classes or by
introducing or removing events.

The simulator has also the target of being able to modelize any kind of
scenarios. More in detail, the simulator must be able to be highly flexible in dealing
with objects: more details about this last aspect will be provided in the following.

4.3.2. Object-oriented programming vs. simulation: objects and methods to
modelize entities and events
In the development of the model, it has been decided to create the same classes in
the code as the categories of entities involved in the system to be modelled. This
choice has been performed in order to keep the shape of the code as close as
possible to the reality to be modeled. The classes chosen to represent the system
are:

- Picav
- User
- Parking, i.e. a station of the transport system
- Unit
- Supervisor, i.e. the system manager.

Each entity in the simulation has events associated; each class of objects has
associated methods. In order to keep the code as simple and modular as possible,
for each event of a category of entities, a module of the same class of objects has
been developed. For example, besides the event “entrance user”, of the entities
“vehicles”, i.e. the user enters a vehicle, a method “occupation” of the class of
objects “vehicle” has been developed. Moreover, because in some events more
tasks are performed, which often require to repeat some parts of code, in this case
other methods are developed, all recalled by the main method which corresponds to
the event. For example, to the event of the arrival of a vehicle at the destination
station, corresponds a method “arrival vehicle”: this method would have a high
amount of tasks and repetitive instructions. Therefore, it recalls other methods to
perform all the tasks. Another example of when an event is modelized through a
main method which calls auxiliary ones, is the case in which distance needs to be
calculated. In this case, some ad hoc methods to calculate the distance will be
recalled by the main method.

Inheritance has not been implemented in the final simulator. In fact it has been
developed in a first version of the simulator, i.e. the class “vehicles” inherited the
class “users”. However, this may constitute a problem because: firstly, as the user
enters a vehicle, the vehicle inherits all the attributes and methods of the user, but
this is not necessary, as only some of the user’s attributes are necessary. Moreover,
after the user enters the vehicle, all methods act directly on the vehicle but their
results regard also the occupant, and therefore the occupant’s attributes need to be
modified coherently with the vehicle’s ones. As a result, following this
modelization it should be necessary that also the class user inherits some attributes
of the class vehicle.

71

Besides the four classes exposed above, an auxiliary class has been
implemented: the class “simulator”, which consists on the main code. This class
has been developed in order to be able to recall the simulator from another code.
This is important in particular in cases where the simulator is recalled to calculate
the system’s performances. The main code also contains the time queue, from
which some methods corresponding to events are recalled.

4.3.3. Permanent and temporary objects. Versatility of the output data
provided by the code.
The objects are created outside the time queue, i.e. also the entities “users”, which
are temporary, are implemented as permanent objects. Although this may seem
poor programming, this choice has been made for several reasons. Firstly, the
transport demand, provided in form of matrixes, must be assigned before the
execution of the simulation: random components regard only the exact instant of
arrive of the users; the time period in which the users arrive and the origin and
destination of the users’ trips are fixed a priori. Moreover, the object user’s
attributes must be kept also after the user exits the system in order to allow the
simulator to provide any type of output data. In fact, according to the target of
versatility that was required to the micro simulator, the programme is meant to be
able to provide any typology of output data with minor modifications on the code.
This is achieved because the simulator represents the second-by-second activity of
each object of the system, and trace of this activity is kept in the object’s attributes.

4.3.4. Storage of objects in lists and dictionaries.
There is a problem which regards the creation of the objects in Pyhton and is
typical of this language. In fact, there are two possibilities: or a fixed number of
objects is created, for instance eight objects station, or each object is overwritten as
a new object of the same class is created.

In the first case, no flexibility is given to the simulator, i.e. it is impossible to
apply it to another scenario as the number of stations is kept the same. In this case,
for example, an object is created as: p1 = station(), or p2 = station(). This avoids
overwriting (the objects have different names) but only a predefined number of
objects of a given class can be created.

In the second case, all the data about an object are lost as a new object is
created. In order to avoid this drawback, objects are inserted in lists or dictionaries.
In this case, for example, an object is created as: v = picav() inside a “for” cycle: as
a new object is created, it has the same name and therefore is overwritten.

In order to resolve this drawback, all objects after creation are put into
dictionaries, in particular a different dictionary for each class (e.g. we will have a
dictionary “users”, another dictionary called “vehicles”, another called “stations”,
etc.) and are referred through their name, which is actually their index, during the
whole simulation. Lists instead are used to modelize queues at stations, or as

72

auxiliary items for calculating output data. Details about lists and dictionaries are
provided herewith.

The most versatile method to group data is the list, which can be written as a
list of comma separated values (items) between square brackets. List items can be
numbers, strings, and also objects. All operations can be done to the list, i.e. the
elements of a list can be inserted and removed. Moreover, also the attributes of an
object can be modified without the need of removing the object from the list. Lists
are perfect to modelize queues, as their elements are not indexed. Lists can be also
nested, therefore they can have other lists as elements. Dictionaries, instead,
because their elements are indexed, cannot play the role of a queue.

Dictionaries are sometimes found in other languages as “associative
memories” or “associative arrays”. Dictionaries are indexed by keys, which can be
any immutable type; strings and numbers can always be keys. You can’t use lists as
keys, since lists can be modified in place using index assignments, or methods like
append() and pop(). This is a good feature of lists, which allows them, as stated
before, to modelize efficiently queues. It is best to think of a dictionary as an
unordered set of key: value pairs, with the requirement that the keys are unique
(within one dictionary). The main operations on a dictionary are storing a value
with some key and extracting the value given the key. It is also possible to delete a
key - value pair with del. If you store using a key that is already in use, the old
value associated with that key is forgotten. It is an error to extract a value using a
non-existent key. The advantage of dictionaries is indeed in the usage of the key: in
fact if an object is removed from the list, all the other objects change their index; if
an object is removed from a dictionary, all the objects keep their index.

4.4. Inputs and outputs of the micro simulator

The simulator has been written to evaluate the system performance. The simulator
receives in input: the simulation time period, the road network, the transport
demand and the car-sharing system characteristics. The simulator allows to track
the second-by-second activity of each user, as well as the second-by-second
activity of each vehicle. The simulator gives in output the transport system
performances, in terms of level of service (LOS) provided to users and in terms of
efficiency from the management point of view. In fig. 4.1 inputs and outputs of the
micro simulator are reported.

4.4.1. Input data
The input data described in the following are necessary to be able to run all the
three system management strategies and to shift from a management scheme to the
other, in order to compare their performances. In order to simulate only a given
management scheme among the proposed ones, some data may result unnecessary.

73

Fig 4.1. Inputs and outputs of the micro simulator

The simulation time period
The simulation time period usually starts when the transport system opens and ends
when it closes. The simulation time period could be characterised by peak and off
peak phases: for each phase an average pedestrian density k and a PICAV transport
demand should be specified.

The road network
The road network includes stations, provided with charging stations, and the roads
in which PICAV vehicles are allowed to travel. Stations have been represented
through nodes. Each road is divided into sections and each section has been
modelized again by a node. Between each pair of nodes, we take into account only
one path, which could be the shortest one or the more attractive one since
characterised by a high concentration of shops, museums and other activities. The
characteristics of the path we are interested in are: its overall length and the
average upslope. These data are necessary for the battery discharging law, in
particular the quantity of discharge is assessed from the average upslope as it
contributes heavily to the resistances to motion encountered by the PICAV vehicle.
If the path is instead descending the recovery in battery charge is so slight that it is
neglected therefore for each path the downslope parts are considered as flat in the
calculation of the average upslope. The overall length of a path is required in order
to determine the trip duration. The path lengths and the average upslope are
assessed through Google Maps and Google Earth. These data are given as data

74

input in the simulator in the form of two matrixes. The matrixes are squared and
the number of rows (or columns) equals the number of nodes in the network. In the
first matrix, the cell ij represents the path length between the origin node i and the
destination node j. In the second matrix, the cell ij represents the average upslope
of the path between the origin node i and the destination node j.

The minimum charge level is calculated as a function of the average upslope
and of the length of the more battery consuming path in the road network. It
depends on the case of study and it has been calibrated for the Genoa scenario as
equal to 10% of the total battery charge.

The transport system characteristics
The fleet dimension and the number of vehicles at each station at the beginning of
the simulation time period should be specified.

The simulator allows a transport manager to choose the management strategy
they want to simulate among the three previously described. According with his
choice, the related transport system parameters have to be specified.

In case of the first system management strategy, the following parameters need
to be specified:

• percentage of flexible users;
• choice sets of flexible users.

In case of the second and the third management strategies, the following
parameters need to be specified:

• low critical, low buffer thresholds for each station in the form of two
vectors;

• relocation technique: shortest time criterion or inventory balancing.

The transport demand
The transport demand is given to the simulator in the form of OD matrixes. OD
matrixes are squared and rows/columns refers to nodes. Each cell gives the hourly
number of trips by PICAV from the node (origin) the row refers to, to the node
(destination) the column refers to.

In the second management strategy, OD matrixes have a number of rows and
columns equal to the number of stations.

In the first management strategy, this is true for the trips of non-flexible users.
For flexible users trips, the OD matrixes have a number of rows equal to the
number of stations, and a number of columns equal to the number of choice sets.

In the third management strategy, OD matrixes have a number of rows and
columns equal to the number of stations + the number of units. All the trips
originated or attracted by a road section are considered concentrated in the node
representing the section.

A trip by PICAV between two nodes could be a direct trip on board a vehicle,
or a sequence of shorter trips (multitask trip) where one accomplishes a number of
short tasks that require short term parking along the street, before finally returning

75

the unit. In both cases what is of interest for the proposed study is the overall
duration of the trip. Given an origin, a destination, the path between them, and an
average pedestrian density, the trip duration changes according to the trip typology.

For each phase within the simulation time period the transport demand has
been assumed constant. Therefore each OD matrix refers to a phase (peak - off
peak) and to a trip typology (direct trip – multitask trip). In fig. 4.2 – 4.3 two
demand OD matrixes are shown.

Fig. 4.2. The demand OD matrix for type A trip (trip chains with origin and destination on
the border of the area) in an hour of the off-peak period. Origin and destination are both
stations.

Fig. 4.3. The demand OD matrix for single trip in an hour of the off-peak period. Origin
and destination are both stations.

In the simulation users are generated with the following characteristics: the
origin of their trip by PICAV, the destination, the time at which they appear in the
origin and the duration of the trip by PICAV. These data are assessed according to
the OD matrixes. The time at which a user appears in their origin is randomly
generated: if X users have to be generated between 8 and 9 a.m. in a given origin,
X casual numbers are extracted within the given time interval and these casual
numbers are the exact arrival instants of the X users in the origin.

4.4.2. Output data

Level of Service (LOS)
LOS measurement are assessed, based on the statistical distribution of waiting
times. Castangia and Guala (2011) proposed a scale using as a reference the 50th ,

76

90th and 95th percentile of users waiting times: the scale is provided in table 4.1. All
conditions defining a specific LOS should be met.

LOS measurement could be assessed for each station or for the overall area,
referring specifically to the waiting time of the users arriving in each station or to
the waiting time of all the population of users.

Table 4.1. LOS measurement based on the statistical distribution of waiting times.
(Castangia and Guala, 2011).

Waiting time (minutes) not greater than: LOS 50th percentile 90th percentile 95th percentile
A 0.5 1 1.5
B 1 2 3
C 1.5 3 5
D 2.5 5 8
E 4 8 10
F worse worse worse

Efficiency
From the management point of view, the transport system efficiency is inversely
proportional to the fleet dimension and the number of required relocation trips.
Another measure of the system efficiency is the ratio between the number of
vehicles available or occupied by users at each time instant and the fleet dimension.
Further details on the simulator are available in the section 4.5.

4.5. Description of the micro simulator

The simulator of the proposed transport system is: based on discrete events, and it
follows an object-oriented logic. It modelizes in detail the instant by instant activity
of each user and of each vehicle. In the figure 4.4 the general structure of the micro
simulator is reported.

The simulator is therefore a valid instrument for a “what if” analysis of the
transport system, given the main characteristics of the system, of the demand, and
of the transport system offer.

The Python simulator code contains also some sub models, for example: the
model for battery charge and discharge, a model which relates the PICAV vehicle
speed with the pedestrian density.

The simulator of the transport system is characterized of the following classes:
1. user
2. PICAV vehicle
3. station
4. unit
5. supervisor

77

In
st

an
t_

ar
riv

al

M
is

si
on

_g
en

er
at

io
n

C
as

e
st

ud
y

m
an

ag
em

en
t

U
SE

R
PI

C
A

V

E
nd

_o
cc

up
at

io
n

O
cc

up
at

io
n

P
re

se
nc

e_
pi

ca
v

D
is

ch
ar

ge

R
ec

ha
rg

e
E

nd
_r

el
oc

at
io

n

B
eg

in
_r

el
oc

at
io

n

A
rri

va
l_

us
er

A
rri

va
l_

ve
hi

cl
e

R
ea

dy
 v

eh
ic

le

PA
R

K
IN

G

M
A

IN
(ti

m
e

qu
eu

e)

O
D

 m
at

rix

IN
PU

T
FI

LE
S

In
pu

td
at

a

D
is

ta
nc

es
 s

lo
pe

s

In
pu

t m
an

ip
ul

at
io

n

C
al

cu
la

te

re
ap

pa
ra

nc
e

pl
ac

e

C
al

cu
la

te
 a

ct
iv

ity

tim
e

E
xi

ts
C

al
cu

la
te

 p
ar

ki
ng

 lo
t

Tr
av

el
 ti

m
e

P
LS

C
al

cu
la

te
 tr

av
el

 ti
m

e

SE
C

TI
O

N
S

C
al

cu
la

te
 d

is
ta

nc
e

st
at

io
ns

 re
ve

rs
e

C
al

cu
la

te
 d

is
ta

nc
e

st
at

io
ns

C
al

cu
la

te
 d

is
t.

un
its

A
rr

iv
al

 u
se

r

A
rri

va
l v

eh
ic

le

C
ho

ic
e

fin
al

de

st
in

at
io

n

SU
PE

R
VI

SO
R

SI
M

U
LA

TO
R

M
ax

 w
ai

tin
g

tim
e

O
ffl

in
e

st
at

is
tic

s

O
nl

in
e

st
at

is
tic

s

B
eg

in
 a

pp
ro

ac
h

Fig. 4.4. Scheme of the micro simulator structure. In bold the name of classes is reported.
Below each class name, the methods are written.

78

The simulator is composed of:
1. A main file called simulatore, which contains a main method called

simulazione
2. several input files, in particular input files related to the transport demand

and to the network. They are auxiliary files and their purpose is to make
the simulator as easy as possible. In particular:

a. inputdata.py: it contains all the general input files, e.g. the duration
of the simulation period, organization of the simulation period,
number of stations, number of units, thresholds, dimension of the
fleet at the beginning of the simulation, etc.

b. distances slopes.py: contains distances and slopes between each
pair of stations, each pair of units, each pair of station and unit and
vice versa.

c. OD matrix.py: contains the OD matrixes of the transport demand,
for each trip typology, and for each period of the day.

d. Input manipulation.py: it fits the simulator inputs in order to make
them easier readable.

In the following, all the parts constituting the simulator will be described in
detail. In Attachment A of the thesis, a detailed scheme of all methods in the micro
simulator is provided.

4.5.1. The file inputdata.py:
The file inputdata.py provides:

‐ Management strategy: it is a number which can be assume the following
values:

1 = vehicles fully automated, available only at stations.
2 = flexible users, vehicles manually driven.
3 = automated vehicles available also along the roads of the study area.

‐ Duration of the simulation and its subdivision into periods. In particular:
1. Maximum duration of the simulation
2. Beginning instant of the first period of the simulation
3. Beginning instant of the second period of the simulation (it is

assumed that the first period ends in the pervious instant)
4. End instant of the second simulation period.

Three periods are assumed because PICAV vehicles mainly used for
leisure reasons, therefore to reach shops and museums etc.: we consider a
first off-peak period, in which everyone is still at work, and a second peak
period, in which the PICAV is much used. For example in the Genoa case
study, it has been assumed that the simulation day begins at 8 am and ends
at 0 am, and the following division in periods: a first off-peak period
ranging from 8 am to 4 pm, and a second peak period ranging from 4 pm to
8 pm. In the period from 8 pm to 0 am, there is no longer demand but users
already in the system terminate their trips and trip chains. In the Barreiro

79

case of study, it has been assumed that the first period ranges from 7 am to
1 pm, and the second period from 1 pm to 7 pm. The third period, without
demand, ranges from 7 pm to midnight.

‐ Pedestrian density:
1. Pedestrian density in the first period (morning)
2. Pedestrian density in the second period (afternoon)
3. Pedestrian density in the third period (evening)

‐ Low critical thresholds
‐ Low buffer thresholds
‐ High critical thresholds
‐ High buffer thresholds
‐ Station capacities
‐ Number of vehicles at the beginning of the simulation period, and their

distribution among the various stations. Thresholds, station capacities,
number of vehicles at the beginning of the simulation period, are given in
form of arrays, in which, the position in the array is related to the identifier
of the station.

‐ Number of stations
‐ Number of units
‐ Duration of the activity time. The time that is necessary for the user to

perform their activities can be determined in two alternative ways:
1. The activity time is assumed proportional to the time necessary for

a user to perform a direct trip from the user origin to their
destination. For example, if the user has origin at the station 2 and
destination at the station 7, and performs an activity chain, the time
necessary for the user to perform all activities is assumed
proportional to the travel time.

2. The activity time is assumed independent from the origin and the
destination of the user, because the time necessary to perform the
various trips is considered negligible with respect to the time
necessary to perform the activity themselves. Therefore input data
are the average and the standard deviation of the activity time.

‐ Activity time. The activity time can be provided as proportional to the
travel time through an activity time coefficient; or it can be provided as the
average of the activity time plus a deviation:
Activity time = k ⋅ travel time = E [activity time] ± σ.

o Activity time coefficient. If the activity coefficient is different from
0, therefore the activity time is proportional to the travel time with
a coefficient equal to 5 in Genoa case study.

o Average duration of activity time. This input and the following (the
deviation) are read by the simulator only if the activity time
coefficient is greater than zero.

o Deviation of activity time.

80

4.5.2. The file OD matrix.py:
The file OD-matrix.py contains all matrixes for each of the two time periods of the
day considered, and for each trip. In particular, 4 typologies of trips are considered:

A. Activity chain from an origin to a destination, both on the border of the
study area.

B. Single trip from the border to inside the intervention area, or vice versa
D. Single trip having both origin and destination inside the intervention area
E. Trip chain having both origin and destination inside the intervention area

These trip typologies are already schematized in the figure 3.1.
For example:
OD A morning = [[0,1,2,1,1,1,0],
 [1,0,0,0,1,1,0],
 [1,0,0,0,2,1,0],
 [1,0,0,0,1,1,0],
 [1,1,2,2,0,1,0],
 [1,1,2,1,1,0,0],
 [0,0,1,1,0,0,0]]

Each row of the matrix corresponds to a station of origin, each column to a
destination station. For example, the number “2” in the 5th row and 3rd column,
means that 2 users in an hour have origin in the station 5 and destination in the
station 3.
Moreover, it contains:

 A matrix called choice sets, therefore: each row corresponds to a choice set,
each element of the row is the identifier of a station belonging to the choice
set. For example, the number 3 in the second row means that the station 3
belongs to the 2nd choice set.
choice sets = [[1,2,3,4,6],
 [1,2,3,4,5,6,7],
 [1,2,3,4]]

 Because both type A and type B trips may correspond to flexible users, for
the quota of demand related to flexible users, we have OD A choiceset and
OD B choiceset for each considered time period.

 OD A choiceset morning = [[1,1,1],
 [1,1,1],
 [3,2,1],
 [3,2,1],
 [2,1,1],
 [2,1,1],
 [1,1,1]]

81

Each row corresponds to a station of origin, each column to a destination choiceset.
For example, the number 3 in row 4 and column 1 means that 3 users by hour have
origin in the station 4 and destination in the station 1.

4.5.3. The file distances slopes.py:
The file distances slopes.py contains the distances between: each pair of stations,
each pair station-unit and vice versa, and each pair of units. We have therefore the
following matrixes:

‐ Distances stations
‐ Slopes stations
‐ Distances points points
‐ Slopes points points
‐ Distances points stations
‐ Slopes points stations
‐ Distances stations points
‐ Slopes stations points

distances stations = [[0,1060,976,1200,1400,604,1100,489,1060],
 [1060,0,316,846,1180,732,1100,489,747],
 [976,316,0,414,516,569,829,563,326],
 [1200,846,414,0,481,848,1080,866,379],
 [1400,1180,516,481,0,834,804,1050,372],
 [604,732,569,848,834,0,678,458,464],
 [1100,1100,829,1080,804,678,0,961,610],
 [489,489,563,866,1050,458,961,0,670],
 [1060,747,326,379,372,464,610,670,0]]
The matrix distances stations has therefore: each row corresponds to a station of
origin, each column to a destination station, the number reported is the distance in
metres from the origin to the destination.

The matrix slopes stations has rows and columns with the same meaning as
distances stations. The slope calculated is the average slope, and the parts down
slope are considered as flat. Indeed, on one hand the battery of the vehicle can be
recharged in the downslope parts, and the electric motor is used as a generator; on
the other hand, the energy cumulated in this way is negligible, and to neglect this
energy is in favour of safety.
slopes stations = [[0,2.28,1.95,2.17,0.23,0.60,0.0,4.95,1.95],
 [0.0,0,0.0,0.81,0.0,0.0,0.0,1.36,0.0],
 [0.0,1.03,0,2.16,0.50,0.0,0.72,2.08,0.38],
 [0.0, 0.81,0.0,0,0.42,0.0,0.0,0.42,0.0],
 [0.23,0.05,0.50,0.42,0,0.0,0.0,0.35,0.42],
 [0.60,2.16,2.75,3.96,2.69,0,0.0,5.04,3.26],
 [0.17,0.69,0.72,2.49,2.97,2.68,0,2.65,3.21],
 [0.0,0.36,0.0,0.42,0.35,0.0,0.65,0.0,0.93],
 [0.95,0.28,0.38,1.35,0.42,0.0,0.0,0.93,0]]

82

4.5.4. The file attractivity units.py:
In the management strategy with flexible users, the call to the supervisor occurs in
correspondence of the last stop of the trip chain. The unit in which the call to the
supervisor takes place is determined through a random extraction, in which the
probability of each unit to be extracted depends on its attractivity. The attractivity
of each unit is given in the file attractivity units.py.

4.5.5. The file input manipulation.py:
The file input manipulation is composed of two parts: a first part in which the
dictionary of the transport demand is created, and another in which the lists related
to the distance and to slopes between each pair of stations or of units are created.
The simulator’s users, will inherit the data stored in the dictionary of the transport
demand. To better modelize the transport demand, auxiliary objects “demand” are
created. To each object is assigned:

‐ origin;
‐ destination;
‐ indicator, whether it performs a single trip or a trip chain;
‐ typology of user: 1 if the origin is on the border of the intervention area

and 2 if it is inside;
‐ destination in case the user is flexible: if the user is not flexible, this

attribute is set equal to 999999; if it is flexible, the attribute is set equal to
the user choice set.

The demand is assigned in a deterministic manner: i.e. each user has an origin
and a destination, or a choice set in case they are flexible. The stochastic part
regards: if the user is flexible, the unit in which the user reappears in order to make
a call to the supervisor; and, for all users, the exact instant inside the hour in which
the user enters in the system. The stochastic components however are assigned in
the simulator’s main file.

For what regards distances and slopes, some auxiliary objects “distances” are
created, with the following attributes:

‐ origin
‐ destination
‐ value.
Each object is actually a pair of distances, or of slopes. The objects are

afterwards inserted in the lists:
‐ Distances stations
‐ Slopes stations
‐ Distances points stations
‐ Slopes points stations
‐ Distances stations points
‐ Slopes stations points
‐ Distances points points
‐ Slopes points points

83

4.5.6. The file Simulatore.py:
The file Simulatore.py is recalled by the file chiamasimulatore.py, it creates the
object simulator, then recalls the method simulation. Below, all the classes of the
file Simulatore will be described.

4.5.7. Class Simulator
The class Simulator is the main class, which contains all the main attributes and
commands of the simulator. In particular it contains the queue time, in which all
the different events, schematized through methods, will be recalled.

The first part of the class Simulator regards the declaration of the class
attributes. Among them we have:

‐ The main dictionaries:
o users = dictionary of users
o vehicles = dictionary of vehicles
o stations = dictionary of stations
o units = dictionary of units.

‐ The lists which modelize the queues:
o queue = queue of users waiting at the stations,
o queue units = queue of users waiting at the units.

They are both nested lists. For example, the list queue, in the Genoa case
study, in which there are 9 stations, contains 9 sub-lists: each sub-list
contains all the users currently in queue in a given station.

‐ Some counters and auxiliary lists necessary to calculate the statistics.

Method Simulation
In the first part of the method, the quantities previously declared are initialized. In
particular, all lists, counters and dictionaries are set equal to zero. This aspect is
important because when the simulator is recalled several times, e.g. in an iteration
of the optimization algorithm described in chapter 5, without this command the risk
is to have lists and dictionaries not empty, and therefore the simulator outputs
report severe mistakes.

Then, in the method Simulation, all the general quantities declared in the input
files are imported: for example, thresholds, or the number of available vehicles at
each parking lot, the activity pattern coefficient, etc.

Afterwards, the PICAV vehicles speed is calculated. The vehicles velocity is
calculated in a simplified way, and it is assumed the same in all roads of the
intervention area, and the pedestrian density is also assumed the same in all roads.
In the Genoa case study, the chosen density is the one registered in via San Luca,
one of the most crowded roads of the historical city centre. The velocity of vehicles
is calculated in the three periods of the day, i.e. morning, afternoon and evening
(i.e. when there is no longer transport demand but users terminate their trips and
activities). Two velocities are calculated in each period, i.e. when vehicles are user
driven and when they move automatically.

84

Afterwards, the objects stations are created. At each station it is assigned: the
number of vehicles defined in the input data, the station capacity, and the four
thresholds. Actually, besides the number of vehicles, the stations have another
attribute, i.e. n_veh_relocation, which is an integer that provides the number of
vehicles currently relocating. This attribute is introduced because: when a station is
in shortage of vehicles, it recalls a vehicle to colmate this deficit. Because the
vehicle takes a certain time to perform its relocation trip, the receiver station will
continue at each simulated time instant to recall vehicles until it is reached by the
first vehicle. The result is that the station previously in shortage of vehicles will
have a great number of available vehicles, while other stations will be in shortage
in a following time. This leads to a severe increase in the total relocation time.

Then, the objects units are created. To the units the attractivity is assigned, and
a number of available vehicles initially set equal to 0. It is assumed that at the
beginning of the simulation all vehicles are at the stations after being in charge
during all the night. Details on the law of charge and discharge of the battery will
be provided in section 4.7.2.

The object supervisor is also created. It will be described in details later in this
section.

Afterwards the objects user are created. The attributes of these objects, i.e.
origin, destination, provenience, activity pattern indicator, typology, are imported
from the class demands previously cited. Hour by hour, the objects user are created,
and they import the proper attributes from the class demands. Finally, the method
instant arrival of the class user is recalled. This method, given the hour in which
the user will arrive at the station of origin, assigns to the user the exact minute of
arrive.

Finally the objects PICAV are created. The method presence picav of the class
picav is recalled: this method assigns to each vehicle the station in which the
vehicle will be at the beginning of the simulation.

The time queue follows. All the following instructions are contained in the time
queue, and therefore will be repeated at each simulation instant.

Firstly a check is performed, whether some vehicle has terminated its trip or
trip chain in the current simulated time instant. If so, the method end occupation
of the class picav is recalled.

Afterwards, a check is performed, if some vehicle has terminated its re
direction trip in the current simulated time instant. In this case, the method end
redirection is recalled.

The vehicles redirection occurs in these two cases:
‐ If the destination station is full, i.e. it has reached its capacity, the vehicle

is redirected to the nearest available station
‐ If the vehicle has an unit as destination and its level of charge is below the

minimum, then it is redirected to the nearest station to recharge. However,
this type of situation never occurs in the practical cases because of a quite
good battery management and of a high autonomy of the battery. This

85

situation has been artificially tested through introducing in the simulator a
battery with very low capacity, in order to test the performance of the
algorithm.

After, a check is performed whether some users waiting for a vehicle in the
units have been reached by the vehicle, at the current time instant. In this case, the
method end occupation of the class picav is recalled.

Afterwards, the code checks if some vehicle has finished to relocate. In this
case, the method end relocation of the PICAV vehicle is recalled.

The code then controls whether the user has terminated the last activity in their
trip chain. In this case, the method choice final destination of the class Supervisor
is recalled.

The code then updates the state of charge of vehicles. More in details, if the
vehicle is moving, the battery is discharged. If the vehicle is idle at an unit, the
battery is neither discharged nor recharged. Otherwise, the battery is recharged.
Two typology of charging law have been proposed, and more details are provided
in section 4.7.2. If the battery is currently being discharged, the method discharge
is recalled. Otherwise, the method recharge is recalled.

After, a check is performed whether some vehicles have enough power to
relocate or be available to users. If the charging law is opportunity charging, the
method ready vehicle is recalled, of the station in which the vehicle is available.

After, a check is performed whether some user enters in the system in the
current time instant. In this case, the method arrival user of the origin station of
the user is recalled

Finally, a check is performed whether the station in exam has shortage or
excess of vehicles. When one of these two situation occurs, the method begin
relocation of the station in exam is recalled. In the method, these two cases are
treated differently.

Method online statistics
In this method, the statistics related to each simulated time step are calculated. This
method is recalled by instructions placed inside the time queue. In each simulated
time instant the following is calculated:

‐ Number of users in queue in each station
‐ Number of available vehicles in each station
‐ Number of vehicles in each state: available, occupied, in charge, relocating,

redirected.
‐ Number of required relocations and number of required relocations that

have taken place.

Method offline statistics
This method is related to statistics calculated at the end of the simulation time. In
this method, the distribution of users waiting times is calculated, and therefore the
average waiting time and the 50th, 90th and 95th percentiles of the distribution.

86

Method calc max waiting
This method is recalled in order to calculate the maximum waiting time. It
calculates for each station the maximum waiting time at the current time instant.

4.5.8. Class User
Declaration of the attributes:

‐ Name
‐ Arrival time instant
‐ Waiting time
‐ Time of entrance in the queue
‐ Destination
‐ Activity pattern indicator
‐ State: it is equal to: 0 if the user still has to reach the origin station/unit; 1 if

they occupy a vehicle; 2 if they are in queue at a station or unit; 3 if they
have exited the system.

‐ Parking: identifier of the station in which the user is currently in queue.
‐ Unit: identifier of the unit in which the user currently is
‐ Pikav: identifier of the vehicle occupied by the user
‐ Typology of the user: 1 if the user has their origin on the border of the

intervention area; 2 if their origin is inside the intervention area but the
destination is on the border; 3 if both the user origin and destination are
inside the intervention area.

‐ Identifier of the queue in which the user has waited.
‐ Identifier of the unit from which the user calls the supervisor
‐ End of travel time instant, end of activity pattern time instant, supervisor

call time.

Method instant arrival
Firstly the arrival time is generated according to the user identifier. After, it
extracts the arrival time instant within the hour in a random way inside an uniform
distribution.

Method mission generation
If the user has an activity travel pattern, they recall the method calculate activity
time, that will be described in the following, in order to calculate their activity time.
If the user is flexible, the method calculate reapparance place is recalled, which
determines the unit from which the user will call the supervisor.

If the user does not have an activity travel pattern, then only the travel time is
calculated, from the distance between the origin and the destination and from the
vehicle speed in a given time instant.

87

Method calculate reapparance place
It determines the unit from which the flexible user calls the supervisor. The
identifier of this unit is extracted in a random way. The probability to perform a
call from a given unit is proportional to the unit attracivity.

Method calculate activity time
It calculates firstly the travel time and after the activity time. The activity time is
determined: or multiplying the travel time by the activity coefficient, or through
extracting the activity time duration from a normal distribution with average and
standard deviation defined in input.

4.5.9. Class Picav
Firstly the following attributes are declared:

‐ name
‐ parking: identifier of the station in which the vehicle currently is
‐ unit: identifier of the unit in which the vehicle currently is
‐ user: identifier of the user occupying the vehicle
‐ origin, destination, provenience
‐ travel time, activity time, supervisor call time
‐ state:

o 0 if the vehicle is available, either at a station or at a unit. If the
vehicle is in a station, it is put in charge,

o 1 if the vehicle is occupied by a user,
o 2 if the vehicle is in charge because the charge level is less than the

minimum: therefore the vehicle is unavailable for user or
relocation trips,

o 3 if the vehicle is relocating between two stations or if it is
reaching the user position

o 4 if the vehicle is redirected: or to a station in order to recharge the
battery, or to the nearest station because the destination is full.

‐ level charge: i.e. the battery charge level
‐ attributes necessary to calculate the discharge and recharge of the battery:

i.e. the engine power, the battery capacity, the vehicle maximum velocity;
other attributes, which are imported from other classes, and are: the
average slope of the portion of the road, the initial and final battery charge
level (i.e. at the beginning and at the end of the charging), are initialized.

Method presence picav:
It assigns to each vehicle the station in which it will be at the beginning of the
simulation. It updates the number of available vehicles at each station.

88

Method occupation:
Occupation of the vehicle by the user. Firstly it recalls the method mission
generation of the user, in order to calculate the user last attributes. Afterwards, the
PICAV vehicle inherits all the attributes of the occupant. Moreover, the method
updates the attributes of the vehicle and of the user, which are related to the
identifier of the occupant. Moreover, it updates the attributes of the vehicle and of
the user, related to the identifier of the occupant (attribute user of the vehicle) and
of the occupied vehicle (attribute pikav of the user).

Method begin approach
Or the begin of the approach of the vehicle to the user: the travel time is assigned
to the vehicle, more precisely the instant in which the vehicle will reach the unit
occupied by the user.

Method end occupation
It recalls the method arrival vehicle of the vehicle destination station or unit.

Method end redirection
It also recalls the method arrival vehicle of the vehicle arrival station.

Method discharge
This method implements the battery discharging law. The quantity of battery
discharged is determined according to the vehicle resistances to motion.

Method recharge
The battery is recharged. Two cases are distinguished, according to the initial and
final level of charge of the vehicle.

Method travel time pls
Calculate the travel time between two stations
Method calculate travel time
It calculates the vehicle travel time according to the distance between the origin
and the destination, and to the velocity. In this case, the calculated travel time is
between an unit and a station.

Method calculate parking lot
Recalls the method calculate travel time or travel time pls to determine the
destination station.

89

4.5.10. Class Parking

Method arrival user
The user arrives at the station. If there is an available vehicle, the user enters the
vehicle. The method occupation of the class picav is recalled. Otherwise, the user
enters in the queue.

Method arrival vehicle
The vehicle arrives at the station. If the station capacity is not reached, then the
following happens. If the vehicle has a battery capacity less than the minimum, it is
put in charge. Otherwise:

‐ if there is an user in queue, the user enters in the vehicle; the method
occupation of the class picav is recalled

‐ if the management strategy is different from the 3rd, i.e. vehicles can be
accessed only in correspondence of the stations, then the vehicle remains in
the arrival station and the number of vehicles available in the station is
updated.

‐ Otherwise, if the management strategy is the 3rd, the method checks if there
is any user waiting at the current unit. In negative case, the method checks
if there is an unit or a station lacking of vehicles. In this case, the vehicle is
sent to this station or unit.

If the destination station has reached the capacity, the vehicle is sent to the
available nearest station. It never happens that all stations in the transport system
are at the capacity, therefore it is always possible to find an available station within
the system.

Method ready vehicle
If the vehicle has enough charge for performing the longest trip chain and in the
station there are no users in queue, then the number of available vehicles is updated.
Otherwise, the first user is extracted from the queue and the method occupation is
recalled.

Method begin relocation
Firstly in the method the two critical situations are distinguished, i.e. ZVT (= zero
vehicle time, no vehicles are available) and FPT (= full port time, the station has
reached the capacity). On the basis of the critical situation, it is evaluated whether
there are stations able to receive or to provide vehicles. If this is the case, the
supporting station is determined, and afterwards the counter of vehicles in the two
stations is updated. Finally, the method determines which vehicle will be delivered.
Of this vehicles, all attributes are updated, and in particular the travel time.
If no station is able to provide or receive vehicles, then: if the management strategy
is different from the third one, i.e. vehicles are accessible at the stations, then: the

90

vehicle is sent to the nearest unit in case of FPT, and in the case of ZVT a request
to the nearest unit is sent.

Method end relocation.
The vehicle attributes are updated, because the vehicle has reached its destination.
The method arrival vehicle of the class picav is recalled.

4.5.11. Class Supervisor

Method choice final destination
This method implements the redirection of the flexible users performed by the
supervisor. Firstly it recalls the method calculate parking lot of the vehicle which
performs the supervisor call, in order to determine the distances, from the point in
which the vehicle performs the call, to all the stations of the user choice set.
Afterwards, the method calc max waiting of the simulator is recalled, which
calculates the maximum waiting time at the station. The destination station is
afterwards determined, then the attributes related to the destination and to the travel
time of the vehicle and of the occupying user are updated. The criteria used by the
supervisor to allocate vehicles is provided in the chapter 3.

4.5.12. Class Sections
Sections is the name given to the units.
Firstly as usual the attributes of the class are declared: name, number of vehicles.
Method calculate distance unit. Calculates the distance between two units.
Method calculate distance stations. Calculates the distances from a station to an
unit.
Method calculate distance stations reverse. Calculates the distances from an unit
to a station.

Method arrival user.
Arrival of an user to an unit

a. If there are some vehicles available, the user occupies a vehicle and calls
the method occupation of the vehicle itself.

b. Otherwise, the user enters in the queue and, if there are some vehicles
available in the intervention area, he recalls the neaest available vehicle.
He recalls the method calculate distance unit of the current unit in order
to calculate the distance from the current unit to the others of the area; and
the method calculate distance stations to calculate the distance from the
current unit and the stations of the study area. After determined the miser
station or unit, the number of available vehicles of the station or unit
sender is updated, and it is determined which vehicle will reach the user
position. The method begin approach, of this vehicle is recalled.

91

c. If instead there are no available vehicles anywhere, the user is set into the
queue and no other instruction is executed.

Method arrival vehicle.
It determines the arrival of a vehicle at an unit.

a. If the charge level of the vehicle is below the minimum, then it is
redirected to the nearest station. Afterwards, the method calculate
distance station reverse of the unit under study is calculated in order to
determine the nearest free station, and then the travel time from the current
unit to that station. Finally, the travel time and the redirection time of the
PICAV vehicle are updated.

b. If the charge level is above the minimum:
a. If there are some users in queue at the current unit, the first user in

queue enters in the vehicle. The method occupation of the vehicle
in exam is recalled.

b. If there are no users waiting at the current unit, a request is
addressed to the surrounding units and stations. Firstly the units
are checked, then the stations, because obviously there will be
many more available vehicles at the station rather than at units.

i. If there are users waiting at an unit, the vehicle is sent to
the user who is waiting for longer. For all users waiting at
an unit, the waiting time is calculated. As the receiving
unit is calculated, the distance and the travel time are
calculated and the method calculate distance unit of the
current unit is recalled. Finally, the method begin
approach of the current vehicle is recalled.

ii. If there are no users waiting at an unit, the code checks if
there are any waiting at some station. If so, the station with
the highest waiting time is determined and the method
calculate distance stations reverse of the surrent unit is
recalled. Finally, the method begin approach of the
current vehicle is recalled

iii. If there are no users waiting anywhere, the vehicle remains
in the current unit and the number of vehicles available at
that unit is updated.

4.5.13. The file chiamasimulatore.py:
This file recalls the simulator, creates an object simulator and recalls the method
simulation of the object itself. Then it provides the outputs that we desire.

The simulator in its current version is developed in order to interact with the
GUI developed by the University College of London (UCL). This GUI (Graphical
user interface) recalls in input from the simulator some text files, in format csv,

92

which are produced from the simulator. A brief scheme of this is shown in the
figure 4.5. In particular, chiamasimulatore produces in output the following files:

 PP.csv. This file provides, for each station and for each simulated time
instant, the state of the station in terms of: number of available vehicles,
length of the queue and maximum waiting time. It is composed of 5
columns, which are respectively:

‐ Identifier of the station
‐ Time instant
‐ Number of available vehicles
‐ Number of users in queue
‐ Maximum waiting time

 Users.csv. It provides the distribution of users waiting times, i.e., the
waiting time for each user and for each station. It is composed of three
columns:

‐ Identifier of the user
‐ Waiting time
‐ Identifier of ths station in which the user has been in queue

(9999999 if the user has waited at an unit, i.e. along the road)

93

Fig. 4.5. Scheme of the interaction between the simulator and the GUI.

 Picav.csv. Provides the state of vehicles at each simulated time instant. It is
composed of the following columns:

‐ Time instant
‐ Number of available vehicles
‐ Number of vehicles occupied
‐ Number of vehicles under charge
‐ Number of vehicles relocating
‐ Number of vehicles redirected

4.6. The simulator debugging.
The simulator has been completely verified in order to avoid typing errors or more
conceptual ones. Below, a detailed description on the tests performed on the
simulator.

GUI Chiamasimulatore.py calls calls Simulatore.py

creates CSV output filesgiven in input to the GUI

4.6.1. First simulator debugging.
Firstly, the simulator code has been modified in order to print on the computer
screen all the second-by-second activity of all objects and entities involved in the
simulator study. This modification makes the simulator work very slowly as a big
amount of pages are written on the screen. Each object has associated an identifier
(a “name”) in order to allow follow it along the simulation. Randomly, some users
and some vehicles have been followed during their lifetime in order to assess that
they behave properly. For example, to check if any vehicle was lost, or that any
user kept on with their trip or trip chain for an anomalous amount of time. All the
checks have been performed on both Genoa and Barreiro scenarios. The checks
that have been performed on the whole were the following.

Check on the vehicles.
Some vehicles have been followed during their entire “lifetime” in a simulation day,
i.e. from the beginning of the day, in which they were idle at stations, to the end of
the day, in which they were supposed to be again idle at stations. At a first stage,
all the simulator parameters have been set equal to their ordinary values, regarding
e.g.: the demand, the battery lifetime, the network characteristics, etc.

• All the events associated to each test vehicle have been checked if they
happened in the proper time. For example, if e.g. at time 8:55 the vehicle
began occupation and was supposed to end its trip at 9:01, it was checked
if at time 9:01 that vehicle really finished its trip. The same check is
performed also for relocation trips.

• The duration of trips and trip chains was also checked: all trips and trip
chains durations had to be reasonable, e.g. it couldn’t take a vehicle more
than 1 hour to reach Piazza Caricamento from Piazza de Ferrari.

• The indicator of the vehicle state had to change properly: i.e. it had to
become 0 (available) or 2 (in charge) as it become empty, and be equal to 1
(occupied) when the vehicle was occupied by the user.

• When the vehicle becomes empty and it is not in charge, it must be
available to users. If in the station there are some available vehicles, users
cannot stay in queue.

• When a vehicle is occupied, it cannot be available and it cannot be
accessed by an user. Moreover, the vehicle cannot be at the same time
available at a station and occupied by an user.

• If the vehicle is occupied, its attribute “user” contains the identifier of the
occupying user. At the same time, the user attribute “picav” must contain
the identifier of the right vehicle.

Check on the supervisor’s assignment.
If the management strategy is the flexible users one, a check is performed if the
supervisor really assigns the vehicles to the station according to the proper criteria:

94

- if there are some users in queue, the best station is the one for which the
ratio between maximum waiting time and distance from the user position is
maximum

- if there are no users in queue, the best station is the one for which the
product between number of vehicles available and distance from the user
position is minimum.

Check on the stations.
A check is performed on the stations, whether all the indicators are in the proper
way and coherent. This check is performed in all the stations but in a random time
instant for each station. In this case, as the “problems” usually arise as the
simulation goes on (they rarely arise at the first simulation instants), the majority of
checks are performed between 4 p.m. and midnight.

• Firstly, if a vehicle is available at a station, it must be counted within the
station vehicle. If a vehicle arrives at a station, the total number of vehicles
available must be increased by 1. If a vehicle leaves a station, this number
must be decreased by 1.

• If an user arrives at a station and is in queue, the list “queue” related to the
station under study must be updated. The same is when a vehicle becomes
available and an user exits the queue.

• A check is also performed for relocations: that really the station which is in
most defect of vehicles requires the relocation, and that really the nearest
valid supporting station provides the required vehicle. This is for the ZVT
(zero vehicle time) occurrence: the FPT never happens in normal situations
and therefore it is not checked at this stage

• If there is a user waiting at an unit, and the current station is the nearest
one able to send vehicles, it is checked that this effectively happens.

Check on the units.
A check is performed on the units, whether all the indicators are in the proper way
and coherent. This check is performed in all the units but in a random time instant
for each unit. In this case, as the “problems” usually arise as the simulation goes on
(they rarely arise at the first simulation instants), the majority of checks are
performed between 4 p.m. and midnight.

• Firstly, if a vehicle is available at a unit, it must be counted within the unit
vehicle. If a vehicle arrives at a unit, the total number of vehicles available
must be increased by 1. If a vehicle leaves a unit, this number must be
decreased by 1.

• If there is a user waiting at an unit, and the current unit is the nearest one
able to send vehicles, it is checked that this effectively happens.

95

Check on the users
Some checks are performed randomly on users.

• Firstly, a coherence check is performed: if the vehicle is occupied, its
attribute “user” contains the identifier of the occupying user. At the same
time, the user attribute “picav” must contain the identifier of the right
vehicle.

• All the events associated to each test user have been checked if they
happened in the proper time. For example, if e.g. at time 8:55 the user
began occupation and was supposed to end its trip at 9:01, it was checked
if at time 9:01 that user really finished its trip.

• The duration of trips and trip chains was also checked: all trips and trip
chains durations had to be reasonable, e.g. it couldn’t take a user more than
1 hour to reach Piazza Caricamento from Piazza de Ferrari.

• The indicator of the user state had to change properly: i.e. it must be equal
to 1 (occupied) when the user occupies a vehicle, 2 (in queue) if the user is
in queue at a station, 3 (out of system) if the user has finished their trips
and has exited the system.

Check on the general attributes
The general attributes, which are used to calculate the system statistics, both on-
line (during the simulator time)and off line (at the end of the simulation) are also
checked. In particular:

• The maximum waiting time at each station
• The time of entrance in the queue and the time of exit from the queue, for

each user
• The number of relocations
• Etc.

Check on the final output data
A check on the final output data has been performed, if the values obtained were
expected. Some indicators of probable error may be:

- a vehicle keeps occupied also at the end of the simulation: the period
without demand is so long that all trips are supposed to end.

- a user keeps inside a vehicle also at the end of the simulation: the same as
before.

- a vehicle keeps relocating or redirected at the end of the simulation
- at a given time instant, in a station there are in contemporary vehicles

available and users in queue
- anomalous value of users’ waiting times at a station in a given instant.
- negative number of users or vehicles in queue
- anomalous distribution of users waiting times: e.g. all users have waited

for 0 minutes, or some users have a negative waiting time (if some
counters of a previous simulator iteration haven’t been reset)

96

- anomalous occupation period of vehicles, e.g. a vehicle keeps occupied for
4-5 hours; the same is valid for relocations and redirections

4.6.2. Debug performed by checking some specific simulator parameters.
In this case, some system parameters are modified.

Battery characteristics
The battery capacity has been reduced. In particular, still a Li-ion battery is
considered, but with only one module and a few cells, therefore the battery
capacity is reduced to 1% of the originary one. This analysis has been performed
because, thanks to the battery charging management, vehicles charge level is
always much above the minimum. In this case, it has been checked if the vehicles
status changes correctly to 2 (i.e. unavailable because in charge) and as the
minimum level of charge is overcome, that the vehicle becomes available to user
and relocation trips in the proper way.

4.6.2.2. Stations capacity
As stated above, the FPT (i.e. full port time) situation is never reached in the
normal ongoing of the system and the stations are far beyond capacity. But in order
to check the code, it is necessary to create also this extreme situation. Therefore,
the station capacity is heavily decreased, for example it is set equal to 7 instead of
15, the high buffer thresholds are set equal to 5 and the high critical thresholds set
equal to 6. In this case, it is evaluated:

- if also the relocations in case of FPT work properly, i.e. if the right
supporting station is chosen.

- if the station is completely full, it is checked whether the vehicles are really
redirected to the nearest station able to accept them.

- when the redirection of the vehicles is completed, if the vehicle in question
becomes available, and if the number of available vehicles of the receiving
station is properly updated with this new vehicle

4.6.2.3. Pedestrian density
The pedestrian density is heavily changed, it is firstly set equal to nearly 0
pedestrians/m2 and then set equal to 1 ped/m2.

4.6.2.4. Duration of periods
The duration of the simulation periods, and also the duration of the simulation day,
have been modified, and several durations have been assumed (also a day made of
only four hours, in which the first one was the peak one and the second was the off-
peak).

97

4.6.2.5. Transport demand
The transport demand has been modified, specially the coefficient of the trip chain:
in particular, this coefficient is set equal to 1 firstly, and secondly equal to a great
quantity (like 100). Also user choice sets have been modified, in order to check the
correctness of the supervisor choice also for completely different scenarios.
Modifications on the number of units and of stations have not been performed, as
these parameters are fixed for the scenario under study.

4.6.3. Modifications to the simulator after debugging.
After debugging, all the bugs related to the simulator have been fixed. This
procedure does not need any specific explanation. Instead, an other problem about
some specific aspects of the management strategies have come out.

The problem is related to relocations among stations. Indeed, the request for a
relocation is dominated by the counter of the vehicles available at the station in the
critical situation and at the supporting station. Well, for the case of FPT (full port
time) no problems arise. Instead, for the case of ZVT (zero vehicle time), when a
station is in critical situation, it requires a vehicle and a relocation begins. However,
the vehicle takes some time to reach the station and therefore the stations remains
in a critical situation and it continues requiring vehicles. What happens is that some
of the providing stations can be in defect of vehicles in a future time, while the
receiving station is in excess of vehicles and therefore this multiplies the number of
required relocations. Therefore, a new counter has been created in order to avoid
this fact, which is the number of vehicles assigned to each station.

4.7. The sub-models contained in the simulator.

4.7.1. The model between vehicle speed – pedestrian density
One of the simulation inputs is the relationship between the speed of the PICAV
vehicle and the pedestrian density along the roads. The chosen model of interaction
between vehicles and pedestrians is a result of much research performed in the
field.

Firstly, a microscopic model has been developed, which is meant to modelize
the adaptive behaviour of pedestrians when they meet an obstacle, in corridors,
squares, roads, etc. The model is discrete both in space and time and aims to
estimate the pedestrian’s next position, given his current position and: the positions
of other pedestrians and obstacles in the area around the pedestrian in study, and
the relative velocity of the obstacles with respect to the pedestrian under study. The
pedestrian’s behavior has been assumed of “stimulus – response”. Much
bibliography has been collected regarding this topic. The basis of our work is in
Cepolina et al. (2008). In this work the concept of awareness area is taken into
account. The awareness area (AwA) is the region in which an obstacle can
influence the subject’s behaviour, in terms of slowdown, acceleration and
modification of the trajectory. The model has been calibrated through experimental

98

data collected at the PAMELA laboratory, in the University College of London,
and validated through a series of videos taken in the city centre of Genoa. The
results are not much satisfactory, because the R-square index value is 0.23, whilst
the T – Student statistics underline that only some cells are significant.

Moreover, the level of information provided by this model is also too much
detailed. A high level of detail in the model results in high computational load; and
the benefit of the high detail in this model is vanished in the uncertainties related to
transport demand. Furthermore, the representation of the network in the simulator
involves only the distances and the travel time between each couple of stations and
of units. The distances are known; the input data that we need from the model to
provide to the simulator is therefore only the travel time between each couple of
stations and units, given the length, the slope and the pedestrian density on the path.
A higher level of detail of the model can also result in the necessity to modelize the
network in a more complex manner.

For all these reasons, a simple model of interaction PICAV vehicle -
pedestrians has been developed. This model analyzes the interaction between the
PICAV and pedestrians from a macroscopic point of view, and provides the
velocity of the vehicle given the value of pedestrian density in a given section of a
road. And it does not take into account the microscopic interrelation between the
vehicle and pedestrians as it is not necessary as input data for the simulator.

Before developing this model, some literature has been studied about
macroscopic models of pedestrians. In the Highway Capacity Manual (HCM) are
presented some constitutive relations between speed and density, for what regards
both vehicles and pedestrians. In particular, there is a wide literature for what
regards vehicle traffic. For what regards pedestrian flows, the topic is still under
study, but in the HCM are reported some relations, exposed in the figure 4.6.
Several curves are reported in the figure 4.6 according to different desired speeds
of pedestrians. It should be noted that for values of density low enough (i.e. the
space available is greater than 3 m2/pedestrian) the pedestrian speed is no more
sensitive to density and instead remains constant and equal to the maximum.

Speed – density diagrams for the pedestrian case are much similar to the
vehicle ones: the speed diagram is horizontal for reduced vehicular density, and it
drastically diminishes for values of density close to capacity.

The density – velocity model for PICAV vehicle and pedestrians has been
therefore developed. The model has been developed in an experimental way: an
electric scooter for mobility impaired people, which has been assumed having the
same performances as the PICAV vehicle, has been driven in pedestrian only
environments and a database of couple of values vehicle speed – pedestrian density
has been assessed by video records.

It has been assumed that PICAV speed is a linear function of pedestrian
density. The function has been determined through linear regression. Several
shapes of the functional relationships have been explored, but the linear one has

99

been selected. The model development, calibration and validation is described in
detail in the section 6.1.3.

Fig. 4.6. The fundamental diagram for pedestrians as reported in the HCM (HCM 2004). In
the y axis the pedestrian speed is reported; in the x axis the free space, expressed in m2 per
pedestrian, is reported.

4.7.2. Model of the vehicle battery

The battery of the PICAV vehicle has been designed by Mazel Ingenerios, a
company from Abrera, Barcelona, Spain. The battery is Li-ion and it is composed
of 15 blocks in series which together provide 48 V DC. Each block is composed of
27 cells in parallel, which on the whole provide 204 Ah.

The formula to calculate the resistances to motion is the following:

()2
r a xR Pa Pgc C Sv Pgiρ= + + + 4.1.

Where:
‐ a = acceleration of the vehicle;
‐ P = weight of the vehicle and of the occupant in kg, assumed equal to 500 kg;
‐ g = gravitation constant, equal to 9,81 m/s2;
‐ cr = rolling coefficient: i.e. specific resistance to rolling, assumed equal to

0,010 N/kN;
‐ i = average slope expressed in ‰;
‐ ρa = air density, equal to 1.239 kg/m3;
‐ Cx = aerodynamic coefficient, equal to 0.5;
‐ S = PICAV vehicle section, equal to 1.36 m2;

100

‐ The total resistance to motion R is expressed in N.

The state of charge (SOC) of the battery is equal to:

e e /1 1Q E USOC
C C

= − ≅ − m

dt

 4.2.

‐ Qe (Ah) = quantity of electricity supplied;
‐ C (Ah) = battery capacity, equal to 204 Ah;
‐ Um (V) = average electric potential of the battery, equal to 48 V;
‐ Ee (kWh) = energy supplied by the battery.
‐ The hypothesis of the electric current to be constant in time is made.

The energy supplied by the battery Ee is equal to:

()e DCT
E P t= ∫ 4.3.

Being the power P constant in time, the energy supplied by the battery is equal to:
Ee = PDC T. Where T is the considered time period
Moreover, PDC , i.e. the power in entrance to the inverter:

[1 1 1 1 (Wh)DC r r
c m c m

]P P
η η η η

= ⋅ = ⋅ F v 4.4.

Where:
‐ Fr is the force provided at the wheels; it is considered equal to the resistances

to motion R (i.e. the force needed to move the vehicle);
‐ ηc ed ηm are respectively the efficiency of the inverter and of the engine, equal

to 0.92 e 0.93 respectively (Mazel, 2011);
‐ v = vehicle’s velocity in m/s. It is an input of the model.

Fig. 4.7. General scheme of the components: battery, inverter, engine, wheels (from left to
right). PDC is the power in output of the battery; PAC is the power in output of the inverter,
Pr is the power to the wheels.

The battery is a Li-ion, therefore it has no memory effect, and it is possible to
recharge it also if its charge level is high. Two charging procedures have been
assumed:

101

1. The first charging procedure is called opportunity charging. According to
this schema, as the vehicle is idle at some station, it is put under charge.
Moreover, it can in any moment be requested by an user if its charging
level is greater than the minimum. In each station, however, the vehicle
given to the user is always the one with the highest level of charge. The
minimum level of charge has been taken, for security reasons, equal to at
least three times the quantity of charge requested to perform the most
battery consuming trip. an idea of this level has been taken from the
questionnaires results, but the precise value has been obtained through
simulation. For Genoa case study, the quantity of charge consumed to
perform the worst trip is equal to 3%, therefore as minimum level of
charge has been assumed the 10%. If the vehicle has a charge level less or
equal to 10%, it is not occupied by an user, and it is parked along the road,
it is put in charge in the nearest available station.

2. The second charging procedure considers the possibility to exploit the
range of charging values in which the battery shows the highest
performance. This happens for the level of charge between 40 and 80%. In
any case, if the vehicle has a charging level of the battery less than 40%
and it is not occupied by an user, it is put in charge in the station. As it is
under charge, however, the vehicle becomes unavailable until the battery
has recharged up to 80%, independently to the possibility that the vehicle
is required or not. The choice of not to overcome the 80% of charge level
in case of a recharging process, is due to the fact that above this charge
level, the time requested to recharge increases relevantly.

Both charging strategies are performing, but both report some drawbacks. The
opportunity charging performs very well for what regards the transportistic point of
view. Indeed in Genoa case study, the transport demand registers a first off-peak
period and a second peak period. Through the opportunity charging system, in the
peak period vehicles still have a very high level of charge and therefore during the
four peak hours, the vehicles are always available to users. But however the
opportunity charging multiplies the charging cycles therefore batteries diminish
their capacity more quickly. The second strategy instead reduces the number of
charging cycles but, because the vehicle is never put in charge if its charging level
is greater than 40%, it may happen that some vehicles are put in charge exactly in
the moment in which they are more necessary. Moreover, as the battery is
recharged until 80%, the vehicle keeps unavailable for a long time.

The characteristics of the battery are provided in table 4.2. The characteristics
of the engine are provided in table 4.3.

102

Table 4.2. Characteristics of the battery (Mazel, 2011).
CHARACTERISTICS OF CELLS

Vmax cell 3.8 V
Vnominal cell 3.20 V

Vmin cell 2.50 V
Q nominal cell 7.50 Ah
Pnominal cell 24.00 Wh

Height 6.7 cm
Diameter 3.2 cm
Weight 135 g
Volume 0.0539 l

Energy density 445.40 Wh/l
Specific Energy 177.78 Wh/kg

Table 4.3. Characteristics of the engine (Mazel, 2011).

 103

 104

Chapter 5. The optimization procedure

Introduction

Some of the simulator’s input data cannot be directly quantifiable by observations
on the field. These data are: the thresholds, and the fleet dimension and its
distribution among stations at the beginning of the time period.

Moreover, each of these variables can assume values on a quite wide range;
and the problem is combinatorial.

As a result, it is impossible to determine these input data through “what if”
simulations. Therefore, the need for optimization procedures arises.

The chapter is organized as follows. Firstly, a general introduction on the
optimization problem is provided. Afterwards, the main characteristics of heuristic
algorithms are described. Furthermore, the chosen cost function and the chosen
optimization procedure are described. Finally, a description on the optimization
code is provided.

5.1. Optimization

As reported in Goldberg (1989), the first important aspect is to be clear about our
goals when we are going to optimize a function or a process. The optimization
seeks to improve performance toward some optimal point or points. Note that this
definition has two parts: (1) we seek improvement to approach some (2) optimal
point. There is a clear distinction between the process of improvement and the
destination of the optimum itself. In judging optimization procedures we
commonly focus solely upon convergence (i.e. whether the method reaches the
optimum) and forget entirely about interim performance. This emphasis stems from
the origins of optimization in the calculus. It is not, however, a natural emphasis.

Consider a human decision maker, for example a businessman. How do we
judge his decisions? Usually we say he has done well when he makes adequate
selections within the time and resources. We conclude that convergence to the best
is not an issue in business or in most walks of life: we are only concerned in doing
better relative to others. Therefore, the most important goal of optimization is
improvement. Can we get some good, satisficing level of performance quickly?
Attainment of the optimum is much less important for complex systems. It would
be nice to be perfect: meanwhile, we can only strive to improve.

It is also important to question whether conventional search methods meet our
robustness requirements. Robustness is defined as the balance between efficiency
and efficacy necessary for survival in many different environments (Goldberg,
1989). The implications of robustness for artificial systems are manifold. If
artificial systems can be made more robust, costly redesigns can be reduced or
eliminated.

The current literature identifies three main types of search methods: calculus-
based, enumerative and random.

Calculus based methods have been studied heavily. They are subdivided into
two main classes: indirect and direct. Indirect methods seek local extrema by
solving the usually nonlinear set of equations resulting from setting the gradient of
the objective function equal to zero. This is the multidimensional generalization of
the elementary calculus notion of extremal points. Given a smooth, unconstrained
function, finding a possible peak starts by restricting search to those points with
slopes of zero in all directions. On the other hand, direct search methods seek local
optima by hopping on the function and moving in a direction related to the local
gradient. This is simply the notion of “hill-climbing”: to find the local best, climb
the function in the steepest permissible direction. While both of these calculus-
based methods have been improved, extended, hashed, and rehashed, some simple
reasoning shows their lack of robustness.

Fig. 5.1. The single-peak function is easy for calculus-based methods (Goldberg, 1989).

First, both methods are local in scope; the optima they seek are the best in a
neighbourhood of the current point. For example, suppose that figure 5.1 shows a
portion of the complete domain of interest; a more complete picture is shown in
figure 5.2. Clearly, starting the search of zero-finding procedures in the
neighbourhood of the lower peak will cause us to miss the main event (the higher
peak). Furthermore, once the lower peak is reached, further improvement must be
sought through random restart of our trickery. Second, calculus-based methods
depend upon the existence of derivatives (well-defined slope values). Even if we
allow numerical approximation of derivatives, this is a severe shortcoming. Many
practical parameter spaces have little respect for the notion of a derivative and the
smoothness this implies. Theorists interested in optimization have been too willing
to accept the legacy of the great eighteenth and nineteenth-century mathematicians

 105

who painted a clean world of quadratic objective functions, ideal constraints, and
ever present derivatives. The real world of search is fraught with discontinuities
and vast multimodal, noisy search spaces as depicted in a less calculus-friendly
function in figure 5.3. It comes as no surprise that methods depending upon the
restrictive requirements of continuity and derivative existence are unsuitable for all
but a very limited problem domain. For this reason and because of their inherently
local scope of search, we must reject calculus-based methods. They are
insufficiently robust in unintended domains.

Fig. 5.2. A multi peak function causes a problem: which hill to climb (Goldberg, 1989).

Enumerative schemes have been considered in many shapes and sizes. The

idea is fairly straightforward: within a finite search space, or a discretized infinite
search space, the search algorithm starts looking at objective function values at
every point of the space, one at a time. Although the simplicity of this type of
algorithm is attractive, and enumeration is a very human kind of search (when the
number of possibilities is small), such schemes must ultimately be discounted in
the robustness race for one simple reason: lack of efficiency. Many practical spaces
are simply too large to search one at a time and still have a chance of using the
information to some practical end. Even the highly touted enumerative scheme
dynamic programming breaks down on problems of moderate size and complexity,
suffering from a malady melodramatically labelled the “curse of dimensionality”
by its creator (Bellman, 1961). We must conclude that less clever enumerative
schemes are similarly, and more abundantly, cursed for real problems.

Random search algorithms have achieved increasing popularity as researchers
have recognized the shortcomings of calculus-based and enumerative schemes.
Yet, random walks and random schemes that search and save the best must also be
discounted because of the efficiency requirement. Random searches, in the long

 106

run, can be expected to do no better than enumerative schemes. In our haste to
discount strictly random search methods, we must be careful to separate them from
randomized techniques. Using random choice as a tool in a directed search process
seems strange at first, but nature contains many examples. The important thing to
recognize at this juncture is that randomized search does not necessarily imply
directionless search. While our discussion has not been an exhaustive examination
of the myriad of methods of traditional optimization, we are left with a somewhat
unsettling conclusion: conventional search methods are not robust. As more
complex problems are attacked, other methods will be necessary. To put the point
in better perspective, inspect the problem spectrum of fig. 5.4. In the figure a
mythical effectiveness index is plotted across a problem continuum for a
specialized scheme, an enumerative scheme and an idealized robust scheme. The
gradient technique performs well in its narrow problem class, as we expect, but it
becomes highly inefficient elsewhere. On the other hand, the enumerative scheme
performs with egalitarian inefficiency across the spectrum of problems, as shown
by the lower performance curve. Far more desirable would be a performance curve
like the one labelled Robust Scheme. It would be worthwhile sacrificing peak
performance on a particular problem to achieve a relatively high level of
performance across the spectrum of problems.

Among random search algorithms, the Simulated Annealing (SA), which has
been implemented in the thesis, and the Genetic Algorithms, should be mentioned.

Fig. 5.3. Many functions are noisy and discontinuous and thus unsuitable for search by
traditional methods (Goldberg, 1989).

 107

Fig. 5.4. Many traditional schemes work well in a narrow problem domain. Enumerative
schemes and random walks work equally inefficiently across a broad spectrum. A robust
method works well across a broad spectrum of problems (Goldberg, 1989).

5.2. Introduction on heuristic algorithms

The determination of the solution of a difficult problem may be too long or
impossible if we use the so-called exact methods, which also sometimes cannot be
applied. In most cases, the practical aspect is preponderant, and therefore the
purpose is not to find the exact solution but a good solution. Several techniques
have been developed to determine a good solution, called heuristic algorithms.

As stated in Monaci (2012), an heuristic algorithm is a technique which is able
to provide a solution to a problem. The ideal heuristic algorithm should be always
able to determine the optimum solution of a problem. This can happen for a
specific typology of problems which have a specific structure, and are called
matroides: e.g. the algorithm to determine the tree with minimum cost. For more
difficult problems it is envisaged that the algorithm provides a good solution of the
problem, i.e. whose value is close enough to the optimum solution. For some
difficult problems, such as the travelling salesman problem on a non complete
graph, it is also possible that the algorithm is unable to determine a feasible
solution to the problem.

Given an instance I of a minimization problem, a heuristic algorithm A
provides a solution with value zA(I):

 108

 109

zA(I) ≥ z*(I) 5.1.

where z*(I) is the optimum value of the instance. We can say that the algorithm
provides an upper bound of the value of the optimum solution. Obviously in the
case of a maximization problem is valid the opposite inequality of 5.1. and the
algorithm in this case provides a lower bound of the solution. An euristic algorithm
may be able to determine an optimum solution of the problem z*(I) but this
optimality cannot be verified.
Heuristic algorithms can be classified as follows: constructive algorithms, local
search algorithms, meta-heuristic algorithms:
The time of calculation, and the quality of solutions produced, increases as we pass
from constructive algorithms to meta-heuristics. According to the application and
to the quality of solutions desired, it will be more convenient to choose an
algorithm instead of another. The important thing is that the time to calculate
required is much less than the time required by an exact algorithm to resolve the
same problem.

5.2.1. Constructive algorithms
They determinate an admissible solution starting only from the input data of the
problem in exam. For some problems it may be difficult to determine an admissible
solution: in this case we look for a solution which is as much admissible as
possible.

Among constructive algorithms, greedy algorithms start from an empty
solution and construct iteratively the solution following an expansion criterium,
which conisits on making, at each iteration, the most convenient choice compatible
with the problem constraints. Any choice, as it is made, is never put under
discussion. The conceptual choice of any greedy algorithm is as follows:

‐ Initialization of the solution S
‐ For any choice to make, take the most convenient decision, according to

the problem constraints
The great diffusion of greedy algorithms is due to the fact that they simulate the
manual behaviour in the determination of the problem solution, that the
implementation of the algorithm is much easy, and that the computational time is
much low.

In some cases, greedy algorithms are based on pre-sorting of the elements to
be considered for the solution, called dispatching rule: the elements that define the
solution are considered in this order and possibly inserted in solution. Generally,
the sorting criteria used include associate to each choice a "score" that indicates the
goodness of the move, trying to reward at each iteration a move that seems to be
the most promising. The information about the score or can be calculated at the
beginning of the execution, basing on the input data. Often the same heuristic
algorithm provides best results if the sort order of the elements is dynamically
updated in order to take account of the choices made earlier; obviously the

 110

continuous updating of the score of the elements leads to an increase in the
computation time required by the algorithm itself.

Generally, greedy algorithms are of primal, i.e. they make choices that meet
always all constraints. There are also dual versions of such algorithms: these start
from non admissible solutions and make choices aimed at achieving the
admissibility, trying not deteriorate too much the value of the solution.

The algorithms based on optimization techniques are iterative heuristic algorithms
that, at each iteration, perform one or more certain choices solving an optimization
problem which is simpler than the original problem. Typically they provide good
results based on the heuristic relaxations: they are greedy algorithms in which the
scores are defined using some (optimal solution, reduced costs, lagrangian costs)
obtained by solving a relaxed problem. Generally, the calculation time required for
execution of these algorithms is greater than that required by greedy algorithms,
but the solutions tend to be produced in much higher quality.

The fact of having available a relaxation of the problem also allows the
reductions in the size of the problem, and these reductions can have a dramatic
effect in reduction in computation time for large instances. These reduction
techniques are aimed at fixing some of the variables to their optimal value. The
techniques used can be exact (definition of a core problem based on, for example,
reduced costs or lagrangian costs) or heuristics (fixing of variables according to
their value in the relaxed solution).

The algorithms based on implicit enumeration of the solutions are algorithms
based on partial implementation of an enumerated algorithm. The most common
variant is that obtained by doing a complete branch-and-bound algorithm after a
certain time limit or after a predetermined number of backtracking. Another
possible solution is to modify the branch-and-bound algorithm in order to generate,
starting from each node, at most k nodes “children” (where k is a parameter to be
calibrated according to the computing time available). The choice of k sub-
problems to generate is usually carried out by assessing, for each potential node
“son”, a bound on the value of the best solution in the corresponding sub-tree and
taking the k most promising children nodes.

5.2.2. Local search algorithms
Given an optimization problem P defined by an objective function f and from one
region admissible F, a neighbourhood is an application that at each point s of the
feasible region associates a subset of N(s) of the feasible region F:

N: s → N(s) 5.2.

Sometimes it can be helpful to define the neighbourhood, as the set of solutions
reachable, from the current solution through moves of the chosen type.

 111

Transition rule is the methodology utilized to explore the neighbourhood: it
defines the criteria for searching a new solution departing from the current one.

The basic idea of the local search algorithm is to define an initial solution
(current solution) and try to improve it by exploring a neighbourhood
(appropriately defined) of this solution.

If the optimization in the neighbourhood of the current solution produces an
improving solution the procedure is repeated starting, as the current solution, from
the solution just determined.

The algorithm ends when: the exploration of the neighbourhood is completed
or after a predetermined number of iterations.

With regard to the definition of the initial solution, it is likely to think that it is
better to start from a “good” solution rather than a “poor” solution: actually no
theoretical result exist that confirms this. Generally what is done is to run multiple
times the local search algorithm starting from different solutions (randomly
generated) in order to explore different areas of the feasible region.

As regards the dimension of the neighbourhood, this depends on the type of
moves that are wanted. It is obvious that if, for any feasible solution, the
neighborhood coincides with the entire feasible region, the procedure returns the
optimal solution of the problem. In general, the larger the size of the
neighbourhood and the higher the probability of escape from local optima; for this
reason one would like, if possible, to have neighbourhoods that contain a lot of
solutions. Obviously there is also the need to be able to explore the neighbourhoods
efficiently, i.e. the algorithm must find the solution with a low number of
iterations; often, however, these two requirements are conflicting, so it is necessary
to find a compromise between the dimension of the neighbourhood and the
“goodness” of local optima.

Another feature that is desired for the search space is the fact of the
neighbourhood being connected; this means that regardless of the starting solution,
it is always possible to reach any feasible solution (including the optimal one)
through an appropriate sequence of moves, so if the neighbourhood is connected, a
“lucky” algorithm would always find the optimal solution of the problem.

5.2.3. Meta-heuristic algorithms
The solution to which converges a local search algorithm is a local optimum, given
a chosen neighbourhood. In general, the solution found is not a global optimum,
unless the problem that want to solve is not convex programming (as is the case for
linear programming). The local optima determined by local search procedures can
be of poor quality. For improving the solution found by local search techniques it is
possible to run the algorithm more times, starting with different initial solutions
and / or defining the around (or the exploration strategy of the surroundings) in a
different way in each iteration. Another way to try to improve the resulting
solutions is the use of meta-heuristic algorithms: these are essentially extensions of
local search algorithms, which are introduced in appropriate techniques aimed to

 112

avoid to terminate in a local optimum. The basic idea of a meta-heuristic
algorithms is the possibility of accepting also worse moves, in order to "escape"
from the local optima. Once that a worse move has been made, we must avoid to
return to the starting move (although this is improving), as this would create an
infinite loop. It is therefore essential to establish techniques that will avoid
incurring cycles.

The meta-heuristic techniques are of general algorithmic paradigms that must
be particularized for individual problems. Often the corresponding algorithms are
not very competitive compared to algorithms specifically developed for the
problem, in the sense that the solutions produced are comparable in terms of the
value of the solution but the computation time required can be much higher. On the
other hand, the timing of development and of implementation of a basis meta-
heuristic algorithm are much lower compared to a technique ad hoc. The critical
phase in the development of these algorithms often ends up being the calibration of
a series of parameters that appear in the algorithm itself.

The most important meta-heuristic algorithms, that will be described in detail
in the following, are:

1. Simulated Annealing
2. Genetic algorithms
3. Tabu Search

5.2.4. Simulated Annealing
The basic idea of these algorithms, born in the early 80's, is to simulate the
behavior of a thermodynamic process of annealing (annealing) of solid materials
(glass, metal, ...). If a solid material is heated to above its melting point and then is
cooled (cooling) in so as to return it to its solid state, its structural properties
depend strongly on the process cooling (cooling schedule). Essentially, a simulated
annealing algorithm simulates a change of energy of a system (considered as a set
of particles) subjected to cooling, until it converges to a solid state; this allows to
look for eligible solutions of optimization problems, trying to converge towards the
optimal solutions.

In a thermodynamic process, the probability that a system involves a change
of state which corresponds to an increase of energy δE is equal to:

 p(δE) = exp (– δE/ k T) 5.3.

where k is the constant of Boltzmann and T is the temperature of the system.

The simulated annealing algorithms use local search techniques to define and
explore the neighborhood of a current solution. If the solution contains an
improvable neighbourhood, then this becomes the new current solution and the
process is iterated. Otherwise, the worsening of the solution value is evaluated, that
would move from the current solution to the best solution of the neighbourhood,
and this displacement is carried out in accordance with a certain probability. The

 113

algorithm ends when it reaches a predetermined number of iterations or a
predetermined time of calculation, or if the optimality of the current solution is
proved.

The deterioration of the value of the solution is seen as an increase in the
energy of the associated thermodynamic system, for which the probability of
accepting a move worsening is given by the formula of Metropolis: p = exp (–δ/T);
where δ is the extent of deterioration (difference between the value of the new
solution and the value of the current solution) and T is the process temperature. If
the move is accepted, then the algorithm continues starting with the new current
solution, otherwise, the second-best solution of the neighbourhood is evaluated,
and so on until any acceptable solution is found.

The formula of Metropolis states that: the probability of accepting the worse
move decreases with the increase of the worsening of the move; and increases with
the increase of the process temperature. The temperature is a control parameter of
the algorithm, which generally is initialized to a value t0 > 0 and updated
afterwards, with a certain frequency, according to a function of reduction, or when
the number of moves accepted was above a certain threshold for a certain number
of iterations. This is due to the fact that the probability of accepting worsening
moves must be relatively high at the beginning of the algorithm (when the
sequence of solutions considered strongly depends on the initial solution), then
becomes lower as the solution improves (when you are exploring promising areas
of the feasible region).

At the basis of the approach are some theoretical results, since the behaviour
of a Simulated Annealing algorithm can be modelled using Markov chains. Fixed
the temperature, the probability of moving from the solution i to the solution j is a
quantity pij > 0 that depends only on i and j. The corresponding transition matrix
corresponds to what is known as a homogeneous Markov chain (at least if the
number of iterations performed at a constant temperature is sufficiently large): if
you can find a sequence of exchanges that transform a solution in another solution
with non-zero probability, then the process corresponds to a stationary distribution,
regardless of the starting solution. Since the temperature tends to zero, this
stationary distribution tends to be a uniform distribution in the set of optimum
solutions, for which the probability that the algorithm converges to an optimal
solution tends to 1. However, given that the solution space has generally
exponential size, the number of iterations (and thus also the calculation time)
required to ensure the convergence of the algorithm to an optimal solution is also
exponential.

5.2.5. Genetic Algorithms
Genetic algorithms are search algorithms based on the mechanics of natural
selection and natural genetics. They combine survival of the fittest among string
structures with a structured yet randomized information exchange to form a search
algorithm with some of the innovative flair of human search. In every generation, a

 114

new set of artificial creatures (strings) is created using bits and pieces of the fittest
of the old; an occasional new part is tried for good measure. While randomized,
genetic algorithms are no simple random walk. They efficiently exploit historical
information to speculate on new search points with expected improved
performance.

Genetic algorithms have been developed by John Holland, his colleagues, and
his students at the University of Michigan. The goals of their research have been
twofold: (1) to abstract and rigorously explain the adaptive processes of natural
systems, and (2) to design artificial systems software that retains the important
mechanisms of natural systems. This approach has led to important discoveries in
both natural and artificial systems science.

Genetic algorithms are based on the observation of the evolution of a
population of individuals: individuals combine themselves to generate new
individuals in successive generations and the evolutionary process tends to select
(to make survive) only the most suitable. By matching each individual with a
solution and by associating to each solution a fitness, these algorithms seek to
simulate the process of evolution, trying to keep alive the only solutions of high
quality.

The starting point for these algorithms is the genetic representation of the
solution; generally each solution is defined by the value of n integer variables, and
each variable corresponds to a chromosome. The representation of continuous
variables turns out to be more difficult, so it generally uses an encoding that
represents the approximate value of the variable.

The algorithm starts with an initial population of cromosomes (distinct
solutions generated in some way) and tries to optimize the fitness of the population
by recombination (cross-over) and mutation of genes in the course of several
generations. The process is repeated until a given number of populations is
generated or the optimality of the best solution found is demonstrated.

5.2.6. Tabu Search
Local search algorithms, i.e. the simulated annealing and genetic algorithms, in
their evolution, do not take track of all past history, but only some basic
information (the current solution, the best solution found, the number of iterations
which do not improve the solution, etc.). The systematic use of memory is instead
one of the essential characteristics of the algorithms like Tabu Search, i.e. local
search algorithms in which at each iteration we also agree to move towards
worsening solutions, provided eligible and legal ones (in meta-heuristics was only
eligible ones). What are legal and illegal solutions, will be described herewith.

These algorithms generally provide solutions better than other meta-heuristic
methods, although there is no formal proof of convergence. The fact of accepting
moves that worsen the current solution is to avoid ending up in a local optimum. In
order to avoid loops, a structure is defined (called Tabu List) in which the last t
moves are stored. The solutions corresponding to these moves are forbidden (not

 115

legal, i.e. tabu) for subsequent iterations, i.e. they cannot be accepted any more
during the execution of the algorithm. Then, with xk indicating the solution
considered to the k-th iteration, at the generic iteration k the tabu list is a structure
of the type T = {xk – 1, xk – 2, …, xk – t} and prevents the occurrence of cycles of
length less or equal to t; the length t of the tabu list is called tabu tenure.

So, in a tabu search algorithm type, the definition of the neighborhood N (x)
associated to the current solution x depends not only on x but also on the previous
history (set of solutions visited so far), this did not happen neither in the simulated
annealing algorithm nor in the genetic algorithms.

As usual, the stop condition is linked to the fact that a predetermined number
of iterations has been carried out or a predetermined calculation time has elapsed,
or that it has been proven optimality for the solution x*. There are also other criteria
e.g. related to the fact that the best solution has not been updated by too many
iterations.

The storage of complete solutions in the tabu list may not be very efficient
from the point of view of calculation time and memory occupation. So it is
preferred to store in the tabu list only some attributes of the solutions; alternatively,
for each solution x obtainable from the solution x by a move m, we can store only
the move m. For example in the KP-01 (knapsack-01), if it is chosen to insert the
object j, it is prohibited to remove the object j in the subsequent iterations. If there
is an exchange between objects i and j , exchanges involving again i and j are
prohibited.

The performance of a Tabu Search algorithm depends on several factors:
1. the choice of the neighbourhood, because the algorithm turns out to be

efficient only if it is possible to explore efficiently the neighborhood. In
order to increase the probability to explore different areas of the feasible
region, different neighborhoods are often used, within the same Tabu
Search algorithm, and different priority criteria for exploring these
neighborhoods. Each neighborhood is associated with a tabu list, the
management of which is completely independent from the other tabu lists.

2. The constraints of the problem: if the problem is much constrained the
cardinality of the neighborhood can be very small, it is possible to get
quickly to a situation where N(x) \ T = 0, where N(x) is the neighbourhood
and T is the set of tabu solutions. In this case it is convenient to relax some
of the constraints and to add to the objective function a penalty
proportional to the violation of the constraint by the solution in exam.

3. Management policy of the tabu list. In order to ensure the efficiency of the
algorithm it is necessary to be able to control efficiently if a solution is
tabu or not. This fact involves also the definition of tabu tenure t of the list,
in the sense that an increase of t increases the system memory (and
increases the length of the cycles forbidden) but also increases the time of
calculation required to verify the legality of a solution. The easiest way to

manage the length of the tabu list is to define a constant length t, although
this may result limitative.

4. Intensification and diversification. The algorithm must be able to fully
explore areas of the feasible region that seem most promising, and quickly
escape from the areas that seem uninteresting. This can be carried out with
a dynamic management of the tabu tenure, in which the value of t increases
as the best solution x* is updated (intensification phase), while t decreases
if x* has not been updated during the previous α iterations (diversification
phase). Another way to get the intensification and the diversification is to
modify the objective function, penalizing or rewarding solutions based on
how much they deviate from the current solution.

5.3. The optimization algorithm

An optimization algorithm has been developed in order to assess the best fleet
dimension, the low critical and low buffer thresholds, and the number of vehicles
to assign to each station at the beginning of the time period. The problem of
optimizing the quantities exposed above is formulated as a constrained
minimisation problem. The function z to be minimised is a linear combination of
the transport system cost Cd

 s and of the user’s costs Cd
 u, subject to the constraint

that the level of service results not lower than E. Both costs refer to the daily
reference time period and their units are €/day.

5.3.1. The cost function

 116

)
The cost function assumes the form:

(m in m in s u
d dz C C= + 5.4a

subject to:
50

90

95

4

() 8

10

w

w

w

t

t

t

⎧ <
⎪⎪= <⎨
⎪ <⎪⎩

g s 5.4b

Where:
- s

dC = daily cost supported by the transport system
- = daily cost supported by users u

dC

- , , = 50th, 90th and 95th percentiles of user waiting time, expressed in
minutes.

50
wt

90
wt

95
wt

According to table 4.1, if one of the 3 constraints in 5.4b on the 50th, 90th and 95th
percentiles of the user waiting time is not satisfied, the LOS of the system is F.

The daily cost of the transport system, s
dC , is equal to:

 fs run su m an ts r

d d d d ddC C C C C C C= + + + − + d 5.5.

The transport system cost therefore includes the cost f

dC of purchasing the fleet, the

running cost of the PICAV units, the cost run
dC su

dC of the parking lots setup and the
management costs . The revenue derived from the tickets is subtracted
from

man
dC ts

dC
s
dC .

For f
dC , i.e. the daily cost of the fleet, we assume that the purchase price for

each vehicle is 9000 €. This cost includes the vehicle with a lifetime of 8 years and
two lithium-ion battery packs with a lifetime of 4 years each. The cost of adding
vehicles to the system increases linearly with each vehicle. The linear increase in
vehicle costs is a rather simplistic assumption and does not take into account any
economy of scale, but it is a quite frequent assumption (Barth and Todd, 1999).
The daily cost of amortization of the fleet has been calculated with a discount rate
of 8%, according with the following formula:

(1) 1
365(1) 1

lt
f

v vd lt
r rC n c

r

⎡ ⎤+
= ⎢ ⎥

+ −⎢ ⎥⎣ ⎦
 5.6.

Where:
- nv is the number of PICAV vehicles within the fleet;
- cv is each PICAV vehicle purchase cost (it includes two battery packs);
- r is the discount rate.
- lt (number of years) is the PICAV vehicle lifetime.

We choose a discount rate of 8% as it is an average rate of return for investments
and therefore reasonably represents the opportunity cost of the purchase. There is
disagreement on what should be the appropriate discount rate but it is a parameter
in the proposed methodology and a sensitivity analysis can be performed.

Again, su
dC and , which includes the salaries of the system supervisor and

of the maintenance, are other flat costs. is the revenue derived from the tickets.
Multiplying the number of PICAV users by ticket price provides approximate
ticket revenues. Since the number of PICAV users in a time period has been
assumed constant, is again a flat cost.

man
dC

ts
dC

ts
dC

r u n
dC , i.e. the daily cost of running the system, includes the maintenance costs

and the electricity cost to run the PICAV fleet. Regarding the maintenance costs,
and excluding the cost of batteries that we already included in the vehicle purchase
cost, electric cars incur in very low costs and we neglect them. As it concerns the
 117

electricity needed to charge all the PICAV vehicles during an operative day, it is
proportional to the average daily kilometres travelled by the PICAV users and to
the length of the relocation trips. Since we assume a constant PICAV transport
demand, the average daily kilometres travelled by the PICAV users do not depend
on the transport system parameters (i.e. the fleet dimension and the thresholds).
Conversely , the length of the relocation trips depends on the transport system
parameters. The electricity cost related to relocation trips is taken into account in
eq. 5.7 and it is proportional, through the vehicles velocity, to the total amount of
time spent in relocation.

su
dC , i.e. the daily cost of system setup, includes infrastructure cost which is

related to the number of parking spaces in each station. This cost depends on the
fleet dimension. But due to the small dimension of PICAV vehicles (1.3 m long
and 1.1 m wide) (Masood et al., 2011) we consider it as a flat cost.

man
dC , i.e. the daily cost of system management are again flat costs.
ts
dC is the daily revenue derived from the tickets. The ticket price is the same

for all the PICAV users. If we multiply the number of PICAV users by the ticket
price, this provides approximate ticket revenues. Since the number of users in a
time period has been assumed constant, is again a flat cost. ts

dC
r
dC , i.e. the daily cost of relocation, is very relevant in the determination of the

objective function. It is calculated from the total amount of time that PICAV
vehicles have spent relocating:

1

nr
d r r

j
C c t

=
= ∑ j 5.7

Where:
- cr is the cost of each minute of relocation, assumed equal to 0.01 €/min;
- trj is the total amount of time spent by the vehicle j in relocation. It is an

output of the micro simulator;
- j is the jth vehicle and n is the number of PICAV vehicles.
The total relocation time takes into account the time spent by all PICAV

vehicles relocating among the stations.
The value of the cost of relocation, equal to 0.01 €/minute, has been assessed in

order to make the daily relocation cost and the daily user cost comparable with
each other.

With regards to the in 5.4a, this has been measured in terms of the total
customer waiting time and the cost the users have to pay for the service. The total
customer waiting time is the overall length of time, in minutes, customers have to
wait for a vehicle when it is not immediately available during the reference time
period. has the following expression:

u
dC

u
dC

 118

 119

ts
d

1

mu
d w wi

i
C c t C

=
= +∑ 5.8

Where:
- c w is the cost of a unit of waiting time, namely 0.10 €/ minute (Cherchi, 2003);
- m is the total number of users who have been in a queue during the reference

time period;
- twi is the waiting time of the ith user in minutes;

- is the total customer waiting time in the simulation day, expressed in

minutes. It is a function of the number of PICAV units assigned to each
parking lot at the beginning of the time period, or of the fleet dimension and
the threshold values. It is determined through the simulator and it is an output
of the simulator itself;

1

m

w i
i

t
=
∑

- ts
dC is the overall cost paid by the PICAV users and it is given multiplying the

number of PICAV users by ticket price. Since the PICAV transport demand
has been assumed constant, ts

dC is again a flat cost. Moreover this term equals
the revenue derived from the tickets that appears in the transport system cost,
therefore both terms appear in the cost function with opposite signs, and
therefore delete each other.

5.3.1.1. The independent variables for the management strategy involving flexible
users
In the current management strategy, thresholds are not parameters of the system
therefore they do not have to be optimized.
If we call s a vector whose dimension is equal to the number of parking lots and the
value of each vector component equals the number of PICAV units in the related

parking lot at the beginning of the reference time period, we have that is a

function of s: .

1

m

wi
i

t
=
∑

()
1

m
w i

i
t

=
∑ s

Instead of minimizing the z function in order to assess the best number of
PICAV units to assign to each parking lot at the beginning of the time period, we
minimise another function f which coincides with z but it doesn’t include the flat
terms since they do not affect the minimization problem. The f function has the
following expression:

() ()
1

(1) 1
365(1) 1

lt m
v v w wilt i

r rf n c c t
r =

⎡ ⎤+
= + ∑⎢ ⎥

+ −⎢ ⎥⎣ ⎦
s s 5.9.

In the faced problem, the independent variable is s since nv is the sum of all the
components of s. The research space is given by Na if a is the number of parking
lots in the study area: therefore the research space could be extremely large.
We introduce the constraints on ()f s minimisation problem: the three constraints
shown in formula 5.4b. and named as

50

90

95

4 0

() 8 0

10 0

w

w

w

t

t

t

⎧ − ≤
⎪⎪= − ≤⎨
⎪ − ≤⎪⎩

g s 5.10.

We transform the constrained problem:

 Minimize ()f s 5.11.
Subject to: () 0≤g s

into a single unconstrained problem using penalty functions. The constraint is
placed into the objective function ()h s via a penalty parameter μ̂ >0 in a way that
penalizes any violation of the constraint:

() () (){
23

1
ˆmin max 0, i

i
h f gμ

=
}⎡ ⎤

= + ⎢ ⎥
⎣ ⎦
∑s s s 5.12.

where i is the ith constraint.

If () 0ig ≤s , then the (){ } 2
max 0, 0ig⎡ ⎤ =⎣ s ⎦ , and no penalty is incurred.

On the other hand, if () 0ig >s , then and the penalty term

is realized.

(){ } 2
max 0, 0ig⎡ >⎣ s ⎤

⎦

⎤
⎦(){ } 2

ˆ max 0, igμ ⎡⎣ s

The weight of the penalty function μ̂ is unknown and we determine it with an
iterative process, according with Bazaraa (Bazaraa et alii, 1993), starting from a
small value and increasing it progressively. In fact, as the value of β increases, the
optimal solution of ()h s get arbitrarily close to the optimal solution of the original
constrained problem:

min ()f s 5.13.

subject to () 0≤g s

 120

It is possible also to take different weights for each constraint. In this case 5.12
becomes:

() () (){ }
3 2

1
ˆmin max 0,i i

i
h f gμ

=

⎡ ⎤= + ⎣ ⎦∑s s s
 5.14.

The initial value of the penalty parameter is taken as 1 0.1μ = , and its updating
happens in this way: 1k kμ βμ+ = , where the scalar μ is taken as 10.0 and k and k+1
are two successive iterations.

For a given kμ , we have a function ()kh s to minimise. If the vector that
minimises

*s

()kh s is the same vector for which ()* 0g ≅s we stop the iterative
process and μ̂ = kμ .

For a given value for the penalty parameter kμ and a given point in the
research space (a given), we calculate the value of the *s ()*kh s

*s

 function
simulating the transport system with the microscopic simulator. Given an area of
study and the number of PICAV users, the simulation input is the PICAV fleet and
its distribution among the various stations, represented by a given vector , and the

simulation outputs are the total customer waiting time and the percentiles

of user waiting times

()*wit s
1

m

i=
∑

()95
w *st , ()50

w *t ,s ()90
w *st .

Since there is not an analytical expression for ()kh s , we cannot exclude the
need to deal with a multi-peak function and the risk of reaching a local minimum is
high. Moreover, since the research space is extremely large, Simulated Annealing
(SA) has been chosen for solving the minimization problem.

5.3.1.2. The independent variables for the two management strategies involving
automated vehicles
We call s a vector whose dimension is equal to 3 and whose components are:
- the first component is equal to the fleet dimension nV ;
- the second component is equal to the low critical threshold. Low critical

threshold values are taken constant for all the simulation day and also are
assumed to be the same in all stations. The value reported in the second
component of the vector s is the low critical threshold in one of the stations;

- the third component is equal to the low buffer threshold. Low buffer threshold
values are taken constant for all the simulation day and also are assumed to be
the same in all stations. The value reported in the third component of the
vector s is the low buffer threshold in one of the stations.

Both and
1

m

w i
i

t
=
∑

1

n

r j
j

t
=
∑ are a function of s: , . ()

1

m
wi

i
t

=
∑ s ()

1

n

r j
j

t
=
∑ s

 121

As stated before, high critical thresholds have not been optimised since they
correspond to the station capacities. The high buffer thresholds are not optimized,
since a relocation strategy based on preventing ZVT occurrences, guarantees that
FPT occurrences do not take place .

Instead of minimizing the z function in eq. 3.1a in order to assess the best
transport system parameters, we minimize another function f which is simply the
function z but without the flat cost terms since they do not affect the minimization
problem. The f function has the following expression:

() () ()
1 1

(1) 1
365(1) 1

lt m n
v v w wi r rilt i j

r rf n c c t c t
r = =

⎡ ⎤+
= + +∑ ∑⎢ ⎥

+ −⎢ ⎥⎣ ⎦
s s s

 5.15.

In the formulated problem, the independent variable is s.

The search space has three dimensions, each one is determined by a component
of the vector s. the search space is limited as follows:
- the low buffer threshold of each station must be greater or at least equal than

the low critical threshold,
- the fleet dimension must be greater than the sum of the low buffer thresholds.

The penalty function is determined in the same way as in the previous section and
the same procedure is followed.

Also in this case, a Simulated Annealing algorithm has been chosen to solve
the minimization problem.

5.3.2. The Simulated Annealing procedure
Below, a deeper description on the Simulated Annealing procedure, and of the
parameters of the algorithm chosen for the optimization procedure.

The method is an iterative process that searches from a single point moving in
its neighbourhood and allows worse moves to be taken some of the time, that is, it
could allow, for example, some uphill steps so that a local minimum can be
escaped. Worse solutions are accepted according to a probability. This probability
depends on a parameter, i.e. the temperature, which decreases with the number of
steps.

The algorithm evolves by means of an iterative cycle, in which the search
space exploration is performed. This search depends on a control parameter called
temperature T which decreases as the number of the iteration of the cycle increases.
In each iteration, a new point sn is reached from s, according to the transition rule.
At the new point, the value of the cost function f is checked.

Since the cost function does not have an explicit formula, at each step of the
Simulated Annealing algorithm, the simulator is recalled in order to calculate the
users’ waiting times and the relocation times, input data of the cost function. A

 122

diagram showing this key aspect, for a bi-dimensional search space, is provided in
figure 5.5.

At each iteration of the Simulated Annealing, the following two variables are
taken into account and updated:

– the generated new solution sn ;
– the current solution s

Cost function

Cost function

Micro
simulation

output of micro
simulation

Micro
simulation

Cost function

output of micro
simulation

Fig. 5.5. General scheme on the evaluation of the objective function. At each iteration of
the optimization algorithm, the optimization code recalls the micro simulation. The
simulation’s outputs are used to calculate the cost function.

The updating happens in this way:
a) if s sn substitutes s, i.e. s : = sn () ()h h≤ns
b) if () ()h h>ns s sn will become the current solution s with a probability given

by:
() ()

exp
h h

p
T
−⎛= −⎜

⎝ ⎠
ns s ⎞

⎟ 5.16.

This is the core of Simulated Annealing and is known as the Metropolis algorithm.
T is the value of the temperature for the current inner cycle (Laarhoven, Aarts,
1987).

 123

Given that []0,1r∈ is a pseudo random number, updating happens according
to the following:

if r p the new solution sn substitutes s, ≤
if r > p the new solution sn is rejected and therefore s will not be updated.

Therefore the algorithm needs the definition of the cooling schedule, the local
search and the starting and stopping conditions.

5.3.2.1. The cooling schedule.
The cooling schedule is defined by: the initial temperature, the law of its decrease
and the final temperature. We fixed the cooling schedule in such a way to
guarantee a good exploration of the research space.

The starting temperature has been determined according to Laarhoven and
Aarts (1987). An initial acceptance ratio p0 of the worse solution, is fixed at the
first step of the algorithm. Thence, the initial temperature T0 is determined from the
acceptance ratio p0 in this way, according to Laarhoven and Aarts (1987):

0
0

() ()
exp

h h
p

T
⎛ −

= −⎜
⎝ ⎠

ns s ⎞
⎟ 5.17.

An initial acceptance ratio p0 of the worse solution, e.g. 0.5, is fixed at the first step
of the algorithm. From this point, the initial temperature T0 is determined from the
acceptance ratio p0 in this way, according to Laarhoven and Aarts (1987): the
choice of the initial acceptance ratio has the purpose of performing a quite good
exploration of the search space without slowing down too much the algorithm. In
the management strategy involving flexible users, p0 has been assumed equal to
0.9. In the other two management strategies, p0 has been assumed equal to 0.5.

The most commonly used temperature reduction function is geometric:

k1k TT ⋅=+ α where and are the temperatures in two consecutive iterations
of the algorithm (Laarhoven and Aarts, 1987). Typically,

kT 1kT +

0.7 0.95α≤ ≤ . It has
been adopted:
- in the management strategy of the flexible users, a very slow cooling schedule

in such a way to guarantee a good exploration of the research space: α = 0.99.
- in the other two strategies, because the search space is smaller, in order to

have a good exploration of the search space but not a too slow algorithm, α
has been assumed equal to 0.9.

The final temperature scheme of the cooling schedule is instead replaced by a
stopping condition. The algorithm is stopped when 100 iterations without accepting
any more new solutions is reached, according to the stopping criteria given in
(Laarhoven and Aarts, 1987). If this does not happen, the algorithm is stopped in
any case when a high number of iteration, i.e. 5000, is reached.

 124

 125

5.3.2.2. The transition rule
The transition rule regards the exploration of the search space: from a given vector
s, a new vector sn is selected in the neighbourhood of s. The cost function value
related to h(sn) is assessed through the micro simulator described in section 4.5.

The transition rule is probabilistic and ‘blind’. It passes from s to sn changing
only one component of the vector s.

In the case of the flexible users’ management strategy, the algorithm randomly
determines the component of the vector to modify. It also determines whether to
increase or decrease the chosen component: it is increased with a probability of
50% and it is decreased with the same probability.

In the other two management strategies, the vector has only three components
and each component has the same probability to be selected. The first component
of s, i.e. the fleet dimension, if selected, is increased or decreased by m, where m is
the number of stations in the intervention area. The second and the third component
of s, the low critical and low buffer thresholds, if selected, are increased or
decreased by 1. The chosen component is increased with a probability of 50% and
it is decreased with the same probability.

Moreover, the algorithm avoids that, in a given iteration, the vector component
to change is the same as the one that has been changed in the previous iteration.

In this way, it is guaranteed that the new vector sn is taken in the
neighbourhood of the previous vector s. Keeping the neighbourhood that small
allows to reach faster the optimum solution but, on the other hand, it cuts down the
possibility of great improvements.

5.3.3. Parallel optimization
In the case of the flexible users’ management strategy, no problem occurs and the
optimization algorithm works properly.

In the other two management strategies, the overall optimization procedure has
shown a serious problem: the objective function is heavily dependent on the fleet
dimension (first component of vector s) and slightly dependent on threshold values
(second and third components of vector s). This causes some difficulties in the
calculation of the optimal solution for what regards the threshold values, which
result in a the slowdown of the optimization algorithm.

Therefore, it has been decided to split the search space into two components:
on a processor the objective function is kept dependent only on the fleet dimension
and all threshold values are fixed, while on the other processor the objective
function depends only on the low critical and buffer thresholds while the fleet
dimension is kept constant. This technique is in accordance to the search space
decomposition methodology (Crainic et al., 2010).

Search space decomposition refers to the case where the problem domain, or
the associated search space, is decomposed and a particular solution methodology
is used to address the problem on each of the resulting components of the search
space. The chosen solution methodology is the Simulated Annealing for both

 126

components. The two SA processes are not fully independent and data exchange
occurs at the end of each run of the algorithm. This is a simple parallel
optimization technique. In fact parallel / distributed computing means that several
processes work simultaneously on several processors solving a given problem
instance (Crainic et al., 2010).

Therefore the transition rule described changes since on the first processor only
the first component of s is modified while on the second processor only the last two
components of s are modified.
The parallel optimization steps are the following:

1. The first processor receives in input the thresholds and it optimizes the
fleet. The optimal fleet, given the threshold values, is calculated through
Simulated Annealing.

2. When the first processor ends its optimization algorithm, the second
processor receives in input the optimal fleet dimension from the first
processor, and optimizes the threshold values through Simulated
Annealing.

3. Then the two processors work together; they both receive in input the
optimal fleet dimension calculated in step 1 and the optimal threshold
values calculated in step 2. The first processor optimizes the fleet through
keeping the thresholds constant and the second processor optimizes the
thresholds keeping the fleet dimension constant.

4. When both the processors end their optimizations, the values of the
objective function in the two minimum points are compared. The departure
point for the following iteration of the parallel optimization is the point s*
which gave the minimum value of the objective function

5. Now the first processor optimizes the fleet dimension, given the thresholds
values in s* while the second processor optimizes the threshold values
given the fleet dimension in s*.

6. The step 4 is repeated until stopping conditions occur.

The parallel optimization is stopped if one of the following conditions occur:

1. if in a given step the values of the objective function in the two minimum
points differ less than 5%,

2. or if the two processors do not find any better solution than the initial one
3. or if the current best solution (step 4) of the parallel optimization is close

enough to the best solution obtained at the previous iteration of the parallel
optimization

A scheme of the overall proposed methodology is shown in figure 5.6.

Fig. 5.6. The parallel methodology implemented in the optimization procedure. In the
figure, the fleet dimension is referred as Fl, and the low critical and low buffer threshold
values are referred as Th.

5.4. Description of the optimization code

5.4.1. Description of the code

5.4.1.1. Initialization – first iteration:
First of all, the file provides:
‐ Number of vehicles at each station at the beginning of the simulation time
‐ Low critical thresholds
‐ Low buffer thresholds
‐ Management strategy
‐ An indicator called flag: if the management strategy is the flexible users one,

then its value is not relevant. Otherwise, in the other two management
strategies, if flag is equal to 1 then the algorithm modifies the fleet dimension;
otherwise if the flag is equal to 2 the algorithm modifies the thresholds.

 127

These parameters are the input of the optimization algorithm, and they represent
the quantities to optimize. They replace the same input data reported in the file
inputdata.py.
Afterwards, the quantities fixed by the cost function are declared, i.e.:
‐ The cost of waiting, equal to 0.10 €/minute,
‐ Daily amortization cost of each vehicle, equal to 4.117 €/(vehicle ⋅ day). The

lifetime of the vehicle is assumed equal to 8 years, and the lifetime of the
battery is assumed equal to 4 years.

‐ Relocation cost, assumed arbitrarily equal to 0.01 €/minute. This choice is
made in order to avoid to make it predominant respect to the cost of waiting.

‐ Constant cost, equal to 20.82 €/day, cost of the energy consumed by the
vehicle and transport system management.

‐ μ = penalty coefficient
The following quantities are setup:
‐ a list which contains the waiting times of all users,
‐ the objective function,
‐ some components of the objective function, i.e. the total cost of waiting and the

total cost of relocation
‐ 50th, 90th and 95th percentiles.
The objective function has the following shape:

{ } 2
, ,

(1) 1 max 0,
365(1) 1

lt

ob r r j w w i v v ij i ilt
r rf c t c t n c g

r
μ

⎡ ⎤+ ⎡ ⎤= + + +⎢ ⎥ ⎣ ⎦+ −⎢ ⎥⎣ ⎦
∑ ∑ ∑ 5.18.

‐ cr = relocation cost
‐ cw = cost of waiting
‐ i, j = ith and jth user
‐ t r, j = relocation time of the jth user
‐ t w, j = waiting time of the jth user
‐ nv = number of vehicles
‐ cv = daily amortization cost of each vehicle
‐ r = discount rate, equal to 8%
‐ lt = lifetime, equal to 4 years for the battery and 8 years for the vehicle
‐ μ = penalty coefficient
‐ gi = i-th constraint (i = 1, 2 or 3)

‐ moreover { } 2
max 0, ii gμ ⎡ ⎤⋅ ⎣ ⎦∑ is the penalty function.

Constraints are on the percentiles of user waiting times, in order to avoid to have a
LOS F, in particular:
t90 < 8 , t95 < 10 , t50 < 4 ; t90 , t95 e t50 are the percentiles of user waiting times. The
waiting time is expressed in minutes. The function g is therefore:

 128

 129

⎟

95

90

50

10
8
4

t
t
t

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

g 5.19.

The code executes for 30 times the following instructions and averages the
obtained results:

 recalls the method “simulation” of the simulator’s code.
 updates the list of users’ waiting times
 calculates the objective function without the penality function
 calculates the user waiting times
 calculates the relocation costs
 calculates the 50th, 90th and 95th percentile.

30 iterations are performed in order to reduce the stochastic effects in the
simulator’s outputs.
At the end of the iterations, the average value of the objective function and of
percentiles is calculated. Afterwards, if the constraints are not satisfied, the
objective function is updated with the penalty parameter.

5.4.1.2. Second iteration:
The values of: fleet dimension, low critical thresholds, low buffer thresholds,
related to the previous step, are inserted in lists but named with the same name but
added “old”: for example: fleet dimension old instead of fleet dimension, low
critical thresholds old instead of low critical thresholds.

If the management strategy is different from that of flexible users, and if the
flag indicator is equal to 2, then the simulator will modify the thresholds. In order
to do so, a casual number i comprised between 0 and 1 is generated. If i < 0.5, then
the algorithm will act on the buffer thresholds; otherwise it will act on critical
thresholds.

Afterwards, in both cases, a new random number j comprised between 0 and 1
is also generated. If j < 0.5, then all thresholds are decreased by an unit; otherwise
they are increased by an unit. However, this happens under these limits: the fleet
dimension must be greater than the sum of buffer thresholds, and the sum of buffer
thresholds must be greater than the sum of critical thresholds. Moreover, the
thresholds value is assumed the same in all stations.

If instead the flag indicator is equal to 1, then the algorithm acts on the fleet.
Again, a random number i is generated, and it is comprised between 0 and 1. If
i<0.5, the number of available vehicles in all stations at the beginning of the
simulation time is increased by an unit. Otherwise, this number is decreased by an
unit.

If instead the management strategy is that of flexible users, firstly a number i
comprised between 0.000001 and the number of stations is generated. This number
is rounded to the following integer and provides the identifier of the station in

which the number of available vehicles at the beginning of the simulator will be
modified. Another random number j is generated comprised between 0 and 1,
therefore: if j<0.5, then in the chosen station the number of vehicles will be
decreased by 1. Otherwise, it will be increased by 1.

Afterwards, in all examined cases, with the new values of thresholds and fleet
dimension, the code recalls the simulator 30 times as exposed in the initialization.
The objective function will be calculated and also the percentiles, in the same
manner as in the initialization.

At the end of the second iteration, the Simulated Annealing parameters will be
calculated. A value of acceptance ratio, i.e. probability to accept worse solutions, is
considered, initially equal to a given value, e.g. 0.8, which will be decreased with
the execution of the algorithm. The initial temperature T0 is calculated as in the
following:

0 log(1/)

new old
ob ob

r

f f
T

a
−

= 5.20.

Where new

obf is the objective function calculated in the current iteration, old
obf is the

objective function calculated at the initial step. Instead is the initial acceptance
ratio.

ra

After determining the initial temperature, the algorithm decides whether to
accept or reject the new solution.

‐ If the new solution is better than the old one, then the new solution will be
the departure point for the following iteration

‐ If the old solution is better than the new one, then:
o A random number is generated, extracted from an uniform

distribution and comprised between 0 and 1
o If this number is smaller than the initial acceptance ratio, then I

accept the new solution
o Otherwise I reject the new solution and the initial one will be the

departure point for the following iteration.

5.4.1.3. Body of the algorithm
The algorithm performs 500 iterations, because it is assumed that at the end of the
500 iterations it may converge to a local optimum. Two counters are introduced:

‐ Local optimum, which takes into account the number of performed
iteration without that a new solution is selected

‐ Previous solution, which avoids that the algorithm jumps between two near
solutions without converging.

Firstly it is decided what to variate, i.e. which of the two thresholds, or the
fleet, and of which quantity, exactly as previously described for the second
iteration.

 130

 131

Then the new values of the fleet and of the thresholds are provided in input to
the simulator. Then the objective function and the percentiles are calculated.
Finally the temperature is decreased: Tk+1 = α Tk : k is the step of the algorithm, α is
a coefficient comprised between 0 and 1, which has been assumed equal to 0.9. it is
necessary to be extremely careful both regarding this coefficient and the
acceptance ratio, because they provide the velocity of convergence of the
algorithm. If indeed the values of the acceptance ratio ar end of the α coefficient are
too low, the risk to find a bad solution, i.e. a bad local optimum, is very high. If
these values are too high, instead, the risk is to be far from the termination of the
algorithm still after 500 iterations.

Finally, the objective function is evaluated in the same manner as after the
second iteration, in order to determine whether to accept the new solution or to
reject it. If the new solution is accepted, the vectors fleet dimension and thresholds
will be namedwith “old”, and also the objective function will be named as “old”,
i.e. objective_function_old. Moreover the previous solution is saved in the list
previous solution. In this way, if in the following step the simulator determines a
new solution equal to this one, automatically it will be rejected.

Moreover, at each iteration where the new solution is not chosen, the counter
local optimum will be increased by 1. When the counter local optimum reaches the
value 100, i.e. in all the 100 previous solutions the algorithm couldn’t find any
better solution, the algorithm is terminated, and the last accepted solution is chosen
as the optimum solution.

5.4.2. Debug of the algorithm
The optimization algorithm has been verified for correctness.

The optimization algorithm takes in input the output quantities calculated from
the simulator. However, due to the high stochastic effects coming from the
simulation, the simulator is run several times, in order to cope with these effects
and the outputs of the simulator are averaged. At each simulator’s run, the
distribution of users waiting times and the total relocation time are calculated.
These quantities are stored in lists which are updated and averaged iteration by
iteration with the new quantities.

The number of required iterations to cope with stochastic effects has been
determined in the following way. The average waiting time, and the 50th, 90th and
95th percentiles of the distribution of users’ waiting times, the total users’ waiting
time and the total time spent in relocation have been registered in each iteration of
the simulator. All these quantities have been averaged iteration by iteration. At
each iteration, the variations between the values obtained from the simulator at the
current iteration and the averages calculated so far, are determined. If the greatest
of these variations is less than 5%, then the number of iterations of the simulator
performed is enough. Several replications of this procedure have been performed
and the results show that with 23-27 iterations of the simulator it is possible to cope
with all the stochastic effects.

 132

The stochastic effects in the simulator come from the simulator input data. The
transport demand in the simulator is provided in the form of OD matrixes, i.e. the
number of users that desire to travel from a given station or unit to a given station
or unit during an hour in a given period of the day, is provided. But the exact time
instant in which the user arrives in the origin station or unit is extracted from an
uniform distribution. This choice is made because sometimes the transport demand
is extremely low, specially in the case of the third management strategy, in which
there is a great number of units. For example the number of users which desire to
travel from e.g. station 7 to station 9 is 5 users by hour, or the number of users
which desire to travel from unit 5 to station 3 is e.g. 2 users per hour.

The key aspects tested regard that the optimizer correctly recalls the simulator,
and that provides the right inputs to the simulator and deals with the correct
outputs. This control is performed also in the simulator code, that all lists, libraries
and quantities are reset at the beginning of each simulator run. Indeed, because the
objective function is calculated as an average of several runs of the simulator, in
order to reduce stochastic effects, if all these quantities are not reset, they take
memory of the previous iterations and therefore the statistics’ values may be
strongly affected.

The last key aspect in the optimization code’s debug regards that the Simulated
Annealing scheme is correctly implemented. In particular, it has been checked if
the rule for the choice of the new solution has been correctly implemented, i. e. that
the code correctly decides whether to accept or reject the new solution, according
to the simulated annealing scheme. Moreover, it has been verified that the
algorithm really follows the correct cooling schedule. And finally, in order to avoid
that the algorithm “jumps” between the same two or three solutions, without
determining the optimum one, a memory of the solutions previously determined is
taken, and these solutions cannot be accepted again in following steps of the
algorithm.

The calibration of the Simulated Annealing parameters, such as the cooling
schedule, is instead described in the chapter 6 of this thesis.

 133

Chapter 6. Calibration, validation and coherence
analysis of the proposed transport system

Introduction
The main phases of the development of a model are:

1. Specification of the model: i.e. definition of the main characteristics of the
model;

2. Calibration of the model’s parameters;
3. Validation of the model.

This chapter will deal with the second and the third phases exposed above.
Firstly, the calibration will be described. It is necessary to calibrate two

models: the micro simulator and the optimization algorithm.
For what regards the simulator, the calibration of the simulator’s parameters,

as well as the calibration of the sub-models contained in the simulator, i.e. the
PICAV velocity model and the model of the battery, will be described.

For the model under study, a similar system still does not exist and therefore it
is impossible nowadays to validate the proposed model. Therefore, an analysis of
coherence of the model’s assumptions results necessary.

6.1. Calibration of the optimization algorithm and of the micro
simulator.

6.1.1. Introduction on the problem
As stated above, the models to calibrate are: the optimization algorithm, and the
micro simulator. The micro simulator is developed as a decision support tool for a
political stakeholder. The micro simulator can be used:

- stand-alone, to evaluate the possible different scenarios;
- as an inner procedure the optimization algorithm. The optimizer in fact at

each iteration recalls the simulator to calculate through it the cost function.
It is necessary firstly to clearly distinguish between the input data and the
parameters.

Parameters of the optimization algorithm.
The parameters of the optimization algorithm are the parameters of the Simulated
Annealing, i.e. the cooling schedule and the transition rule.

Parameters of the micro simulator.
The micro simulator receives in input:

- fleet dimension;
- transport demand, for what regards the demand OD matrixes;
- major modifications, such as elimination of a station;

- battery capacity;
- model PICAV vehicle – pedestrian density;
- characteristics of the network: stations, units and length and slope of the

paths among stations and units.
Output of the model are:

- waiting time, from which the Level of Service depends;
- relocation time.

A general scheme of this is provided in fig. 6.1.

Fig. 6.1. General scheme of inputs and outputs of the simulator.

The parameters of the micro simulator are therefore related to:

- values of the thresholds;
- the law for the users’ arrival times;
- the battery management chosen, the battery charge and discharge laws;
- the parameters of the model of interaction vehicle – pedestrians.

6.1.2. Calibration of the micro simulation model

6.1.2.1. Calibration of the threshold values
The threshold values, are calibrated for each scenario by the optimization
procedure.

The data collection for the calibration of these parameters coincides with the
assessment of the transport demand and of the network for the two scenarios of

 134

 135

Genoa and Barreiro. Details on the data collection for what regards Genoa and
Barreiro scenarios are provided in the chapters 7 and 8.

6.1.2.2. Calibration of the law of users’ arrivals
As stated above, the demand OD matrix provides the number of users having a
given origin and a given destination in a predefined time interval. Therefore, for
each user the origin and the destination are provided, and the time period in which
he arrives at the origin station.

The exact simulated time instant within the interval when the user arrives at
the origin station is assessed through a probability distribution. The most popular
distribution to determine random arrival times is the Poisson. However, in the
situation under study, there are some couples of stations or units which have a
much low demand, such as 3 – 4 users by hour, and therefore the important aspect
is to distribute their arrivals efficiently within the hour. With a uniform
distribution, all the instant of the hour have the same probability of being chosen.
Instead, using a Poisson distribution, the arrivals tend to be mostly concentrated
around the average. Therefore, if we have for example a demand of 3 users by hour
from the station 7 to the station 8, if we choose a uniform distribution we can hope
to have their arrival times distant about 15 – 25 minutes. If instead we choose a
Poisson distribution, we risk of having all users to arrive around the same moment.

6.1.2.3. Calibration of the battery management
The battery charging technique chosen is the opportunity charging. The term
opportunity charging refers to the charging of the batteries wherever and whenever
power is available. Simply put, rather than waiting for the battery to be completely
discharged, or for the duty cycle or work shift to be over, opportunity charging is
the “power as you go” opportunity to extend the capabilities of your equipment
during every stop in a station. Several run of the micro simulation have been
performed and the results have shown that, thanks to this technique, the vehicles
have always a charge level which is greater than the minimum and therefore they
can all be available to users when peaks of demand occur.

Fort what regards the minimum battery level for performing the trips, it
strictly depends on the case study, in particular on the demand and on the network.
Therefore, this is an input datum and not a parameter and it does not have to be
calibrated.

 6.1.2.4. Calibration of the models contained in the simulator: the battery charging
and discharging law and the model of interaction PICAV - pedestrians
The model of interaction vehicles – pedestrians will be described in detail in the
next section.

The battery charging and discharging laws have been already validated and
they belong to the literature in the field.

 136

6.1.3. Calibration of the model of interaction vehicles/pedestrians
The model for the interrelation vehicle velocity – pedestrian density has been
determined in an experimental way. Because the vehicle still has to be constructed
in the moment in which this model has been realized, it has been assumed that it
has the same performances as an electric scooter for mobility impaired people. It
has also been assumed that pedestrians respond in the same way to the electric
scooter and to the PICAV vehicle, as the space occupied by the two vehicles is
more or less the same.

6.1.3.1. Data collection
The scooter has been driven in a crowded environment, in particular in a section of
via San Luca and of via di Canneto in Genoa, two of the most crowded roads in the
historical city centre of Genoa. Via San Luca and via di Canneto are typical
pedestrian-only roads. Data collected in via San Luca have been used for the
calibration of the model, data collected in via di Canneto have been used for the
model’s validation. A screenshot of these videos is reported in fig. 6.2 for via San
Luca and 6.3 for Via Canneto.
 A series of video clips have been collected of the electric scooter travelling in a
straight line. In that part, via San Luca is wide just over 2.5m. The surface of the
street is also typical: cobbled stone. These videos were taken from a birds-eye point
of view and took in an area of 18.75m2, which was divided into 12 squares (6
squares long and 2 squares wide).

The videos have been performed: in the morning from 10:30 to 11:30, which
has resulted to be an off-peak period; in the afternoon from 15:30 to 17, which has
resulted to be a peak period, with much higher values of pedestrian density. The
videos allowed us to determine the average pedestrian density to consider in the
two periods, i.e. the morning period (off-peak) and the afternoon period (peak).
This distribution of pedestrian flows is due to the high number of commercial
activities presents along via San Luca, which becomes therefore very attractive in
the afternoon, after people have come back from work.

The analysis was performed by watching the video clips and each run as timed
from the moment the scooter entered the 18.75 m2 area of interest until the moment
it left. During this time the average pedestrian density was also recorded. Values of
density are expressed as the number of pedestrians per square metre. Rides were
completed in both upslope and downslope directions. Eight rides were filmed in the
morning, and 36 in the afternoon. Usually, morning rides refer to low values of
pedestrian density, while afternoon rides were characterised by high values of
pedestrian density. The rides are the following. The entrance film time and the exit
film time refer to the time reported in the video tape for when the scooter entered
and exited the area of interest. It is expressed in this way: mm:ss:d. where mm =
minutes ; ss = seconds ; d = decimal, i.e. 01:10:9 means: 01 minutes, 10.9 seconds.

Figure 6.2. The electric scooter in the pedestrian area of Via San Luca

Figure 6.3. The area filmed in via di Canneto

6.1.3.3. The density-velocity model calibration
The empirical data have been filtered to exclude three runs in the morning and
other three in the afternoon. These rides were different from all others as some
disturbances occurred. The remaining rides have been used to create the
relationship shown in figure 6.5, which shows the average pedestrian density on the
x-axis and scooter velocity on the y-axis. The recorded data are displayed in the
figure 6.4.

 137

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5

pedestrian density (ped/m2)

sc
oo

te
r v

el
oc

ity
 (m

/s
)

Fig. 6.4. The recorded data vehicle speed – pedestrian density in via San Luca.

Several relationships between speed and density were explored using the statistical
package R. In fact the linear model between scooter speed and pedestrian density
provides an R2 equal to 0.55, which is not satisfactory. The models explored were:

1. Linear model between: scooter speed on one side; and on the other side
pedestrian density plus an index being 1 if the scooter is going upslope and
0 if it is going downslope:

 v = a k + g , where g = 0 or 1. 6.1

2. Polynomial models between scooter speed and pedestrians density, where
v = speed, k = density. One such model could be e.g.:

 v = a k 4 + b k 3 + c k 2 + d k + e 6.2

 where a, b, c, d, e are some coefficients.

3. Logarithmic and exponential model: e.g.

 v = a exp(k) + b or v = a ln(k) + b 6.3

 138

4. Discontinuous linear model: e.g. v = a k + b where a and b have two
values, e.g. there is a threshold in the density, called k0; therefore:

a = a 0 and if k < k 0 and a = a1 if k ≥ k 0
b = b 0 and if k < k 0 and b = b1 if k ≥ k 0

Several values of k0 have been explored.

The number of available observations to calibrate the model was 44.

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5

pedestrian density (ped/m2)

sc
oo

te
r v

el
oc

ity
 (m

/s
)

Figure 6.5. Model of pedestrian density with reference to scooter velocity

At the end the linear model v = a k + b has been chosen, although it provides

a quite low adjusted R-squared value, equal to about 0.55, but it provides a high
level of significance for both the constant and the variable (i.e. the density). In fact,
when the further models were investigated it was found that the increase in
complexity of the model did not result in large improvements of the adjusted R-
square value. Increased values for the adjusted R2 were found (0.58 – 0.59), but the
increase in the R-squared value was so small when compared to the increase in
complexity, that it was decided to use the linear model. The final model is defined
by the following equation:

 v = 1.58 – 1.45 k 6.4.

where v is the velocity of the scooter (m/s) and k is the density of pedestrians
(number of pedestrians /m2).

This model should however be improved: data available were extremely
reduced, as they count only 44 drives, and it would have been necessary instead to
perform various campaigns of videos in different days.

Another problem of the model calibration is that the range of pedestrian
density in which the various experiments have been developed was quite little, and
moreover, because of the small number of observation, it has been impossible to

 139

take into account the desired speed, i.e. the speed that the scooter’s driver would
have kept in case of zero density.

This model is applicable to a PICAV vehicle driven by a person. Indeed the
scooter maximum speed, which is about 1.6 m/s, therefore equal to 5.76 km/h, is
highly less than 10 km/h, which is the average operative speed of the PICAV
vehicle. Instead, the PICAV vehicle automatically driven can reach at maximum a
speed of 4 km/h, as at a greater speed the sensors and laser scanners which allow it
to avoid collisions cannot work. Therefore, a new relationship has been considered
for the PICAV automatically driven:

v = 1.38 – 1.45 k if k > 1 pedestrian/m2 6.5
v = cost. = 1,11 if k ≤ 1 ped/m2.

The videos allowed us also to assess the values of pedestrian density for the Genoa
case study. Several videos have been taken in various roads of the city. The highest
pedestrian density among the videos collected has been registered in via San Luca,
and it is equal to: 0.15 ped/m2 in the off-peak period, from 8 am to 4 pm; and 0.35
ped/m2 in the peak period, from 4 pm to 8 pm.

6.1.4. Calibration of the optimization parameters
The parameters of the optimization algorithm, which have been introduced in
section 5.2, have been calibrated. The parameters to calibrate are:

 Those which regard the cooling schedule:
- the initial temperature T0,
- the law to assess the decrease of the temperature,
- the final temperature, i.e. the stopping condition.

 The transition rule.
All these parameters have been calibrated through several initial runs of the
algorithm. The purpose was to reach a good solution without spending too much
time; also because at each iteration the algorithm recalled the simulator code and
this made the overall optimization quite slow.

6.1.4.1. Calibration of the cooling schedule

The starting temperature T0 has been assessed from p0 according to the
following formula:

0
0

() ()
exp

h h
p

T
⎛ ⎞−

= −⎜ ⎟
⎝

ns s

⎠ 6.6.

The probability to accept the new solution p0 has been set equal to:
- 0.9 for the first management strategy, i.e. flexible users
- 0.5 for the other two strategies.

 140

Conversely, the decrease of the temperature is assessed according to the following
law: k1k TT ⋅=+ α where and are the temperatures in two consecutive
iterations of the algorithm. α has been taken equal to:

kT 1kT +

- 0.99 for the first management strategy,
- 0.9 for the other two strategies.

These values have been chosen in order to reach a good solution without spending
too much computational time. In the first case, the search space is very large and
therefore α must be closer to 1 to perform a better exploration. In the other two
cases, the search space is much smaller therefore it is not necessary to keep α so
large. Moreover, in the last two cases, the algorithm is run a few times to perform
the parallel optimization, described in section 5.2.3, therefore it is necessary to
keep quite low the computational time of the algorithm. These values have been
assessed after about 30 runs of the optimization code for each management
strategy.

The final temperature, has been assessed in this way:
- For the first management strategy, the algorithm is stopped when 5000

iterations are performed, or after 200 runs in which the algorithm never
chooses a new solution

- For the other two management strategies (automatic relocation and
capillarity), the algorithm is stopped after 500 iterations, or after 50 runs in
which the algorithm never chooses a new solution.

Taking a higher quantity of runs of the algorithm does not improve the quality
of the solution. These choices for the final temperature have been made after about
30 runs of the optimization algorithm for each management strategy.

The different cooling schedule in the management strategies is performed for
these reasons:

1. In the first management strategy, the search space has several dimension
(in the case study of Genoa it has 9 components); therefore it is first of all
important to achieve a good exploration of it. In the other two management
strategies, the search space has 1 or 2 dimensions and therefore it is not
necessary a too slow cooling to reach a good solution

2. In the other two management strategies, a parallel implementation is
performed; therefore, it is important to have a quick enough algorithm as it
must be run a few times before reaching the correct solution.

6.1.4.2. Calibration of the transition rule
Regarding the transition rule, the calibration has been decided not after algorithm’s
runs but the choices made are the best from the coherence point of view. The
chosen transition rule has been already explained in detail in chapter 5.

 141

 142

6.2. Validation of the model under study

6.2.1. Theoretical introduction on the validation problem
Each simulation model must be validated. It is therefore necessary, after its
development, to determine whether the proposed model is a valid representation of
the reality under study. Validation is not the debugging of the simulator, indeed
this is called verification, but the control if the conceptual model is an accurate
representation of the system under study. If a model is validated, it is also credible:
it is difficult to give credibility to a non validated model.

According to Law and Kelton (1987), in order to develop a valid and credible
model, the following issues should be addressed.

Develop a model with high face validity:
A model with high face validity on the surface seems reasonable to the people who
have knowledge about the system under study. In order to achieve this, the
following must be performed:

- conversation with system experts: a simulation model is not an abstraction
developed by an isolated analyst: the point of view of people who have
experience or data about the topic modelled must be taken into account;

- observations on the system: if a system similar to the one of interest exists,
then data should be obtained from this system to validate the model. Care
must be taken to ensure that the data taken from the “similar” system can
be valid also for the model under study;

- existing theory: it is necessary to refer to the data and to the knowledge
coming from the literature;

- relevant results from similar simulation models should be taken into
account;

- experience on how some components of the model work;
- be attentive to model the right problem: the most effective model for the

wrong problem is invalid;
- perform a structured walk-through of the conceptual model prior to

beginning of coding, to ensure that the model assumptions are correct,
complete and consistent. This is extremely important in order to avoid
making significant changes to the code.

Test the assumptions of the model empirically:
The assumptions made on the model should be tested quantitatively.

If a probability distribution for the input data is available, the adequacy of fit
can be assessed by the graphical plots. For example, if several sets of data have
been observed for the same random phenomenon, then the correctness of merging
these data can be determined by the Kruskal – Wallis test of homogeneity.

An useful tools to test the assumptions of the model is the sensitivity analysis.
This can be used to check whether the simulation output changes significantly if

 143

the value of an input parameter is changed, or if the level of detail of a subsystem is
changed. If the output is sensitive to some aspects of the model, then these aspects
should be modelled carefully.

Determine how representative the simulation output data are:
The most definitive test in establishing the model validity is to check if the output
data resemble the expected output data from the system. If a real system exists,
then a simulation model of the system is developed and its output data are
compared to those from the existing system itself. If the two sets of data are
comparable, then the model can be considered valid.

There is not any definitive approach for validating the model: if there were,
there might be no need for a simulation model.

In order to compare the data coming from the simulator with those from the
existing system, it is possible to use a Turing test. People knowledgeable of the
system are asked to examine one or more sets of data without knowing which sets
are which. If the experts can distinguish between model data and system data, then
their explanation can be used to improve the model.

If a similar system does not exist, then it is necessary again to have a revision
from experts to check the reasonableness of data.

6.2.2. Validation of the simulator
The systems to validate are the three car sharing systems exposed in the previous
sections, in particular:

1. Flexible users, redirected to the best station from both the user’s and the
system’s perspective, user trips have origin and destination at stations.

2. Automated vehicles, which relocate automatically among stations; user
trips have origin and destination at stations.

3. Automated vehicles, which automatically reach the user position; user trips
have origin and destination also along the roads.

Each simulation model must be validated. However, the car sharing system
proposed does not exist in reality because:

- no such car sharing systems have been settled yet in Genoa or in Barreiro;
- similar car sharing systems which implement the same management

strategy still have to be developed;
- as the technology of vehicle automation is still under development, no

systems involving automated vehicles exist.
Therefore, there are no data available to validate the simulator so far. However, as
the proposed system will be implemented, a validation of the model will be
possible.

 144

For what regards validation of a model without availability of data, there are
two main points of view.

The first point of view considers that a model is a “black box”: the model has
some precise inputs, some precise outputs, the internal structure of the model is not
important: also if the hypotheses that it makes are not correct, it works if its outputs
are always close to the expected values. For example, the models for the light. The
light is assumed to have two natures: corpuscular and undulatory. Clearly, the light
has none of these two natures, but these models, although based on wrong
assumptions, represent very well the behaviour of the light. Moreover, if a model is
composed of some sub-models and all of them work, it may be possible that a
model on the whole does not work.

The second point of view considers that: if the model cannot be entirely
validated, then let’s validate its components. If all the assumptions made on the
model are correct, if all the model’s components are validated, and if all
components are put together to constitute the model in the proper way, then the
model with high probability is valid.

I think that the second approach is better. It is true that some models based on
wrong assumptions may work, but these are just limited cases. On the other hand, it
is also quite rare that if all components of a model are valid, the overall model does
not work.

As a result, I have chosen to validate the two sub models contained in the

simulator, and to test for coherence also the hypotheses made. However, in order to
be more secure on the results, a conversation with experts in the field is foreseen.

The sub models contained in the simulator are the model of the battery and the
vehicle – pedestrian model.

The model of the battery has been already validated and applied several times.
For what concerns the relationship vehicle speed – pedestrian density implemented
in the simulator, it will be validated herewith because there are data available.

An analysis of coherence of the model’s assumptions has been performed and
will be reported in the next section.

6.2.3. Validation of the speed-density relationship.
The relationship vehicle’s speed – pedestrian density has been validated by taking
into account data collected in via di Canneto.

Several video tapes have been recorded. The area was equal to 49.95 m2, and
in particular it is 11.05 m long and 4.5 m wide. The road videoed is via di Canneto,
besides Piazza Banchi. The road is wider in this part than via San Luca, but the
pedestrian density is still high, though the density values registered in via San Luca
has not been reached.

The available rides of the scooter for validation are 14. Other two rides have
been deleted because of disturbances, one due to human factors of the driver and

the other to an external disturbance. Differently from Via San Luca, the videoed
area is flat.

Fig. 6.6. The pedestrian model’s validation. Data coming from the observations in via
Canneto are the blue squares. The expected values of velocity (from the model) for the
given value of density is represented by the yellow triangle. The red line represents the
model, the blue line is the average velocity recorded in via Canneto.

The couples density – speed have been graphed and they correspond to the
blue points in the fig. 6.6. The points expected from the model are the yellow ones.
The line of the model is the red line. The average of the recorded speed values is
the blue line, which is equal to 1.28 m/s.

From the validation, an R2 value has resulted equal to 0.47. which is slightly
less than the model R2, i.e. 0.55. The model has resulted validate, thought the R2 of
the model is low (0.55 is not much). As a result, the model must be improved;
however, human factors can strongly affect data and therefore a “perfect” model,
i.e. with an R2 about 0.8, is much difficult to achieve.

6.3. Analysis of coherence of the model’s hypothesis

An analysis of coherence of the hypotheses of the model has been performed. The
hypotheses taken into account are the following.

 145

 146

6.3.1. Relocation strategy

6.3.1.1. Necessity to relocate
In order to determine the necessity of some relocation schemes, some runs of the
algorithm have been performed without any relocation scheme implemented. The
average waiting time resulted equal to about 40 minutes, the 90th percentile about
75 minutes and the 95th about 135. Moreover, also several vehicles were redirected
because the destination station was full.

6.3.1.2. Flexibility of users
An analysis of coherence has been performed, whether the users can be considered
flexible. Ten people have been interviewed in the historical city centre of Genoa,
the project has been explained in detail, and it has been asked them whether they
accept to be redirected to another station according to the system’s needs. All
people answered that they accept to be redirected because this reduces the waiting
time: for them it is a greater disutility to wait longer than to be told the place in
which to return the vehicle. What came out from these interviews is the extreme
importance of clearly defining the users’ choice set. For example, with reference to
Genoa scenario, all people answered that for them Piazza Fontane Marose, Piazza
De Ferrari and Piazza Dante, i.e. stations 1, 2 and 3, were indifferent to return the
PICAV vehicle, but for Darsena not everyone agreed, and only people having
destination the west neighbourhood of Genoa (not also people having destination
the north of Genoa) accepted to be redirected also to Piazza Caricamento.

As a result, to consider users flexible is acceptable, but the users’ choice set
must be defined carefully. Moreover, not in all scenarios users can have a choice
set wide enough, and for example in Barreiro several stations were not
interchangeable.

6.3.1.3. Automation of vehicles
Actually the technology to allow vehicles on the road without being driven is still
under development. If the road is much congested, the laser scanners do not work
properly and therefore vehicles cannot move. To resolve this problem, it is
necessary to design some paths in which pedestrian flows are low and therefore
vehicles are able to move. However, the technology is improving a lot in this field
and it is possible in a near future to have automated vehicles moving on the roads.

The aspect which instead must be resolved regards the legal problems to
determine the responsibility in case of an accident with an automated vehicle.

6.3.1.4.. The opportunity charging technique
The opportunity charging technique has resulted to perform very well as it exploits
all the times in which a vehicle is idle at a station. In the two scenarios of Genoa
and Barreiro, the vehicles’ battery level is always above the minimum and
therefore, in correspondence of the peaks of demand, all vehicles are always

 147

available for user trips and relocation trips. However, the choice of the battery must
be very careful, as if batteries have a memory effect, the opportunity charging
technique may heavily affect the battery duration.

6.3.1.5. The network representation
The road network in transport sciences is usually represented through nodes and
links, with centroids playing the role of origin and destination of the demand. In
this case, we have no links and several centroids, each corresponding to a road unit
or to a station. The links are not represented in detail and instead only some
informations about the distances and the slopes between each pair of units or
stations (i.e. about the path) is provided. This representation is cost effective only if
a little information on the path is needed. If for example we want to add to each
path several informations it is necessary each time to take into account all the road
parts for each path and therefore this is not cost effective at all. On the other hand,
the modelization of the roads through nodes is necessary in order to assess
precisely where the PICAV vehicle is returned or parked. Therefore, some more
cost effective representations of the network, in order to cope with a high number
of origins and destinations on one hand, and with the possibility to add much
information to each path on the other, must be investigated.

6.3.1.6. The speed density relationship and its features
The relationship between vehicle speed and pedestrians density has been validated
quantitatively by considering some other data sets taken in via di San Luca in
Genoa city centre. The model has shown to represent quite well the reality. The
transferability of the model to other roads of the same area has been evaluated, and
indeed the same model works well also in Via di Canneto, another road of Genoa
centre.

The problem which regards the speed–density relationship is the impossibility
to consider the same pedestrian density for all the roads of the intervention area,
without making any difference among the roads. This is a strong assumption and
therefore the simulator must be modified in order to allow to define different
density values to be assessed in the various roads of the area.

Chapter 7. Genoa case study

Introduction.

The car sharing system has been planned and simulated for two different
scenarios: the historical city centre of Genoa, Italy, and the old part of
Barreiro, Portugal, that will be presented in the chapter 8. The application of
the proposed car sharing system to Genoa has been described in several
papers: Cepolina et al. (2010), Cepolina and Farina (2012a), Cepolina and
Farina (2011a), Cepolina and Farina (submitted to TRB).

Genoa is a city of 650,000 inhabitants over 240 squared km, of which
only 75 inhabited. It lies mainly on a 30 km long and narrow coastal plain
extending through few narrow valleys (along rivers of torrential character)
into the western steep slopes (reaching 1200 m high) of the Apennine
Mountains. The transport system is strongly influenced by: the complex
orography, the overcrowded and congested structure, the presence of an
heavy industrial area within the city limits and an extended historical centre
(considered to be the widest in Europe) that practically separates the town
into two parts. Access to traffic is practically impossible in the historical
centre, thereby strongly affecting the town transportation system. The traffic
is forced to flow through limited routes across densely populated areas. An
image of Genoa and of the PICAV intervention area is provided in figure 7.1.

Fig. 7.1. Genoa and the intervention area. The intervention area is circled in red.

 148

The historical city centre of Genoa has an area of about 1.13 km2 and it
is a pedestrian area. This area is quite small but it is much populated. Its
density is indeed about 11,000 inhabitants per square kilometre. Genoa
historical city centre is the inner part of the city centre itself. It is completely
restricted to private cars – apart for the residents – and also public transport
cannot operate because of the narrowness and the slope of the roads.

7.1. The scenario under study

7.1.1. Transport modes in the urban area of Genoa.

7.1.1.1. Conventional public transport
The public transport coverage is 785 km of bus lines (over 600 vehicles
circulating during daytime/working day), 56 km of urban railway (16 existing
stations and 4 in project), 3 km of metro (4.3 under construction), 3 km of
funiculars and 10 lifts. A new public transport on sea (particularly addressed
to tourists) links Pegli with the Ancient Harbour. An on-demand shuttle
service connects Park and Ride zones and the historical centre by electric
buses. A total of 150,000,000 passengers/year travel by buses and 4,300,000
passengers/year by trains. The cost of the integrated rail-bus ticket is
1.50€/90 minutes (Cepolina, 2009). A schema of the bus lines around the
historical city centre is reported in figure 7.2. Bus lines travel around the
historical city centre. The orange dashed line is the underground, whose path
is also around the historical city centre. In figure 7.3, a scheme of the path of
the underground is reported.

7.1.1.2 Car-sharing and bike-sharing systems.
Genoa is also provided with car-sharing and bike-sharing systems.

As it concerns the car-sharing system, the car needs to be booked in
advance and the user, at the booking time, has to specify where he is going to
pick up the car and when he is going to return it. The user has to return it in
the parking lot where he picked it up. The fleet is composed by 360 cars that
are kept in 49 terminals throughout the city. The parking lots are 94.
Subscribers pay a 180 € annual registration fee, then the cost of the car rental
is proportional to the travelled time and the travelled distance. The time cost
ranges from 2 to 3,4 €/1hour depending on the car typology; the distance cost
ranges from 0,24 to 0,78 €/Km depending on the car typology and the trip
length. The system is attractive to customers who make only occasional use
of a vehicle, as well as others who would like occasional access to a vehicle

 149

of a different type than they use day-to-day. At the end of 2007 the car
sharing users were 11300.

As it concerns the bike sharing system, 55 bicycles are kept at 6 self-
service terminals throughout the city. Individuals registered with the program
(subscribers pay an 35 € annual registration fee) identify themselves with
their membership card (or a smart card, via cell phone, etc) at any of the hubs
to check out a bicycle. The individual is responsible for the bike until it is
returned to another hub. The first half hour is free, each additional half-hour
costs € 0.50.
The localization of car sharing and bike sharing stations is shown in fig. 7.4.

Fig. 7.2. The bus lines around Genoa historical city centre. The underground,
reported with a dashed orange line, has been prolonged to the station “Brignole”
(Cepolina, 2009).

 150

Fig. 7.3. The underground. In red, the underground line currently in exercise. In
yellow, the underground line under construction. The stations under construction are
drawn in green (www.amtgenova.it).

7.1.1.3. Private transportation
Private transportation consisting of 392,000 cars - 32,000 small trucks -
67,000 motor bikes is characterized by one of the slowest average speed in
Italy (12.6 km/h). The main urban roads show fluxes above 30,000 vehicles
in the interval 7 a.m. - 8 p.m.

In Genoa people are encouraged to use public transport through the
implementation of traffic limitations and urban pricing and the creation of
"Park and Ride" (10 car parks / 1000 vehicles). As it concerns urban pricing,
it is based either on parking (Blue Area) and on cordon crossing (Road
Pricing). A wide part of the city, marked with light blue pattern (Blu Area) in
the following figure, is divided in small areas: residents in each zone pay an
annual fee and are allowed to park freely in their zone, while the other cars
are subject to an ordinary parking tariff. The red line (virtual cordon) in the
following figure delimits the part of the city subject to Road Pricing. The
entrances to this area are provided with electronic gates that allow to control
the cars that cross the cordon and enter the area. The access right is not only
for the categories of exempted, but is also simply acquired through the
payment of a sum. The payment is due every time a non-exempted car enters

 151

the restricted area (in the restricted hours). The localization of blue area, ZTL
and road pricing in Genoa are shown in fig. 7.5.

Fig. 7.4. Localization of car sharing and bike sharing systems (Cepolina, 2009).

Traffic limitations: ZTL (i.e. restricted traffic zone). As for the Road

Pricing, part of the city (marked with a green pattern in the following figure)
is delimitated by a virtual cordon. The entrances to this area are provided
with electronic gates that allow to control the cars that cross the cordon and
enter the area. Its access is defined by citizen’s categories. This strategy aims
simply at reducing motorized displacement within a certain area through
prohibition. We would like to spend some words also to a recent and
innovative schema related to the freight transport in the historical city centre,
that begun this year. It is called Mercurio and it is based on Mobility credits.
Mercurio is active in the historical city centre and it applys only to the freight
transport. Each commercial activity, office and handicraft shop in the
historical city centre receives a certain number of credits and can spend them
for the freight tranport making different transport choices; every trip has a
differnet cost in terms of “mobility credits” depending on the transport mode,

 152

origin and estination. The credits are transferred from the commercial
activity, office and handicraftsman to the freight traspoters. Once spent all the
assigned credits, the commercial activities, offices and handicraftsmen can
buy new credits from the public administration.

Fig. 7.5. Blue Area, ZTL and Road Pricing in Genoa (Cepolina, 2009).

 153

7.1.2. The historical city centre
The historical city centre of Genoa is the most inner part of the old city and it
is organized in several small roads of middle-aged origin, called “carrugi”.
The historical city centre is comprised between the hill of Carignano (in the
east) and the railway station “Genova Piazza Principe” (in the west), close to
the former “Palazzo del Principe” and residence of the admiral Andrea Doria.

The area is part of the municipality 1 Center – East.
Because of the extension of the original nucleus, i.e. 1.13 km2, it is

considered the most extended historical city centre in Europe. In reality, even
the historical city centre of Pisa is greater. However, the population density is
one of the highest in Europe. In the area live about 20000 inhabitants,
subdivided in about 5000 buildings.

7.1.2.1. Tourist attractions.
Genoa historical city centre has plenty of tourist attractions. There are various
museums, art galleries and exhibitions in town along with civic museums
(Comune di Genova museums). There are also two national museums and
many private ones. Within the historic centre, there is a unique system of
aristocratic residences obliged to host state visits that was included in
UNESCO’s World Heritage list. The area inscribed on UNESCO’s list
extends from Via Garibaldi and Via Balbi to a section of the historic centre
which runs through Via Lomellini, Piazza Fossatello and Via San Luca up to
Piazza Banchi, the merchant heart of the old town. Along this stretch are
located some of the most significant examples of the Palazzi dei Rolli built in
the Modern Age within the medieval fabric. In fig. 7.6, the main attractions in
Genoa historical city centre are shown.

7.1.2.2. Commercial activities.
Within the CIVIS project a census of commercial activities in the historical
city centre was performed. The commercial activities were classified in 7
categories:

• grocery store;
• bar and restaurant;
• pharmacy;
• clothing store;
• furniture store;
• craft shop / antiques;
• varied.
The location of the commercial activities is shown in figure 7.7.

 154

Fig. 7.6. Attractions in Genoa historical city centre.

 155

Fig. 7.7. Location of the commercial activities (Cepolina, 2009).

7.1.3. The representation of the scenario under study
We consider as simulation time period the PICAV service during a reference
working day: the service starts at 8 a.m. and ends at midnight.

The localizations of bus stops and underground stations have been
identified, as well as the localization of hotels, museum, offices, schools and
commercial activities (food shops, clothes shops, handicraft shops and other
shops). The roads where shops, museums and other attractions are mostly
present have been determined. The PICAV vehicle is designed to operate in
pedestrian-only environment. Some of roads in the study area have high
pedestrian flows and their dimension is extremely reduced. Not all the roads
can be travelled by a PICAV: they must be wider than 2 metres.

Each road has been divided into 50 m long sections and therefore 120
units resulted. The roads of the network and the localization of stations is
shown in the figure 7.8.

Stations are located on the border of the pedestrian area or inside it, in
the proximity of:

1. Interchange points:

 156

- public transport stops: bus and underground;
- parking spaces reserved to disable people;
- parking areas for private vehicles.

2. Attractors where activities that require stops longer than one hour take
place. The considered attractors are:
- hotels;
- museums / exhibitions;
- offices;
- universities / schools;
- recreational centers (cinema, theatre…).

The localization of the stations has been determined taking into account:

- the localization of intermodal interchange points,
- the availability of space.

Nine stations have been designed: 2 internal to the area and 7 on the area
border. In the third car sharing system we designed 7 stations, i.e. the 7 ones
on the border of the area, which are placed in correspondence of the main
intermodal interchange points.

The location of the stations is shown in figure 7.8:
- the station 1 is located near the underground stop “Darsena”;
- the station 2 is located in Piazza Fontane Marose, where several bus

lines stop;
- the station 3 is located in Piazza de Ferrari, which is one of the most

important interchange points with conventional public transport. An
underground station and several bus lines stop there;

- the station 4 is located in Piazza Dante, again in correspondence of
several bus stops;

- the station 5 is located in piazza Ravecca, besides an underground
station;

- the station 6 is located in piazza Caricamento, another important
interchange point with bus lines and with the underground;

- the station 7 is located in Corso Saffi, several bus lines stop there;
- the station 8 is located between via Garibaldi and via Cairoli, and it is

inside the pedestrian area, close to several attractors (see figure 7.8);
- the station 9 is in piazza dei Giustiniani, in a baricentric area to serve

both the southern part of the historical city centre and the San
Lorenzo area.

A possible location for stations 1 and 8 is shown in figure 7.9.

 157

Fig. 7.8. Map of the intervention area. In red, the roads in which PICAV system can
operate are underlined. The blue squares are the PICAV stations. Stations 8 and 9 do
not exist in the third management strategies. The blue line circles the intervention
area.

 158

Figure 7.9. Possible sites for the stations 1 and 8.

7.2. The transport demand

7.2.1. The total transport demand

We need to know the transport demand in the historical city centre and we
would like to characterize the trips carried out in the historical city centre.

As it concerns the transport demand, we’d like to know the overall
number of trips by foot (the only transport mean available in the area given
the width of the streets) carried out in a given time interval in the historical
city centre. From the actual transport demand knowledge we will generate the
PICAV transport demand (i.e. the overall number of PICAV users in the
historical city centre of Genoa) in an hypothetical scenario where the means
of transport available will be two: by foot or by PICAV. The PICAV
transport demand is therefore minor or equal to the actual transport demand.
Maybe an additional demand for the PICAV transport system will rise from
people that actually cannot visit by foot the historical city centre because of
mobility impairments or other impedances to covering long distances (such
as high shopping loads).

It is reasonable to assume that there is equilibrium in the area, meaning
that the number of people entering the historical city centre doesn’t differ too
much from the number of people exiting the area.

It is possible to arrive on the historical city centre border zone by public
transport, by individual transport, by taxi and by car/bike sharing.

Given the urban pricing schema, the car/bike-sharing rent fees and the
taxi fees, the means of transport mainly used for reaching the historical city
centre are bus, metro and lifts as it concerns the public transport and

 159

motorbike as it concerns the individual transport. However, the usage of
private transport is reduced for reaching the historical city centre.

This doesn’t apply for disabled people as they have special permissions
and can park their private cars on the historical city centre border for free;
therefore the mean of transport mainly used by them is the private car.

We consider only people arriving on the area border by public transport.
This seems reasonable given the limited use of private modes in the inner city
centre of Genoa. We assume that 1% of the people that currently enter the
historical city centre by foot will use the PICAV transport system.

The main source of information about the arrivals at the historical city
centre border is a study by AMT (www.amt.genova.it/). We extrapolated the
data from AMT, related to the time slice between the 6 and 9 a.m, to the
whole day. We will describe in detail the temporal distribution of the PICAV
demand afterwards in this section.

7.2.2. Interviews. The share of the transport demand in trip typologies
In chapter 3, it was stated that four different trip typologies are considered in
the proposed transport system:

A. type A trip: trip chain having both origin and destination external to
the historical city centre;

B. type B trip: single trip having origin external to the historical city
centre and destination internal, or vice versa;

D. type D trip: single trip having both origin and destination internal to
the historical city centre;

E. type E trip: trip chain having both origin and destination internal to
the historical city centre.

In Genoa scenario only type A and type B trips take place. In order to assess
the share of the transport demand a campaign of interviews has been
performed.

The estimation of the transport demand by interview is possible by two
techniques: revealed preferences techniques, traditionally utilized, which are
relative to the actual users travel behaviour in a real context, and stated
preferences techniques based on statements made by interviewees about their
preferences in different choice contexts, real, hypothetical or experimental.
Since we would like to know the actual transport demand, we choose the
revealed preferences technique.

Since one of the main transport means used for reaching the historical
city centre is public transport and we know (from data given by AMT) the
number of passengers that get on at the bus stops close to the border of the
historical city centre, a first set of interviews has been carried out, in order to
determine:

 160

- the percentage of demand directed to the historical city centre
- the trips’ characteristics in terms of activity travel pattern.
Two days of interviews have been performed in order to study the

characteristics of the trips performed in the intervention area. The first day of
interviews was carried out on the 3rd of December between 4 and 5:30 p.m.;
the second one was performed on the 18th of March between 11:30 and 13:30
and between 16:30 and 18:15. We interviewed the people while they were
waiting for the bus or the train at five bus stops and three underground
stations close to the historical city center border. The designed questionnaire
is reported in fig. 7.10.

Figure 7.10. An example of the questionnaire proposed (Cepolina et al., 2010).

Firstly it was asked to each person if he/she was exiting the historical
city center, then in case of affirmative answer to this question, a description
of the activity–travel patterns carried out in the historical city center was
required. The activity–travel pattern description concerns the sequence of
activities carried out, the time spent for each activity, the typology of the
activity and the path between two successive activities.

The number of the interviewed people is equal to 365. The results show
that about 45.5% (166/365) of the interviewed people were exiting the
historical city center and among them the 39% (65/166) work or study in the
historical city center.

 161

Among the 166 people coming from the historical city center, we have:
• 55% (91/166) have performed a trip without intermediate stops;
• 36% (60/166) have performed a linear trip chain;
• 9% (15/166) have performed a circular trip chain.
The summary of the collected data is shown in fig. 7.11.

Figure 7.11. Summary of the data collected in the questionnaires (Cepolina et al.,
2010)

From the results of the interviews, resulted that, among the total number of
passengers who arrive on the border of the historical city center, only the
45% actually enters into the intervention area.
From the collected data, we obtained the following information about the
typologies of trips performed in the historical city centre:
- 45% are trip chains; the average number of activities in the activity travel

pattern is 1.7; the average duration of the activity travel pattern is 40
minutes;

- 55% of potential PICAV users perform direct trip; the average duration of
the trip is 2.5 minutes;

- From the collected data, the duration of a multitask trip resulted to be
about 5 times the related duration of the direct trip.

7.2.3. Temporal distribution of the transport demand
In order to determine the temporal distribution of the users during the
simulation time, several videos have been recorded on the study area. In
particular, some videos have been recorded of pedestrian densities in

 162

different time periods, in via San Luca, via Canneto il Curto, via Balbi and
via Luccoli, four of the most important roads in the intervention area. The
results have shown that the afternoon demand is about 1.45 times the
morning demand, and that the afternoon period begins at about 4 p.m.
According with the data collected in the field, we registered an average
pedestrian density of 0.15 ped/m2 in the off-peak period and 0.35 ped/m2 in
the peak period in Via San Luca. For the current simulation we assumed
these densities are the same in all the roads in the area. The most crowded
road in the area is Via San Luca and it is in favour of security to assume all
the densities equal to the one in via San Luca.

According to the results of the video, to data taken from AMT website
and to direct observations, two periods of demand have been assumed:
- an off-peak period, which ranges from 8 a.m. to 4 p.m;
- a peak period, from 4 p.m. to 8 p.m.
- from 8 p.m. to midnight there is no PICAV transport demand.
In fact we hypothesize for the PICAV transport system a leisure usage: visit
to museums, commercial activities, etc.

The overall demand in the reference day is 1644 users.

7.2.4. Spatial distribution of the transport demand
The share of the demand having origin and destination on the border of the
intervention area among stations has been determined from AMT Genoa
website. The number and the frequency of public transport lines which stop
in proximity of each station has been recorded. According to this, a weighting
factor has been determined for each station, and the total demand has been
multiplied by this factor for what regards each station. In this way the number
of users entering the historical city centre from a given station in one hour
has been determined. The percentages of arrivals at the stations of the area
are shown in the figure 7.12.

In the first relocation strategy, users are flexible and have a choice set. In
the other two, it has been assumed that the number of users exiting the
historical city centre from a given station in one hour is the same as the
number of users entering the historical city centre from the same station.

The demand having origin or destination inside the intervention area, has
been assessed according to the attractivity of the stations.

 163

Fig. 7.12. Percentages of arrivals at the parking lots from outside the intervention
area; redistribution of the demand exiting from the intervention area to the stations on
the border (Bonfanti, 2010).

The share of the demand origin or destination inside the intervention area

among stations, has been assessed according to the attractivity of the stations.
The percentages of demand distributed to the stations is shown in figure 7.13.
Each station is characterized by an attractivity: it is a function of the number
and typology of attractors within the station’s influence area: e.g. shops,
museums, offices, etc. The influence area is the zone for which the station is
convenient, i.e. the pedestrian distance from the station to the attractor is
acceptable. We assumed it of circular shape and with a radius of 300 m, as
the maximum acceptable walking distance is about 400m (Smith and
Butcher, 2008). The transport demand having origin and destination inside
the intervention area has been assessed according to the station’s attractivity.
The probability that a PICAV user, who performs a single trip, ends it in a
given station is proportional to the station’s attractivity.

 164

The attractivity of each station has been assessed as a function of the
number and typology of the activities within its influence area. A weighting
factor has been associated to each activity, according to the typology of the
activity: a different factor has been associated for example to a grocery shop
and to a clothes shop. The location of the attractors and the stations’
influence areas are shown in figure 7.14.

Fig. 7.13. The parking lots attractivity: redistribution of the demand exiting from the
border to inside the intervention area (Bonfanti, 2010).

In reality for what regards the third management strategy:
- the demand having origin or destination on the border of the intervention

area, has origin and destination at the stations;
- the demand having origin or destination inside the intervention area, has

origin or destination along the roads.

 165

As stated in chapter 3, the streets inside the pedestrian area have been
divided into sections and at the center of gravity of each section a node,
called unit, is located. If the user trips have origin and destination only at
stations, the units are the places where a PICAV user can stop for a short time
(less than one hour) to make some shopping or activity.

Fig. 7.14. The stations’ influence area and the location of all the attractors. (Bonfanti,
2010).

If the vehicles can be returned also along the roads of the intervention
area, which is the third management strategy exposed in chapter 3, then the
user trips can have origin and destination also at the units. We assign an
attractiveness to each unit, which is a function of the number and the
typology of the attractors presents in the road section. We considered the
following attractors:
- grocery stores;
- bars and restaurants;
- pharmacies;
- clothing stores;
- furniture stores;
- craft shops / antiques;
- varied.

 166

The location of these attractors is shown in figure 7.15.

Fig. 7.15. The position of units in the intervention area and the location of attractors
for short term stops (Bonfanti, 2010).

7.2.5. The assessment of the choice set of flexible users
The metropolitan area of Genoa has been divided in three macro areas: north,
east and west. For each zone has been determined:

• the percentage of residents;
• the number of lines of public transport which serve each macro area.

The first information is used to assign a macro area to each user.
The second information is used to assign a choice set to each macro area.

This choice set is composed by all the stops where a public transport line,
suitable to reach the macro area, stop.

The choice set for each macro area is determined according to the path
that public transport lines follow. For example, the choice set of users having
origin or destination in the western part of Genoa has been determined taking
into account the path of the lines which connect the city centre with this part
of the city.

In particular, the choice set for the western part of Genoa involves the
following stations: 1 (Darsena), 2 (Fontane Marose), 3 (De Ferrari), 4 (Dante)

 167

and 6 (Caricamento). The choice set for the northern part of Genoa involves
the stations: 1, 2, 3, 4, 5 (Sant’Agostino), 6, 7 (Corso Saffi). The choice set
for the eastern part of Genoa involves the stations: 1, 2, 3, 4.

An image of the intervention area and the related choice sets is shown in
figure 7.16

Figure 7.16. The users’ choice sets. The red circles refer to the stations belonging to
the west choice set; the grey circles to the east choice set; the blue circles to the north
choice set (Bonfanti, 2010).

7.2.6. Demand OD matrixes
The transport demand, determined as explained the previous sections, is
expressed in the form of OD matrixes. An OD matrix reports the number of
trips having a given origin and a given destination, which occur in a time
period. In our study, OD matrixes refer to an hour. Each OD matrix has
reported: in rows the origin stations or units, in columns the destination
stations or units. For example, the number written in row 1 and column 3, is
the number of users who have as origin the station 1, and destination the
station 3.

Several demand OD matrixes have been developed, in particular:
- an OD matrix for each trip typology, i.e. direct trip, and trip chain;
- an OD matrix for each period of the day;
- an OD matrix for users’ choice sets, i.e. which has in rows the origin

station, and in columns the choice sets.

 168

In table 7.1, the OD matrixes for the second management strategy (i.e. origin
and destination at stations, automated vehicles), are reported.

7.2.7. Arrival time instant
The OD matrix provides for each user the origin, the destination, the choice
set if the user is flexible and the period of arrival. The OD matrixes of this
thesis are on hourly basis, i.e. they provide the trips having a given origin and
destination that take place in one hour. The exact time instant within the hour
when an user arrives on the border of the historical city centre is determined
from a random extraction, assuming a uniform distribution of arrivals in the
hour.

Table 7.1. Sample OD matrixes. They refer to the second management strategy (i.e.
origin and destination at stations, automated vehicles) and off-peak period.

 169

Fig. 7.17. The intervention area and the parking lot positions (above). Longitudinal
profile of the path between parking lots 4 and 6 (below)

 170

7.3. The network

The network is composed of:
- the stations;
- the units, which represent the above mentioned 50 metres – long road

sections;
- the characteristics of the path between each couple of stations and units.
Between each pair of stations or units only one path has been taken into
consideration. It refers to the most used path, i.e. the path where the leisure
attractions, e.g. shops, are mostly concentrated.

The characteristics of the paths have been assessed from Google Maps
and Google Earth. The distance between each couple of points and/or stations
has been determined in Google Maps according to the figure 7.17.

The slope of each path has been determined through Google Earth by
creating the longitudinal profile for each piece of road. More in detail, the
path has been selected in Google Maps and imported into Google Earth
where the elevation profile of the path can be viewed. As shown in figure
7.17, Google Earth writes besides the profile the average upslope and
downslope of the selected path. Moreover, there is a vertical bar which can be
moved along the elevation profile and Google Earth provides the punctual
slope registered in the position of the bar.

All these data have been collected and stored. A summary of these data
is provided in table 7.2.

The simulator receives in input: for each couple of points or stations, the
distance and the average slope. Because it makes no difference, for the
battery discharging process, to consider the slope of each upslope or flat part
of the path and the average upslope, the average upslope has been considered.
Moreover, the capability of the battery to recharge in the downslope pieces of
the path has been neglected, and this choice is in favour of security, therefore
all downslope parts of the path have been assumed as flat.

Table 7.2: Lengths and gradients of some routes between stations

Origin Dest.
Total

distance
[m]

Up
[m]

Down
[m]

Flat
[m]

Up slope
[%]

Down
slope
[%]

1 2 1060.00 805.60 247.50 0.00 3.87 -2.88
1 3 976.00 717.80 258.00 0.00 3.97 -3.67
1 4 1200.00 911.00 323.00 0.00 3.99 -2.94

 171

1 5 1400.00 682.00 719.00 0.00 4.18 -3.51
1 6 604.00 319.90 285.80 0.00 5.27 -7.17
1 7 1100.00 589.50 492.90 0.00 3.89 -5.03
1 8 489.00 408.70 77.40 0.00 6.63 -3.90
1 9 1060.00 762.30 290.90 0.00 3.71 -2.67
2 3 316.00 28.96 287.00 0.00 9.17 -2.06
2 4 846.00 611.90 233.71 0.00 2.61 -3.89
2 5 1180.00 660.70 517.00 0.00 2.52 -3.33
2 6 732.00 264.30 465.75 0.00 2.82 -4.99
2 7 1100.00 144.80 451.00 308.00 15.07 -5.75
2 8 489.00 310.50 177.76 0.00 7.35 -9.09
2 9 747.00 341.80 405.03 0.00 4.68 -4.47
3 4 414.00 255.51 158.30 0.00 6.25 -4.44
3 5 516.00 264.50 250.10 0.00 13.67 -13.4
3 6 569.00 146.90 417.10 0.00 2.97 -4.76
3 7 829.00 437.29 386.00 0.00 4.28 -6.39
3 8 563.00 399.10 163.60 0.00 6.89 -9.68
3 9 326.00 174.01 152.30 0.00 4.79 -6.28
4 5 481.00 309.06 171.80 0.00 5.68 -11.4
4 6 848.00 219.80 476.00 149.00 2.22 -6.81
4 7 1080.00 558.76 518.00 0.00 2.87 -8.28
4 8 866.00 435.80 429.96 0.00 3.48 -4.37
4 9 379.00 248.50 130.17 0.00 3.98 -11.6
5 6 834.00 231.90 603.20 0.00 4.10 -5.30
5 7 804.00 269.20 531.94 0.00 5.22 -7.11
5 8 1050.00 440.50 606.50 0.00 4.29 -3.72
5 9 372.00 210.60 160.26 0.00 6.52 -9.55

 172

7.4. Calibration of the micro simulator’s parameters,
determination of the remaining inputs

As stated in the chapter 6, the parameters of the simulator to calibrate are the
ones related to the battery model and to the model of interaction vehicles –
pedestrians, plus the low critical and low buffer threshold values.

The remaining simulator inputs are: the fleet dimension and the minimum
battery charge level.

In this section, the determination of the fleet dimension, of the minimum
battery charge level and the calibration of the low critical and buffer
thresholds are reported.

The minimum charge level has been assumed equal to 10% for the first
two management strategies and 12% for the third. This value has resulted
from analyzing the most consuming trip and trip chains performed by users.
Several runs of the micro simulator have been performed in order to check
the correctness of data. In the third management strategy, the value is greater
as vehicles cannot be recharged when they are idle along the roads and
therefore they need to reach the nearest station to recharge.

As it concerns the fleet dimension of the three car sharing systems, it has
been obtained through optimization. The best resulting fleet dimensions are:

• 91 PICAV vehicles for the first car sharing system,
• 81 PICAV vehicles for the second car sharing system,
• 77 PICAV vehicles for the third car sharing system.
In the second and third management strategies, the fleet has been

assumed equally distributed among the parking lots at the beginning of the
time period, as the different demand in the various parking lots is
compensated through the automatic relocation. In the first management
scheme, the fleet instead has been assumed distributed among the stations, at
the beginning of the simulation period, according to the optimization results,
in the way shown in table 7.3.

Table 7.3. Number of vehicles in each parking lot at the beginning of the simulated
day, in the first car sharing system.

parking lot n° 1 2 3 4 5 6 7 8 9
n° veh available 10 11 12 12 13 9 8 8 8

The low critical and low buffer thresholds have been determined again

through optimization. The resulting values are equal to respectively 1 and 5
vehicles for each parking lot in the second management strategy. In the third

 173

management strategy they have been taken equal to 2 and 5. The chosen
relocation technique is the shortest time technique.

The high critical and high buffer thresholds depend on the stations’
capacity and are equal to 15 for what regards the high critical thresholds and
13 for what regards the high buffer thresholds. The stations’ capacity has
been taken equal to 16 for all stations.

7.5. Output data

7.5.1. Performances of the proposed transport system
The performances of the proposed car sharing system for the case study of
Genoa have been assessed through simulation. The outputs of the simulation
will be shown herewith.

Fig. 7.18. Number of PICAVs in each state against time in the first management
strategy (flexible users).

In figure 7.18- 7.19 and 7.20, the number of PICAVs in each state is plotted
against time; the states taken into account are: available, occupied by users,
required but not available because in charge, relocating, redirected because
there is not free space in the destination parking lot (FPT occurrences).
Relocation is considered also when the vehicle moves towards the user’s
position in the third relocation scheme. Redirection is when the vehicle
reaches an unit with a battery level inferior to the minimum, therefore it
cannot be occupied and moves the closest station to recharge. Time is

 174

expressed in hours, starting from 8 a.m. to midnight, when the last user
returns the PICAV unit. Figure 7.18 is related to the first management
strategy, figure 7.19 relates to the second management strategy, figure 7.20 is
referred to the third management strategy.

Fig. 7.19. Number of PICAVs in each state against time in the second management
strategy (automated vehicles).

Fig. 7.20. Number of PICAVs in each state against time in the third management
strategy (vehicles available also along the roads).

 175

These diagrams show that the electric power provided to the PICAV vehicles
and the selected charging technique (opportunity charging) are suitable for
the case of study: all the vehicles do not reach a battery level below the
minimum charge level. Therefore it results not necessary to stop the vehicles
for charging purposes, but it is enough charging them while they are idle at
the stations. Moreover these diagrams show that there are not redirected
vehicles since the capacities of the stations are never reached. Therefore
relocation strategies based on ZVT occurrences, guarantee that FPT
occurrences do not take place.

Fig. 7.21. Waiting times distribution in the first management strategy

If we consider available to users the vehicles occupied by users or

available at parking lots, in the first relocation scheme 100% of the fleet is
available to users in all the simulated period, since relocations are performed
by users. In the second management strategy, in the peak phase, about the
97% of the fleet results available to users and only about the 3% is therefore
relocating. In the third relocation scheme, always in the peak phase, about the
96% of the fleet results available to users and about the 4% is therefore
relocating. This means that the simulated relocation strategies work quite
well for the case of study, since the number of vehicles subtracted to users for
relocations is low.

 176

Fig. 7.22. Waiting times distribution in the second management strategy

Fig. 7.23. Waiting times distribution in the third management strategy

The distribution of users waiting times is shown in figures 7.21, 7.22 and
7.23. It should be noted that the diagrams refer to only the users that have
been in queue.

 177

7.6. Conclusions

From the critical analysis of the distribution of the users waiting times, it
results that the smallest average waiting time is obtained from the first
management strategy which provides a LOS A, and the highest average
waiting time is obtained in the third one which provides a LOS C. But it is
also worth to underline that the fleet required in the first case is equal to 91,
while in the other two strategies it is respectively 81 and 77.

Regarding the greater average waiting time in the third management
strategy, with respect to the second one, the reason may be the following: in
the second management scheme a relocation is required when the number of
vehicles in a given station at a given time instant goes below the station’s low
critical threshold. When this condition occurs, the station has a shortage of
vehicles and, aiming at avoiding a possible queue in the next future, a request
for a vehicle is generated. In the third management strategy instead a request
for a vehicle is made if a user is already in queue at an unit. In the second
management scheme therefore the relocation strategy aims to prevent the
queues and therefore to avoid users waiting at stations, whilst in the third
management scheme the relocation aims to reduce as much as possible
waiting times in the units, that however could not be avoided because the
vehicle takes some time to reach the user’s position. We have to take also
into account the fact that in the third management scheme the user has to
walk less than in the other proposed strategies. In fact the vehicle reaches the
user in the unit where he is, and the user does not have to reach by foot the
station, as it happens instead in the first and second management schemes.

As it concerns the first management strategies, the presented results are
strictly linked to the fact that the transport demand is balanced, i.e. in the
simulation day the total number of users that enter and exit the pedestrian
area is the same. If instead the demand is unbalanced, the consequences are
severe on the users waiting times, especially in the two inner stations, which
do not belong to any choice set. In these stations in fact several vehicles will
gather, while in the stations on the area border there will be several users in
queue and relocations will be impossible. Moreover, in the inner stations the
capacity may be reached. The second and third relocation schemes instead
work well also in case of unbalanced PICAV transport demand.

The optimized values of the objective function are displayed in table 7.4.
All the other observations on the objective function are described in detail in
the chapter 9, “sensitivity analysis”.

 178

As stated in the chapter 5, the cost of each minute of waiting time has
been taken equal to 0.1 €/minute. Moreover, the relocation cost has been
taken equal to 0.01 €/minute.

Table 7.4. The optimized value for the objective function, and its components, in the
three management strategies

Management strategy 1st 2nd 3rd
Objective function 436.57 477.84 485.61
Cost of waiting 41.10 90.42 117.37
Cost of relocation 0.00 33.12 30.41
Cost of the fleet 395.47 354.30 337.83

Other researchers studied the performance of shared vehicle systems. In

particular Barth and Todd (1999) developed a model and applied it to a resort
community in Southern California. Their model shows that the shared vehicle
system is most sensitive to the vehicle-to-trip ratio. Barth and Todd
considered that for the majority of the cases they analysed, the best number
of vehicles to place in the system ranges from 3 vehicles per 100 trips to 6
vehicles per 100 trips. We have 1644 trips per day. The optimum fleet
dimension for the three strategies analyzed are:

1. 91 vehicles, which provides a vehicle-to-trip ratio value equal to
0.055

2. 81 vehicles, which provides a vehicle-to-trip ratio equal to 0.049
3. 77 vehicles, which provides a vehicle-to-trip ratio equal to 0.047

Therefore the outcomes of the proposed transport system keep in the range
described by Barth and Todd. This is obviously not enough to assess the
validity of the proposed system: in fact a coherence analysis has been
performed in the chapter 6.
 A last aspect to underline is the following:
- in the second management strategy the low critical threshold is equal to 1

and the low buffer threshold is equal to 5;
- in the third management strategy the low critical threshold is equal to 2

and the low buffer threshold is equal to 5.
The different value of the low critical threshold registered in the second and
third management strategy is not casual. Indeed, in the third management
strategy the system can be accessed also along the roads. When the user
arrives at an unit, he requires a vehicle, and the nearest PICAV reaches the
user’s position. The nearest PICAV can be available both along the road or at
a station.

 179

 180

 At first we assumed that a station could be able to send a vehicle only if
its number of available vehicles is above the low buffer threshold. But
because of that, in the great majority of cases units, and not stations, provided
the vehicles to the users. This lead to longer trips, as the vehicle in the
majority of cases wasn’t provided by a closer station but by a far unit.
Moreover, in several cases users had to wait longer for the vehicle, because
no stations and no units could deliver him a vehicle.
 As a result, we assumed that stations could provide vehicles to users
waiting along the roads also if their number of available vehicles is still
above the low critical threshold, but below the low buffer threshold. This
explains why in the third management strategy the low critical threshold is
greater than in the second one. In fact, in the second management strategy
vehicles can be accessed only at stations and the low critical threshold is used
to determine only when and where a relocation is necessary.

 181

Chapter 8. Barreiro case study.

8.1. Introduction. The study case.

The second scenario analyzed in the present thesis is Barreiro city centre. Barreiro
is a suburb of Lisbon, Portugal. This village is on the edge of a peninsula, on the
left side of the Tago River. Lisbon is on the right side, in front of Barreiro. The
intervention area, i.e. the old part of Barreiro, is about 1 square kilometer. The area
is almost flat. Roads form a grid and vehicles are allowed to circulate in the area.
The road pavement is quite irregular and therefore the speed is limited. Several
parking spaces exist in the most peripheral parts of the intervention area and the
parking here is for free. However, in the most inner part of the intervention area,
due to narrow roads and lack of spaces, the parking is restricted.

The main ways to access Barreiro centre are: by car, by boat, by train, by bus.
Regarding the access by car, there are three main roads connecting Barreiro centre
with the outer area. Along the river, a wide road, called Avenida Bento Gonçalves,
connects Barreiro centre with Lavradio (see fig. 8.1) and with the industrial area
(north-east direction). In perpendicular, two roads, respectively rua Miguel
Bombarda and rua Miguel Pais, connect the Barreiro centre with the mainland
(south-east direction). In figure 8.1 the Barreiro surrounding areas are shown. In
figure 8.2, the PICAV intervention area is shown.

By boat, Barreiro can be accessed from the fluvial terminal. The fluvial
terminal is located in south-west side of the old town and a high frequency service
by boat connects Barreiro with Lisbon. In the morning, people living in Barreiro
take the boat to reach Lisbon, and in the evening return home after the working day
again by boat.

It is possible to reach Lisbon from Barreiro also by car, but it takes several
kilometres, along the XXV April bridge, which connects Barreiro to the city centre
of Lisbon, and the bridge Vasco de Gama, which connects Barreiro to the northern
part of Lisbon.

By train, Barreiro is accessible from the main station of Barreiro. The railway
line passes on the border of the old part of Barreiro and two are the railway stops of
interest: Barreiro Centre, referred by Ferreira (2009) as “Barreiro A”, and the one
placed at the fluvial terminal, as shown in figure 8.2. Trips by train connect
Barreiro to the villages in the mainland, on the other side of Lisbon. Commuters
who work in Lisbon and live in the villages of the Barreiro area take the train, get
off at Barreiro fluvial terminal and take the boat to Lisbon. The demand to/from
Barreiro centre by train is much low, as it only consists on the Lisbon’s suburbs.

Several bus lines cross the old part of Barreiro, and several stops are also in
the intervention area. The roads travelled by buses within Barreiro centre are:
Avenida Bento Gonçalves, Rua Miguel Bombarda, Rua Miguel Pais, Avenida
Alfredo da Silva. See figure 8.3 and 8.5.

The old part of Barreiro is in part a residential area (zones 1, 3 and 4 in figure
8.3), where most of the population (about 18000 residents) is aged and in part a
commercial area (partially zone 2 and mainly zone 5 in figure 8.3). Zone 5 is
characterised by a big new commercial centre recently built, called Forum
Barreiro.

In the Barreiro old town, PICAV vehicles are expected to travel on sidewalks
(see figure 8.2 a-b).

Fig. 8.1. Map of Barreiro municipality: the intervention area is circled through a red line.

 182

Fig. 8.2 a-b. Images of sidewalks in Barreiro.

 183

8.2. Data collection.

8.2.1. The transport demand
The transport demand in the PICAV intervention area in Barreiro has been assessed
with reference to the data provided by Transportes Collectivos do Barreiro (TCB)
(Ferreira, 2009). The trips that interest the area are: trips that have the intervention
area as origin or destination and trips internal to the area, that have origin and
destination inside the area. There are not trips that cross the area and have origin
and destination outside it.

Fig. 8.3. The PICAV intervention area.

 184

Trips to/from Barreiro happen mainly:

- by boat, to/from the fluvial terminal. The trips by boat connect Barreiro
with Lisbon.

- by train: to/from the main Barreiro station. Trips by train connect Barreiro
to the villages in the mainland, on the other side of Lisbon.

- by car.
Internal trips take place mainly by bus and by foot.
In the figure 8.4 the displacements for study/work reasons in the morning peak
hour from Barreiro to the neighbour municipalities are reported.

Fig. 8.4. Trips from Barreiro municipality in the morning peak for work/study reasons
(Ferreira, 2009).

In the trips to Lisbon, about 79% of trips are performed by public transport (TC),
whereas only 19% of trips take place by individual transport. Among the trips
carried out through public transport, about 60% take place by boat and 34% by
coach (along the highway and XXV April Bridge); the trips which take place by
train instead are only 1% (Ferreira, 2009).

 185

The trips from Barreiro to the other municipalities, are performed about 50%
through public and 50% through individual transport. The modes of public
transport mainly used are bus and train. The railway station is indicated in figure
8.2 “Railway station” besides the station 6 of PICAV. The other station besides the
fluvial terminal is used only to commute from train to boat in trips to/from Lisbon,
and not to visit Barreiro old town. During the morning rush hour, trips are mainly
performed by train from Setubal and from the other municipalities to Barreiro
fluvial station, and then the trips from Barreiro fluvial station to Lisbon are
performed by boat.

8.2.1.1. Road transport

5

3

 6

 1

 2

4

Fig. 8.5. Position of car parking places in the PICAV intervention area (Ferreira, 2009)

The road connections to/from Barreiro usually take place through: Rua Miguel
Bombarda, Rua Miguel Paìs and Avenida Bento Gonçalves. From an analysis
carried out by TCB (the public transport company of Barreiro), it has been assumed
a traffic flow of: 262 vehicles in the morning period in Rua Miguel Paìs, 1300

 186

vehicles in Rua Miguel Bombarda and 1214 in Avenida Bento Gonçalves. In the
afternoon, traffic flows are equal to 140 vehicles per direction in Rua Paìs,
1490 vehicles per direction in Rua Bombarda and 1126 vehicles in Av. Bento
Gonçalves.
There are two wide spaces for car parking on the border of the intervention
area, displayed in figure 8.5:

1. near the the palace of Coimbra (square 1),
2. all along Rua Miguel Pais, on the side of the river (square 2),

There are also other parking spaces:
3. besides the Forum Barreiro, but it is dedicated to it (square 3),
4. besides the fluvial station,
5. along Avenida Bento Gonçalves (square 5), and
6. in the roads besides Av. da Republica (square 6).

8.2.1.2. Bus transport

Fig. 8.6. Position of bus stops within the intervention area (Ferreira, 2009).

 187

The localization of bus stops within the PICAV area has been assessed (Ferreira,
2009). The position of bus stops in the intervention area is reported in the figure
8.6; the number of passengers entering and exiting in each bus stop during the peak

morning period is shown in table 8.1. The afternoon demand has been assumed
equal to the opposite of the morning demand, i.e., passengers getting on the bus in
the morning are the same who get off the bus in the afternoon, and vice versa. The
data reported in the table 8.1 refer to the morning peak period, i.e. from 7 am to
9 am.

Table 8.1: Number of passengers entering and exiting in each bus stop during the peak
morning period (Ferreira, 2009).

However, as shown in figure 8.5, the bus lines cross Barreiro intervention area,
therefore it is unlikely that PICAV users may reach the intervention area by bus.
Indeed travelers would prefer to stay on board for a couple of stops more rather
than taking the PICAV vehicle.

8.2.1.3. Rail transport
In Barreiro there are two stations, i.e. Barreiro A, which serves the centre of
Barreiro and the PICAV intervention area, and the fluvial terminal/rail–road
interface, in which passengers get off the train and commute to river boat transport
to reach Lisbon. The number of passengers to/from Barreiro Centre (i.e. getting
off/on the train at Barreiro A) is equal to 50 passengers/day. There are no
passengers who get on the train in Barreiro A and get off the train at fluvial
terminal, as it is much easier to get to the fluvial terminal by different means of
transport. All trips by train departing from Barreiro have as destination the

 188

municipalities behind Barreiro, as Setùbal, Moita, etc. The number of trips bay
train during the day are reported in the fig. 8.7:

Fig. 8.7. Number of passengers on the trains arriving to or departing from Barreiro A
station. In green the trips by train from Barreiro (A and fluvial terminal) to Setubal, and in
yellow the trips by train from Setùbal to the two stations of Barreiro (Ferreira, 2009). In the
x axis are the hours of the day, in the y axis is the number of trips.

8.2.1.4. Fluvial transport

Fig. 8.8. Number of passengers entering and exiting at Barreiro fluvial station in each hour
of the day. All these trips have Lisbon as origin or destination (Ferreira, 2009). The bars in
the left refer to entrances to the fluvial station, the bars on the right refer to the exits.

Regarding the fluvial terminal, 2700 passengers/day have been registered, in
each direction, during a working day, having origin or destination in Barreiro
 189

 190

centre. It must be pointed out that, for trips performed by river and by train, but
specially for trips by river, the area called “Barreiro centre”, does not refer only
to the PICAV intervention area but to a much grrater area of Barreiro
municipality. In particular, the trips having the PICAV intervention area as
origin or destination are equal to the 30% of trips having origin or destination at
Barreiro centre. The number of passengers entering and exiting at Barreiro
fluvial station are shown in figure 8.8.

8.2.1.5. The assessment of the demand OD matrix
After several discussions with the public transport company in Barreiro (TCB), the
following assumption have been done for assessing the PICAV transport demand:

- 10% of commuters arriving in Barreiro centre by car will be PICAV users;
- 20% of commuters arriving in Barreiro centre by boat and by train will be

PICAV users;
- 20% of trips internal to the intervention area take place by PICAV. In this

case users are mainly elderly and disabled people;
- 0% of commuters arriving in Barreiro centre by bus will be PICAV users.
Bus users have been considered not likely to use the PICAV vehicle, as there

are several stops inside the intervention area and therefore they reach their final
destination directly by bus.

The overall number of daily trips by PICAV, under the previous hypothesis,
results 1296.

The simulation time period is a working day and two phases have been
identified: a morning period from 7 a.m. to 1 p.m. and an afternoon period from 1
p.m. to 7 p.m. The demand has been assumed constant in each period. The overall
number of trips is the same in the two periods but the OD matrix in the second
period is the transpose matrix of the first period.

We identified 8 PICAV stations in the area: each one refers to a centroid. The
exact localization of stations takes into account the available space and stations are
placed as close as possible to interchange points. Their localization is shown in
figure 3.

We identified 5 internal centroids and 3 external ones. Their positions are
shown in figure 8.3. The three external centroids correspond to the fluvial terminal
(centroid 6), the Barreiro A railway station (centroid 7) and a big car park space
(centroid 8).

In particular, the station 6 is mainly an interchange point with the railway
station; the demand to/from station 6 is indeed very little. The station 7 is an
interchange point with the fluvial terminal. The stations 3 and 4 are interchange

 191

points with private car, in particular with the users coming from Rua Miguel
Bombarda and Rua Miguel Paìs. In particular, station 3 is in proximity of a wide
car park space, station 4 has in its neighbourhood several roads with much free
parking space. They are also in a barycentric position in the area that they serve, in
order to be easily reached by all houses presents in the area. Station 8 is also placed
in an area close to some parking spaces, available in Avenida Bento Gonçalves,
and it only plays the role of interchange point with private car.

Therefore: stations 3 and 4 play the role of both interchange points and internal
stations. Station 5 serves the Forum Barreiro, the biggest commercial area in the
village. Stations 6 to 8 only play the role of interchange points. Stations 1 and 2 are
only internal stations, and are placed in the barycentric position of each zone.
Station 2 in particular is placed in the old Barreiro central square.

The demand OD matrix for the morning period is displayed in the table 8.2.

Table 8.2. Demand OD matrix for the morning period

 1 2 3 4 5 6 7 8
1 0 1 7 3 3 0 5 1
2 0 0 0 0 0 0 0 0
3 7 1 0 3 3 0 5 1
4 2 0 3 0 1 0 2 1
5 2 0 3 1 0 0 2 1
6 0 0 0 0 0 0 0 0
7 5 0 5 2 2 0 0 0
8 1 0 1 0 0 0 0 0

8.2.2. The network
In the simulation, pedestrian density has been assumed the greatest one registered
in Barreiro footpaths which is equal to 0.2 pedestrians per square meter.

The station capacity has been assumed equal to 15 PICAV for each station.
The simulator receives in input the distances among the various stations through
which the network has been modelled. There is only one path between each couple
of stations, which is, as in Genoa case study, the most used path, along which the
greatest number of attractors (i.e. bars, restaurants, shops, etc.) are concentrated.
Distances have been assessed again through Google Maps. The slopes of the paths
has not been taken into account as Barreiro is almost flat.

 192

8.2.3. Calculation of the other micro simulator’s inputs
In this section, the determination of the fleet dimension, of the minimum

battery charge level and the calibration of the low critical and buffer thresholds are
reported.

The first management strategy in which users are flexible has not been taken
into account as the hypothesis on the users choice set is not consistent in Barreiro:
nearly all stations cannot be interchangeable for users. Indeed, users who are going
to take the boat cannot be redirected to any other station different from the fluvial
terminal, and the same can be stated for users who have to return to their car or
who have to take the train. The only exception may be for some close stations, such
as station 4 and station 5, or station 2 and station 5, but for the user it is however a
disutility because it increases the user’s walking distance. Another exception may
regard users who have parked the car in some street between the stations 3 and 4,
and the distance between the user’s car and the two stations is almost the same: but
this is a very specific case.

Because also of the tiny dimension of the network, and the concentration of the
points of interest, it has been considered not worthwhile to take into account the
third management strategy, in which PICAVs are available also along the roads.

For the reasons exposed above, the only relocation strategy taken into account
for Barreiro is the second one, i.e. automatic relocation among stations.

At the beginning of the simulation period, the fleet has been assumed equally
distributed among stations.

The low critical and low buffer thresholds, as well as the fleet dimension, have
been determined through the optimization procedure.

The optimum fleet dimension resulted equal to 80 vehicles, i.e. 10 vehicles per
station. And this is consistent to the results by Barth and Todd (1999), for whom
the vehicle-to-trip ratio is usually comprised between about 0.03 and 0.06 vehicles
per trip: being the trips 1296 per day, the vehicle to trip ratio results equal to 0.061.

The optimized low critical thresholds are the same for all stations and equal to
2, the optimized low buffer thresholds are equal to 4. Again, the opportunity
charging technique has been chosen, and the minimum level of battery charge is
equal to 6%.

The high critical threshold is equal to 14 vehicles for each station and the high
buffer threshold is equal to 12 vehicles for each station. These values guarantee to
keep high the number of supporting stations, and on the other hand to avoid that a
station in a given instant accepts a vehicle and in the following instant reaches the
FPT situation.

8.3. Output of the simulator and conclusions

The distribution of users’ waiting times has been assessed through micro
simulation. The average waiting time results equal to 0.20 minutes. The 95th
percentile of users waiting times results equal to 1.84 minutes, the 90th percentile
equal to 0.04 minutes and the 50th percentile equal to 0 minutes. This provides a
level of service C.

As it concerns the efficiency of the optimised transport system, in figure 8.7 the
number of PICAVs is each state (occupied by users, available, in charge and
relocating) is plotted against time. The time is expressed in minutes starting from
midnight, therefore a time of 480 refers to 8a.m, a time of 960 refers to 4p.m. and
a time of 1200 refers to 8p.m.

Figure 8.10 shows the distribution of user waiting times: the total number of
users is 1296 and 1082 users have not been in queue. The optimised threshold
values result efficient since: on one side, relocations are possible in fact waiting
times are low (as shown in figure 8.9); on the other hand the number of relocations
is kept low as it results in figure 8.9.

Fig. 8.9. Number of vehicles in each state during the simulation period.

The relocation cost is equal to 21.36 €/day, the cost of user waiting times is

equal to 33.544 €/day and the objective function results equal to 405.08 €/day. It
results evident that the cost of users is much lower that the system cost, this is due
to the fact that the cost of waiting times decrease strongly with the fleet dimension.

 193

The cost of each minute of waiting is equal to 0.10 €/minute (Cherchi et al.,);
the cost of each minute of relocation is equal to 0.01 €/minute. This choice for the
relocation cost has been made, in the same way as in the Genoa case study, in order
to make the users’ cost and the relocation’s cost comparable in the range of the
objective function close to the optimum.

Conversely, the relocation cost increases slightly with the fleet dimension.
However it should be noted that the function values do not have any meaning since
the function does not take into account flat costs, like for instance the ticket prices.

The results of the simulation clearly show the effectiveness of the automatic
relocation, because, with low staff costs, it allows users a high level of satisfaction.

Fig. 8.10. Distribution of user’s waiting times.

 194

 195

Chapter 9. Sensitivity analysis

Introduction

With reference to the two scenarios described above, i.e. Genoa and Barreiro, a
sensitivity analysis has been performed for understanding to which extent each
input affects the outputs in the micro simulator. This sensitivity analysis has been
performed before writing the optimization code, in order to better understand
which variables are more important and what is worth to optimize. The sensitivity
analysis has been performed also after the optimization in order to control the
coherence of the optimization’s outputs.

From the sensitivity analysis it has resulted that it is not convenient to take
different values for the thresholds in the various stations, as the influence on the
cost function is of the same scale as the stochastic effects. For example, if instead
of taking in the Genoa scenario all the critical thresholds equal to 1, but for
example the threshold in the station 3, which in Genoa has the highest demand, is
taken equal to 2, this does not affect the cost function noticeably. Moreover, it has
resulted that no relationship exists between low critical thresholds and low buffer
thresholds: they all must be optimized separately. For example, taking as a rule that
all low buffer thresholds are greater of 2 than the low critical thresholds, this is
incorrect as the cost function results greater. Also taking an initial different number
of vehicles in the various stations is incorrect in the two management strategies
involving automatic relocation: the relocation procedure vanishes the benefit from
a better initial disposition of vehicles.

For the first management strategy, i.e. the one which involves flexible users,
several values for the fleet dimension and several distributions of vehicles among
stations have been taken. The model is much sensitive on both these parameters.

Another sensitivity analysis has been performed through modifying the
transport demand. The results have shown that, for what regards the first
management strategy, the system is heavily sensitive on the demand
unbalancement, and that if the demand is strongly unbalanced, the system goes in
crisis despite the relocation. For what regards the other two strategies, the
relocation is able to compensate the demand unbalancement and therefore the
users’ waiting times increase as well as the relocations, but the system does not go
into crisis.

9.1. Sensitivity analysis for what regards fleet dimension and
thresholds

A sensitivity analysis has been performed separately for each management strategy
under study, and it regards both Genoa and Barreiro cases of study.

 196

9.1.1. No relocation
Firstly, some runs of the simulator have been performed in order to assess the
necessity of relocation. Without any relocation scheme, with a fleet of 81 veh/h, the
distribution of user waiting times results:
- average waiting time = 19.88 minutes;
- 50th percentile of users’ waiting times = 81.52 minutes;
- 90th percentile of users’ waiting times = 53.18 minutes;
- 95th percentile of users’ waiting times = 9.05 minutes.
The resulting Level of Service is F, therefore the need for relocation.

9.1.2. First management strategy: flexible users. Genoa case study.
For what regards the first management strategy, several values of the fleet
dimension have been taken, in order to have a first idea, point by point, of the trend
of the objective function as a function of the size of the fleet. All these values are
reported in the table 9.1.
- in the first case, i.e. for fleet dimension equal to 73 vehicles, its distribution

among the stations is equal to: [8, 9, 10, 10, 11, 7, 6, 6, 6];
- in the second case, the number of vehicles in each station is increased by one:

[9,10,11,11,12,8,7,7,7];
- and so on.

In the figure 9.1, the values of the objective function with reference to the
fleet dimension are shown, for the first management strategy. The optimum fleet
dimension is equal to 91. The two components of the objective function are
explicited: the cost of the system, expressed in terms of the fleet cost, and the cost
of the users. As the fleet dimension increases, the cost of the fleet increases, and
the cost of waiting decreases. However, while the fleet’s cost increases always of
the same quantity, the cost of waiting does not improve significantly as the fleet
dimension goes above its optimum value.

9.1.3. Second management strategy: automated vehicles. Genoa case study
The values of objective function have been calculated, by varying the fleet
dimension and the low critical and low buffer thresholds. The results of this
sensitivity analysis are shown in table 9.2. As stated in the chapter 5, the cost of
each minute of waiting time has been taken equal to 0.1 €/minute. Moreover, the
relocation cost has been taken equal to 0.01 €/minute.

Low critical and low buffer thresholds values have been taken the same for all
stations. This is performed because no sensible improvement is achieved to the cost
function under a high increase in the problem’s complexity.

If different thresholds values are taken in the various stations, i.e. for example
in the 1st station the low critical threshold is equal to 1 and in the 2nd station it is
equal to 3, this does not result in a significant modification on the objective
function. The variations of the objective function are in fact of the same greatness
order as stochastic effects. Moreover, if different buffer threshold values are taken

for the various stations, and their average is for example 4, then the distribution of
user waiting times is not different from the case of all buffer threshold values equal
to 4 in all stations. In the figure 9.2, the variation of the objective function against
the fleet dimension is shown, for what regards the second management strategy.
The objective function has been calculated by considering the optimized low
critical and low buffer thresholds. In this case, the cost of the system involves also
the cost of relocations.

Values of the objective function vs fleet composition
1st relocation scheme

0.00

100.00

200.00

300.00

400.00

500.00

600.00

73 82 91 100 109
fleet dimension

va
lu

es
 o

f t
he

 o
bj

ec
tiv

e
fu

nc
tio

n

objective function
cost of waiting
cost of the fleet

Fig. 9.1. Values of the objective function with reference to the fleet dimension, for the first
management strategy

Table 9.1. Values of the objective function and its components versus fleet dimension. The
optimum values are reported in bold.

fleet objective function cost of waiting cost of the fleet
73 559.89 238.53 321.36
82 497.80 139.39 358.41
91 436.57 41.10 395.47
100 460.70 28.18 432.52
109 483.02 13.45 469.57

As shown in the figure, the cost function shows a minimum for a fleet
dimension equal to 81. The fleet’s cost increases linearly, as in the first
management strategy, and the cost of waiting decreases in hyperbolical manner.

 197

 198

Table 9.2. Values of the objective function, and of its components, with reference to the
fleet dimension, to low critical and low buffer thresholds values. Thresholds have been
taken equal for all stations. The optimum values are reported in bold. Genoa case study.

fleet low critical
threshold

low buffer
threshold

objective
function

cost of
waiting

cost of
relocation

cost of the
fleet

54 1 5 948.62 688.63 16.85 243.14
63 1 5 579.24 277.53 21.00 280.19
72 1 5 502.58 150.60 34.73 317.24
81 1 5 477.84 90.42 33.12 354.30
90 1 5 478.95 56.99 30.61 391.35
99 1 5 483.63 31.96 23.27 428.40
108 1 5 493.52 26.47 16.60 465.46
81 1 2 590.84 142.61 93.94 354.30
81 1 3 521.41 111.01 56.10 354.30
81 1 4 486.63 94.87 37.46 354.30
81 1 5 477.84 90.42 33.12 354.30
81 1 6 482.45 100.38 27.78 354.30
81 1 7 487.58 110.44 22.84 354.30
81 1 8 497.35 123.39 19.66 354.30
81 1 9 515.19 143.91 16.98 354.30
81 1 10 543.94 174.44 15.20 354.30
81 1 11 580.54 213.69 12.56 354.30
81 1 5 477.84 90.42 33.12 354.30
81 2 5 485.40 87.75 43.36 354.30
81 3 5 531.12 113.75 63.08 354.30

The relocation cost firstly increases and then decreases with the increase of

the fleet: indeed for a fleet of 54 vehicles it is equal to 16.85 €/day, for a fleet of 72
vehicles it is equal to 34.73 € per day, while for a fleet of 99 vehicles it is equal to
23.27 € per day. It means that the total relocation time has increased from 1685 to
3473 minutes and then decreased from 3473 minutes to 2327 minutes, as the cost
of relocation has been assumed equal to 0.01 €/minute. This result is expected. In
fact, as the fleet is lower, the number of required relocations increases but the
number of relocations which can actually take place is lower. As the fleet
dimension increases above the optimum, the number of required relocations
decreases. For what regards the user cost, similarly to the first relocation scheme, it
decreases relevantly until the optimum fleet dimension is reached. For further
increases in the fleet, the cost of the users decreases slightly.

Values of the objective function vs fleet composition
2nd relocation scheme

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

54 63 72 81 90 99 108

fleet dimension

va
lu

es
 o

f t
he

 o
bj

ec
tiv

e
fu

nc
tio

n

objective function
cost of waiting
cost of relocation
cost of the fleet

Fig. 9.2. Values of the objective function with reference to the fleet dimension, for the
second management strategy. Thresholds are kept fixed and equal to their optimized values

Values of the objective function vs low critical thresholds
2nd relocation scheme

0

100

200

300

400

500

600

700

800

1 2 3
low critical thresholds

va
lu

es
 o

f t
he

 o
bj

ec
tiv

e
fu

nc
tio

n

objective function
cost of waiting
cost of relocation
cost of the fleet

Fig. 9.3. Values of the objective function with reference to the low critical thresholds, for
the second management strategy. The fleet dimension is fixed and equal to the optimized
value. Low buffer thresholds are also kept fixed and equal to their optimized values. Genoa
case study.

 199

Values of the objective function vs low buffer thresholds
2nd relocation scheme

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

2 3 4 5 6 7 8 9 10 11
low buffer thresholds

va
lu

es
 o

f t
he

 o
bj

ec
tiv

e
fu

nc
tio

n

objective function
cost of waiting
cost of relocation
cost of the fleet

Fig. 9.4. Values of the objective function with reference to the low buffer thresholds, for the
second management strategy. The fleet dimension is fixed and equal to the optimized value.
Low critical thresholds are also kept fixed and equal to their optimized values. Genoa case
study.

In the figures 9.3-9.4, the values of the objective function with reference to the
low critical (figure 9.3) and low buffer (figure 9.4) thresholds’ values are
displayed. Again, the objective function has been calculated considering: the
optimized fleet dimension, and the optimum buffer thresholds values for figure 9.3
and the optimum fleet dimension and optimum critical thresholds values for figure
9.4. From the sensitivity analysis, it resulted that both the users’ costs and the
relocation costs increase as the low critical threshold increases. Indeed, as low
critical thresholds grow, the number of required relocations increases and vehicles
are available to users for a shorter amount of time. This results in the fact that
fewer required relocations can be performed and therefore the users’ waiting times
increase.

Moreover, as shown clearly by figures 9.3 and 9.4, the objective function is
slightly sensitive to thresholds, and as thresholds vary it changes much less than as
the fleet varies.

For what regards the low buffer thresholds, the cost of waiting is minimum for
the optimum threshold value; the cost of the fleet keeps constant as the fleet has not
been changed; the cost of relocation decreases. This can be explained because:
- If the low buffer thresholds keep beyond the optimum, the number of required

relocations which take place increase, and this explains the greater relocation

 200

cost. However, it may often occur that a station provides a vehicle to another
station in defect, and a few minutes after is itself in defect. This also increases
the number of required relocations. Moreover, because the zero vehicle time
situation occurs more often, also the users’ waiting times increase.

- If the low buffer threshold is higher than the optimum value, the number of
required relocations decrease, therefore the lower cost of relocations. Moreover,
it very rarely occurs that a station provides a vehicle to another station in defect,
and a few minutes after is itself in defect: and this also keeps the number of
required relocations lower. However, also the number of required relocations
which cannot take place increases, as the number of supporting stations
decreases. And this last fact increases the user waiting times.

9.1.4. Second management strategy: automated vehicles. Barreiro case study
For what regards Barreiro, only the second management strategy is considered, i.e.
automated vehicles, system accessed only at stations. A similar sensitivity analysis
as in Genoa case study has been performed and it has shown similar results. The
values obtained through variation of the fleet dimension are shown in table 9.3 and
figure 9.5. The thresholds values are taken constant and equal to their optimum
value. As the fleet dimension increases, the relocation cost also decreases, as
expected: much less relocation procedures are needed to avoid the zero vehicle
time occurrences.

Fig. 9.5. Values of the objective function with reference to the fleet dimension. The low
critical and low buffer thresholds are taken constant and equal to their optimized values.
Barreiro case study.
 201

Values of the objective function vs low critical thresholds

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.5 1 1.5 2 2.5 3 3.5

low critical thresholds

objective function

users' cost

relocation cost

fleet's cost

Fig. 9.6. Values of the objective function against low critical thresholds. Fleet dimension
and the low buffer thresholds are kept constant. Barreiro case study.

Values of the objective function vs low buffer thresholds

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

3 4 5 6

low buffer thresholds

objective function
users' cost
relocation cost
fleet's cost

Fig. 9.7. Values of the objective function against low buffer thresholds. Fleet dimension
and the low critical thresholds are kept constant. Barreiro case study.

 202

 203

As stated several times in this thesis, the cost function is much sensitive to the
fleet dimension: here, if the fleet goes below 72 vehicles, the cost function peaks.

For what regards the variation of the objective function with thresholds, it
shows the same behaviour as in Genoa case study, and the same things could be
stated. The model works properly because, applied in different scenarios, it must
show the same behaviors. The only difference is the value of the optimum low
critical threshold, i.e. 2 in Barreiro and 1 in Genoa, and this does not constitute a
problem because threshold values are parameters which depend on the specific
case study.

Table 9.3. Sensitivity analysis on the fleet dimension. The optimum values are in bold.
Barreiro case study.

percentile

fle
et

lo
w

 c
rit

ic
al

 th
re

sh
ol

d

lo
w

 b
uf

fe
r t

hr
es

ho
ld

av
er

ag
e

w
ai

tin
g

tim
e

95
th

90
th

50

th

LO
S

to
ta

l r
el

oc
at

io
n

tim
e

us
er

s'
co

st

re
lo

ca
tio

n
co

st

fle
et

's
co

st

co
st

 fu
nc

tio
n

64 2 4 1.62 10.1 7.1 0 F 4295.16 266.69 42.95 284.31 593.95

72 2 4 0.50 4.9 2.4 0 C 3681.14 83.38 36.81 317.24 437.43

80 2 4 0.20 1.8 0.1 0 A/B 2135.86 33.54 21.36 350.18 405.08

88 2 4 0.13 0.6 0 0 A 1580.44 21.21 15.80 383.11 420.13

96 2 4 0.09 0.1 0 0 A 1346.98 14.73 13.47 416.05 444.25

9.1.5. Third management strategy: capillarity. Genoa case study.
In table 9.5 and figure 9.8, the values of the objective function with reference to the
fleet dimension is shown, for the third management strategy. As in the other two
strategies, the objective function shows to be sensitive to the fleet dimension, and
the cost of waiting, of the fleet and of relocations shows the same ongoing as in the
other two strategies.

In particular, for fleet dimension smaller than a certain quantity, the user cost
peaks, and this is similar to the other two relocation procedures described above.

In figures 9.9 and 9.10, with the fleet dimension kept constant and equal to the
optimized value, the objective function and its components are displayed with
reference to the low critical and low buffer thresholds values.
The objective function shows the same behavior as in the second strategy, also for
what regards all its components (i.e. cost of the fleet, of the relocation, of the
users).

Table 9.4. Sensitivity analysis on the low critical and low buffer thresholds. Barreiro case
study.

percentile

fle
et

lo
w

 c
rit

ic
. t

hr
es

ho
ld

lo
w

 b
uf

fe
r t

hr
es

ho
ld

av
er

ag
e

w
ai

t t
im

e

95
th

90
th

50
th

LO
S

n°
 re

lo
ca

tio
ns

to
ta

l r
el

oc
at

io
n

tim
e

us
er

s'
co

st

re
lo

ca
tio

n
co

st

fle
et

's
co

st

ob
je

ct
iv

e
fu

nc
tio

n

72 1 2 0.95 5 2 0 C 220 2000 123.12 20.00 317.25 460.37
72 1 3 0.94 5 2 0 C 170 1500 121.82 15.00 317.25 454.07
72 1 4 0.87 4 2 0 C 120 1300 112.75 13.00 317.25 443.00
72 1 5 0.97 4 2 0 C 110 1500 125.71 15.00 317.25 457.96
72 1 6 1.21 5 2 0 C 100 1400 156.82 14.00 317.25 488.07
72 2 3 0.66 3 1 0 B 430 4800 85.54 48.00 317.25 450.79
72 2 4 0.55 3 1 0 B 300 3681 83.38 36.81 317.24 437.43
72 2 5 0.75 3 1 0 B 230 3500 97.20 35.00 317.25 449.45
72 2 6 1 5 2 0 C 150 2000 129.60 20.00 317.25 466.85
72 3 4 0.95 4 3 0 C 580 7800 123.12 78.00 317.25 518.37
72 3 5 0.86 4 2 0 C 360 5100 111.46 51.00 317.25 479.71
72 3 6 1.03 5 3 0 C 230 3500 133.49 35.00 317.25 485.74
72 3 7 1.55 7 4 0 D 130 2000 200.88 20.00 317.25 538.13

Values of the objective function vs fleet composition
3rd relocation scheme

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

56 63 70 77 84 91 98
fleet dimension

va
lu

es
 o

f t
he

 o
bj

ec
tiv

e
fu

nc
tio

n

objective function
cost of waiting
cost of relocation
cost of the fleet

Figure 9.8. Values of the objective function with reference to the fleet dimension, for the
third management strategy. Thresholds are kept fixed and equal to their optimized values.
Genoa case study.

 204

Table 9.5. Values of the objective function with reference to the fleet dimension for the
third management strategy. The optimum values are reported in bold. Genoa case study.

fleet low critical
threshold

low buffer
threshold

objective
function

cost of
waiting

cost of
relocation

cost of
the fleet

56 2 5 1129.38 859.4 18.61 251.37
63 2 5 528.87 213.94 24.74 280.19
70 2 5 486.63 154.59 23.03 309.01
77 2 5 475.61 117.37 20.41 337.83
84 2 5 488.15 101.36 20.14 366.65
77 1 5 560.19 117.19 105.17 337.83
77 2 5 475.61 117.37 20.41 337.83
77 3 5 487.91 123.16 26.92 337.83
77 4 5 537.04 156.11 43.10 337.83
77 2 3 499.20 137.18 24.19 337.83
77 2 4 485.16 125.53 21.80 337.83
77 2 5 475.97 117.37 20.77 337.83
77 2 6 488.70 131.48 19.39 337.83
77 2 7 504.19 147.70 18.66 337.83
77 2 8 523.04 167.07 18.14 337.83

Values of the objective function vs low critical thresholds
3rd relocation scheme

0.00

100.00

200.00

300.00

400.00

500.00

600.00

1 2 3 4
low critical thresholds

va
lu

es
 o

f t
he

 o
bj

ec
tiv

e
fu

nc
tio

n

objective function
cost of waiting
cost of relocation
cost of the fleet

Figure 9.9. Values of the objective function with reference to the low critical thresholds, for
the third management strategy. The fleet dimension is fixed and equal to the optimized
value. Low buffer thresholds are also kept fixed and equal to their optimized values. Genoa
case study.

 205

Values of the objective function vs low buffer thresholds
3rd relocation scheme

0.00

100.00

200.00

300.00

400.00

500.00

600.00

1 2 3 4 5 6
low buffer thresholds

va
lu

es
 o

f t
he

 o
bj

ec
tiv

e
fu

nc
tio

n

objective function
cost of waiting
cost of relocation
cost of the fleet

Figure 9.10. Values of the objective function with reference to the low buffer thresholds,
for the third management strategy. The fleet dimension is fixed and equal to the optimized
value. Low critical thresholds are also kept fixed and equal to their optimized values.
Genoa case study.

9.2. Sensitivity analysis on the transport demand

9.2.1. Increase of all the transport demand by 30%.

9.2.1.1. Genoa case study
The total transport demand has been increased by 30% and the number of vehicles
at each station by 2. The fleet has been increases as well in order to better
distinguish the effects of the unbalancement of demand and the effects of a general
increase of the transport demand. The system has shown to cope perfectly with this
increase and to provide higher waiting times but not too high.
For the first system, the objective function provides a value of 634.07, with a total
wait cost of 201.55 and a fleet cost of 432.52.
For the second system, the objective function assumes a value of 1121.71, with a
wait cost of 710.45, a fleet cost of 391.35 and a relocation cost of 19.91.
For the third system, the objective function assumes a value of 1143.10, with a wait
cost of 764.12, a fleet cost of 366.65 and a relocation cost of 12.33.
The LOS has changed from

 206

 207

9.2.1.2. Barreiro case study
Also in Barreiro, the demand has been increased by 30%, the fleet has been
increased by 2 vehicles for each station, i.e. it became of 80 vehicles. The objective
function assumes a value of 806.98, with a wait cost of 399.78 (average wait time
of 2.22 minutes), a fleet cost of 374.19 € and a relocation cost of 57.02 €. As
expected, Barreiro scenario showed similar results as Genoa case study.

9.2.2. Unbalancement of the transport demand.

9.2.2.1. Genoa case study.
The same demand, but the 8th row of all the demand OD matrixes has been
increased by 30%, while the 8th column decreased by 30%.

For the first management strategy, the results are the following:
- 95th percentile of users’ waiting times = 26.38
- 90th percentile = 21.38
- 50th percentile = 3.0
- total_wait_cost = 1361.59
- objective function = 46539.7804 with the contribution of the penalty function;
- objective function = 1757.06 without the contribution of the penalty function

For the other two management strategies in the Genoa case study:

Management strategy objective
function

cost of
waiting

cost of
relocation

cost of
the fleet

Second management strategy 497.74 97.80 45.64 354.30
Third management strategy 496.18 121.10 37.25 337.83

With reference to the values previously obtained:
- for the second management strategy, the total users’ waiting time has increased

from 904 to 978 minutes, and the total relocation time from 331 to 456 minutes;
- for the third management strategy, the total users’ waiting time has increased

from 1174 to 1211 minutes, and the total relocation time from 331 to 372
minutes.

Therefore the unbalancement of demand is resolved by increasing the number of
relocations and the user waiting times slightly increase because greater is the
number of vehicles relocating.

9.2.2.2. Barreiro case study.
For what regards Barreiro scenario, the objective function assumes a value of
605.47, with a wait cost of 275.05 (average wait time of 2.12 minutes), a fleet cost
of 284.08 € and a relocation cost of 27.50 €. As expected, Barreiro scenario shows
similar results as Genoa case study.

Conclusions and future work

In the present thesis, a new generation car sharing system has been studied. This
system is based on a fleet of intelligent vehicles which can be rented for short term
periods (usually a couple of hours) and are shared through the day by different
users. This system is meant to overcome the barriers of traditional car sharing
systems, where vehicles need to be booked beforehand and must be returned at the
same pick-up stations. In particular the system has been planned and modeled in
order to guarantee open ended reservation, instant access and one way trips. These
three features provide users a high level of flexibility. But on the other hand, the
risk of unbalancement in the number of available vehicles at stations is high,
therefore, relocation is necessary.

Three different kinds of relocation strategies have been proposed to keep
distribution balance of parked PICAV vehicles among the area. The first relocation
strategy adopts a user-based relocation scheme whilst the second and third ones
adopt a fully vehicle based relocation strategy, because the level of automation of
vehicles allows them to move in an automatic way. The manual relocation of
vehicles among stations has not been taken into account because it registers severe
staff costs. In the first and in the second management strategies vehicles can be
accessed only at stations, while in the third one vehicles are available to users from
any point of the intervention area. Regarding this third strategy, it is worth to
underline that capillarity (i.e. the possibility that vehicles are available also along
the roads) is a very good way to better satisfy user demand.

An object – oriented simulator has been developed in order to provide
transport managers a useful tool to test the proposed transport systems in different
realities. The simulator allows to analyse “what if” scenarios and aims to be a
precious decisions support tool. The characteristics of the road network, the degree
of congestion on the roads, the PICAV transport demand and the transport system
parameters are the simulator inputs. The simulator follows each user and each
vehicle within the simulation period, and gives the actual user waiting times and
the number of vehicles available at each station in each simulation time instant, at
the end of the simulation time period. The simulator gives in output the distribution
of user waiting times and the total amount of time spent in relocation, from which
the level of service and the transport system performance could be assessed.

These two quantities are the input of the optimization algorithm. An
optimization algorithm has been developed in order to determine:
- the best fleet dimension and its distribution among stations at the beginning of

the simulation, for what concerns the first management strategy;
- the best fleet dimension and the best low critical and low buffer thresholds

values, for what regards the other two strategies.
The purpose is to minimize the users costs, expressed in terms of waiting times at
the stations, and the system costs, expressed in term of cost of relocation and cost
of purchasing the fleet. For what regards the last two management strategies, as the

208

objective function is heavily sensitive on the fleet dimension, and slightly sensitive
on the thresholds values, in order to obtain a better solution in a shorter amount of
time, a parallel optimization of the fleet in one processor, and of the thresholds in
the other processor, has been implemented. However, the Simulated Annealing is a
heuristic algorithm and the solution determined is not the exact solution but a good
solution. And the purpose of all the optimization procedure is to find a solution
which can be close enough to the optimum solution.

The micro simulation model contains two sub models: the model of the battery
and the model of interaction vehicles–pedestrians (vehicles speed–pedestrian
density). The parameters of the simulator, as well as the parameters of these sub
models, have been calibrated. The simulation model cannot be validated as no
similar system exists in reality. However, the sub models have been validated and a
test of coherence of the simulator’s hypothesis has been performed.

The proposed transport system has been simulated and applied for the case
study of the historical city centre of Genoa. The above mentioned output data,
provided by the simulator, i.e. the level of service and the performance of the
system, allow a comparison among the three strategies. The first management
strategy, i.e. flexible users, shows the lowest waiting times. The third management
strategy, in which vehicles are available also along the roads, registers the highest
waiting times, but it also provides users with the highest level of satisfaction, being
the vehicles accessible from any point of the intervention area.

The proposed transport system has also been applied to the old town of
Barreiro, a suburb of Lisbon, Portugal. For Barreiro scenario, only the second
strategy has been adopted. The results of the simulation clearly show the
effectiveness of the automatic relocation, because, with low staff costs, it allows
users a high level of satisfaction.

Finally, a sensitivity analysis has been performed, in order to study the
behavior of the system if input data and parameters are changed. The sensitivity
analysis has been performed for all the three management strategies and for both
cases of study (Genoa and Barreiro). Firstly, the sensitivity of the system to the
modifications of the fleet and of the thresholds has been performed. After, a
sensitivity analysis has been performed on the demand has been done. The
simulation shows that for this reality, the first management strategy (user based
relocation) is very sensitive to demand unbalancement; the second strategy
(automatic relocation) provides higher waiting times but it is able to cope with
unbalanced demand.

Future work can be the following.
Firstly, it could be worthwhile to develop some indicators of users’

satisfaction, and of proper integration between the PICAV transport system and the
conventional public transport. More in detail, the disutility of users to be flexible,
and the higher satisfaction of users because of the capillarity of the proposed
system; and the seamless integration of car sharing and conventional transport

209

 210

system, could be quantified. These indicators could be developed following a fuzzy
logic.

Secondly, several other aspects regarding the physical settlement of the
system have been neglected. All these aspects have been already mentioned in
chapter 2 and regard: membership, methodologies for check in and check out,
methodologies for booking, techniques for the identification of the user, techniques
for payment, pricing system, security, methods for the localization of vehicles,
technologies for communication. A state of the art on existing technologies must be
performed. After, the application of these techniques to the development of the
proposed transport system must be studied.

Thirdly, a more careful study on transport demand is necessary in order to
update the available data. The estimation of the transport demand by interviews is
possible by two techniques: revealed preferences techniques, traditionally utilized,
which are relative to the actual users travel behaviour in a real context, and stated
preferences techniques, based on statements made by interviewees about their
preferences in different choice contexts, real, hypothetical or experimental. Since
we need to know the actual transport demand, we choose the revealed preferences
technique.

REFERENCES:

Arpaweb Rimini, 2006. Studio OMS – ARPAT effetti dell’inquinamento a lungo termine.
Available at:
http://www.arpa.emr.it/cms3/documenti/_cerca_doc/aria/rn_studio_oms_arpat_effetti_smo
g/rn_smog_traffico_arpat_2006.pdf

Astengo, G., 1966. Urbanistica. In: Enciclopedia Universale dell’Arte, vol. 14, Venezia,
Sansoni, 1966.

Barth, M., Todd, M., 1999. Simulation model performance analysis of a multiple station
shared vehicle system. Transportation Research Part C, Vol. 7, pp. 237-259, 1999.

Barth, M., Todd, M., Murakami, H., 2000. Using Intelligent Transportation System
Technology in a Shared Electric Vehicle Program. Transportation Research Record 1731,
88-95.

Barth, M., Todd, M., 2003. UCR IntelliShare: an intelligent shared electric vehicle testbed
at the University of California, Riverside. In: IATSS Research, 27 (1). June, 2003.

Barth, M., Todd, M., Xue, L., 2004. User-Based Vehicle Relocation Techniques for
Multiple-Station Shared-Use Vehicle Systems. In: Proceedings of the 2004 Transportation
Research Board Annual Meeting, Washington D.C., January 2004.

Barth, M., Shaheen, S., Fukuda, T., Fukuda, A., 2006. Carsharing and station cars in Asia:
an overview of Japan and Singapore. Transportation Research Record No. 1986, pp. 106-
115.

Bazaraa, M. S., Sherali, H. D., Shetty, C. M., 1993. Nonlinear Programming: Theory and
Algorithms, Second Edition, John Wiley & Sons Inc., N.J., U.S.

Bellman, R., 1961. Adaptive control processes: A guided tour. Princeton, NJ: Princeton
University Press.

Bonfanti, M. Gestione di una flotta di veicoli di un sistema car-sharing: applicazione al
centro urbano di Genova. Master thesis, Department of Civil Engineering, University of
Pisa, 2010.

Britton, E., 1999. Carsharing 2000 – A Hammer For Sustainable Development, Journal of
World Transport Policy & Practice, Vol. 5, n.
3, pp. 9-15.

Castangia M. and Guala L., 2011. Modelling and simulation of PRT networks. In: Pratelli,
A., Brebbia, C.A. (Eds.), Urban Transport XVII. WIT Press, Southampton, UK, pp. 459-
472.

Ceccarelli, G., 2010. Il bike sharing in Italia. Report 2010. Available at:
http://www.uomoplanetario.org/wordpress/2010/03/il-bike-sharing-in-italia-report-2010/

 211

http://www.arpa.emr.it/cms3/documenti/_cerca_doc/aria/rn_studio_oms_arpat_effetti_smog/rn_smog_traffico_arpat_2006.pdf
http://www.arpa.emr.it/cms3/documenti/_cerca_doc/aria/rn_studio_oms_arpat_effetti_smog/rn_smog_traffico_arpat_2006.pdf
http://www.uomoplanetario.org/wordpress/2010/03/il-bike-sharing-in-italia-report-2010/

Cepolina E. M., De Luca S., Tyler N. (2008). Un modello microscopico per la simulazione
del deflusso pedonale in corridoi di stazioni ferroviarie. In: Proceedings of the XIV SIDT
Scientific Seminar. Franco Angeli, Milano.

Cepolina, E. M., 2009. D1.1. PICAV System Requirements. PICAV internal report.
Available at: http://www.dimec.unige.it/PMAR/picav/

Cepolina, E. M., 2010. D2.2. Report on system conceptual design and operative modes.
PICAV internal report. Available at: http://www.dimec.unige.it/PMAR/picav/

Cepolina, E.M. Modelling and Simulation of the full electric personal vehicle PICAV.
Submitted for publication to the European Transport Research Review: An Open Access
Journal, 2012.

Cherchi, E., 2003. Il valore del tempo nella valutazione dei sistemi di trasporti: teoria e
pratica. Franco Angeli, Milano, Italy.

Ciari F., Balmer, M., Axhausen, K.W., 2009. Concepts for a large scale car-sharing
system: Modelling and evaluation with an agent-based approach. Proceedings of the 88th
Annual Meeting of the Transportation Research Board, Washington, D.C., January 2009.

CityCarShare, 2007. Bringing Carsharing to your Community. Available at:
http://www.communauto.com/images/03.coupures_de_presse/CCS_BCCtYC_Long.pdf

Crainic, T.G., Toulouse, M., 2009. Parallel Meta-heuristics. In: Gendreau, M., Potvin, J.Y.
(Eds.), Handbook of Metaheuristics. Springer, Second Edition, pp. 497-541.

DIME, 2012. PICAV final report. Available at: http://www.dimec.unige.it/pmar/picav/

Ferreira, N., 2009. D1.1 Appendix E. Study of Circulation, Transports and Parking for the
Centre of Barreiro. PICAV internal report. Available from:
http://www.dimec.unige.it/pmar/picav/

Firnkorn, J., Müller, M. 2011. What will be the environmental effects of new free-floating
car-sharing systems? The case of car2go in Ulm. In: Ecological Economics, 70 (8), pp.
1519-1528.

Goldberg, 1989. Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading, MA

Highway Capacity Manual (HCM), 2004.

ISTAT, 2012. Road accidents. Available at: http://www.istat.it/en/archive/73773

Kek, A. G. H., Cheu, R. L., Chor, M. L., 2006. Relocation Simulation Model for Multiple-
Station Shared-Use Vehicle Systems. In: Transportation Research Record: Journal of the
Transportation Research Board, 1986 (13), pp. 81-88, 2006.

 212

http://www.dimec.unige.it/PMAR/picav/
http://www.dimec.unige.it/PMAR/picav/
http://www.communauto.com/images/03.coupures_de_presse/CCS_BCCtYC_Long.pdf
http://www.dimec.unige.it/pmar/picav/
http://www.sciencedirect.com/science/journal/09218009
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235995%232011%23999299991%233214736%23FLA%23&_cdi=5995&_pubType=J&view=c&_auth=y&_acct=C000043460&_version=1&_urlVersion=0&_userid=793840&md5=4a5847c55708bc30fe8a06c11942182c
http://www.istat.it/en/archive/73773

Laarhoven, P.J., Aarts, E.H., 1987. Simulated Annealing: Theory and Application. Kluwer
Academic Publishers, Dordrecht, Netherlands.

Law, A.M., Kelton, W.D., 1991. Simulation modelling and analysis. McGraw-Hill, New
York, Second Edition.

Lewis, J., Loftus, W., 2008. Java Software Solutions Foundations of Programming Design.
6th edition. Pearson Education Inc., section 1.6 "Object-Oriented Programming".

Lindholm, M., Behrends, S., 2010. A holistic approach to challenges in urban freight
transport planning. In: Selected Proceedings of 12th World Conference on Transportation
Research-WCTR 2010, Viegas, J.M. and Macario, R. (eds.), Lisbon, Portugal.

Masood, J., Zoppi, M., Molfino, R.M., 2001. Multi-Terrain Vehicle Active Suspension
Control Design and Synthesis. In: Proceedings of The 7th International ASME/IEEE
Conference on Mechatronics & Embedded Systems and Applications, MESA 2011,
Washington DC.

MAZEL Ingenerios, (Moreno, M.G., Dominguez, J.A.), 2011. D3.7, Power system and
electric layout description. PICAV internal report. Available from
http://www.dimec.unige.it/PMAR/picav/

Millard-Ball, A., Murray, G., Ter Schure, J., Fox, C., and Burkhardt, J., 2005. Car-Sharing:
Where and How it Succeeds. TCRP Report 108. Transportation Research Board,
Washington, DC. Available from: http://www.trb.org/Main/Blurbs/156496.aspx

Monaci, M., 2012. Algoritmi euristici. Dipartimento di Ingegneria dell’Informazione,
Università di Padova http://www.dei.unipd.it/~monaci/euristici_rev21.pdf

Nguyen, L., Barth, M., 2006. Improving Automatic Vehicle Location Efficiency through
Aperiodic Filtering. In: Proceedings of the IEEE ITSC 2006, 2006 IEEE Intelligent
Transportation Systems Conference, Toronto, September 17-20, 2006.

Schwieger, B., 2003. International Developments towards a “Second Generation” Car-
Sharing, Ph.D. Dissertation, TU Berlin, Berlin.

Shaheen, S.A., Sperling, D., Wagner, C., 1998. Carsharing in Europe and North America:
Past, Present, and Future. In: Transportation Quarterly, 52 (3), pp. 35 -52.

Shaheen, S.A., Rodier, C. J., 2005. Travel Effects of A Suburban Commuter-Carsharing
Service: A CarLink Case Study. In: Transportation Research Record: Journal of the
Transportation Research Board. TRB, National Research Council.

Shaheen, S. A., Cohen, A.P., Roberts, J.D., 2005. Carsharing in North America: Market
Growth, Current Developments, and Future Potential. In Transportation Research Record:
Journal of the Transportation Research Board, No. 1986, pp. 116–124.

Shaheen, S. A., Cohen, A. P., 2007. Growth in worldwide carsharing – An international
comparison. Transportation Research Record 1992, 81-89.

 213

http://www.dimec.unige.it/PMAR/picav/
http://www.trb.org/Main/Blurbs/156496.aspx
http://www.dei.unipd.it/%7Emonaci/euristici_rev21.pdf

Shaheen, S., Cohen, A., Chung., M., 2009. North American Carsharing: A Ten-Year
Retrospective. In Transportation Research Record: Journal of the Transportation Research
Board, Washington, D.C., 2110, pp. 35-44.

Shaheen, S., Guzman, S., Zhang, H., 2010. Bikesharing in Europe, the Americas, an Asia:
Past, Present, and Future. In: Transportation Research Record. 2010 Transportation
Research Board Annual Meeting. March 15, 2010.

Shaheen, S., Guzman, S., 2011. Worldwide Bikesharing. Transportation Sustainability
Research Center, University of California. Berkeley. Available at:
http://tsrc.berkeley.edu/worldwide%20bikesharing

Transport For London, 2008. Feasibility study for a central London cycle hire scheme.
Available at:
http://www.tfl.gov.uk/assets/downloads/businessandpartners/cycle-hire-scheme-feasibility-
full-report-nov2008.pdf

Van Rossum, G., 2006. Python Tutorial. Release 2.5. [online]. Available at:
http://docs.python.org/release/2.5/tut/tut.html

Access-to-all: http://www.access-to-all.eu/ (Last accessed: October 2012)

Aeneas: http://www.aeneas-project.eu/?page=home (Last accessed: October 2012)

Ask-it: http://www.ask-it.org/ (Last accessed: October 2012)

Autolib’: https://www.autolib.eu/stations/ (Last accessed: January 2013)

Bikemi: www.bikemi.com (Last accessed: January 2013)

Car2go: www.car2go.com (Last accessed: January 2013)

CityCarClub: http://www.citycarclub.co.uk/ (Last accessed: December 2012)

CityCarShare.org: https://www.citycarshare.org/ (Last accessed: December 2012)

Cultural heritages in Bologna: http://www.archeobo.arti.beniculturali.it (Last accessed:
December 2012)

Drivenow: www.drive-now.com (Last accessed: December 2012)

Easymotion.pl: http://easymotion.pl/

European Demographic Data Sheet 2012. Re-evaluating population ageing in European
countries. Available at:

 214

http://tsrc.berkeley.edu/worldwide%20bikesharing
http://www.tfl.gov.uk/assets/downloads/businessandpartners/cycle-hire-scheme-feasibility-full-report-nov2008.pdf
http://www.tfl.gov.uk/assets/downloads/businessandpartners/cycle-hire-scheme-feasibility-full-report-nov2008.pdf
http://docs.python.org/release/2.5/tut/tut.html
http://www.access-to-all.eu/
http://www.aeneas-project.eu/?page=home
http://www.ask-it.org/
https://www.autolib.eu/stations/
http://www.bikemi.com/
http://www.car2go.com/
http://www.citycarclub.co.uk/
https://www.citycarshare.org/
http://www.archeobo.arti.beniculturali.it/
http://www.drive-now.com/
http://easymotion.pl/

http://www.oeaw.ac.at/vid/datasheet/index.html (Last accessed: Novemer 2012)

Genoa public transport: http://www.amt.genova.it/ (Last accessed: November 2012)

Greenwheels: www.greenwheels.nl (Last accessed: January 2013)

Ibilek: http://www.ibilek.es/es/ (Last accessed: January 2013)

Iniziativa car-sharing: http://www.icscarsharing.it/main/ (Last accessed: January 2013)

Mediate: http://www.mediate-project.eu/ (Last accessed: October 2012)

PICAV project: http://www.dimec.unige.it/pmar/picav/ (Last accessed: January 2013)

Respiro: http://www.respiromadrid.es/ (Last accessed: January 2013)

Stadtmobil: http://www.stadtmobil.de/ (Last accessed: January 2013)

Transport For London: www.tfl.gov.uk (Last accessed: January 2013)
Bike sharing is available at: http://www.tfl.gov.uk/roadusers/cycling/14808.aspx
Road pricing is available at: http://www.tfl.gov.uk/roadusers/default.aspx

Wikipedia. Car sharing: http://en.wikipedia.org/wiki/Carsharing (Last accessed December
2012)

Zipcar website: http://www.zipcar.com/ (Last accessed: January 2013)

ARTICLES WRITTEN BY THE AUTHOR ABOUT THE TOPICS REPORTED IN
THE THESIS:

1. Cepolina E. M., Bonfanti M., Farina A., 2010. A new transport system for
reducing external costs in historical city centres. SIDT Scientific seminar
2010, External costs of transport systems, Theory and application, Roma.

2. Cepolina E.M., Farina A., Holloway C., 2011. A car sharing system for

urban areas with fully automated personal vehicles. The 13th International
Conference on Harbor, Maritime & Multimodal Logistics Modelling and
Simulation”, HMS 2011, Roma, 12-14 settembre 2011.

3. Cepolina E.M, Tyler N., Holloway C., Farina A., Boussard C., Modelling of

urban pedestrian environments for simulation of the motion of small
vehicles. The 13th International Conference on Harbor, Maritime &
Multimodal Logistics Modelling and Simulation”, HMS 2011, Roma, 12-14
settembre 2011.

 215

http://www.oeaw.ac.at/vid/datasheet/index.html
http://www.amt.genova.it/
http://www.greenwheels.nl/
http://www.ibilek.es/es/
http://www.icscarsharing.it/main/
http://www.mediate-project.eu/
http://www.dimec.unige.it/pmar/picav/
http://www.respiromadrid.es/
http://www.stadtmobil.de/
http://www.tfl.gov.uk/
http://www.tfl.gov.uk/roadusers/cycling/14808.aspx
http://www.tfl.gov.uk/roadusers/default.aspx
http://en.wikipedia.org/wiki/Carsharing
http://www.zipcar.com/

 216

4. Cepolina E.M., Farina A., 2012. A new shared vehicle system for urban

areas. Transportation Research part C: Emerging Technologies, 21(1), pp
230-243.

5. Cepolina E.M., Farina A., 2012. Urban car sharing: an overview of

relocation strategies. In: Longhurst, J.W.S., Brebbia, C.A. (Eds.), Urban
Transport XVII. WIT Press, Southampton, UK, pp. 419-431.

Papers submitted or under publication:

1. Cepolina, E.M., Farina, A. Innovative strategies for urban car-sharing
systems and a simulator to assess their performances. Sent for publication
to Transportation Research Board

2. Cepolina, E.M., Farina, A. The optimization of a new urban car sharing

system with fully automated personal vehicles. Draft.

http://arp.unipi.it/dettaglioar.php?ide=199125
http://arp.unipi.it/dettaglioar.php?ide=199125
http://arp.unipi.it/dettaglioar.php?ide=173967
http://arp.unipi.it/dettaglioar.php?ide=173967

 217

Appendix A: Code of the micro simulator

Below, the simulator and its input files are provided.

The file “inputdata.py”

import csv
reader = csv.reader(open('input.csv','rb'),delimiter = ',')
writer = csv.writer(open('input.csv','rb'),delimiter = ',')
j = 0
for row in reader:
 if j == 0:
 case_study = row
 if j == 1:
 Tmax = row
 if j == 2:
 TI1_min = row
 if j == 3:
 TI1_max = row
 if j == 4:
 TI2_max = row
 if j == 5:
 dens_morn = row
 if j == 6:
 dens_aft = row
 if j == 7:
 dens_even = row
 if j == 8:
 number_picav_beginning = row
 if j == 9:
 low_critical_threshold = row
 if j == 10:
 low_buffer_threshold = row
 if j == 11:
 high_critical_threshold = row
 if j == 12:
 high_buffer_threshold = row
 if j == 13:
 stations_capacity = row
 if j == 14:

 218

 number_stations = row
 if j == 15:
 number_unit = row
 if j == 16:
 coeff_activity_pattern = row
 if j == 17:
 mean_activity_duration = row
 if j == 18:
 deviation_activity_duration = row
 if j == 19:
 scenario_under_study = row # 1 = Genoa, 2 = Barreiro
 j = j+1

case_study = int(case_study[0])
Tmax = int(Tmax[0])
TI1_min = int(TI1_min[0])
TI1_max = int(TI1_max[0])
TI2_max = int(TI2_max[0])
dens_morn = float(dens_morn[0])
dens_aft = float(dens_aft[0])
dens_even = float(dens_even[0])
number_stations = int(number_stations[0])
number_unit = int(number_unit[0])
coeff_activity_pattern = float(coeff_activity_pattern[0])
mean_activity_duration = float(mean_activity_duration[0])
deviation_activity_duration = float(deviation_activity_duration[0])
scenario_under_study = int(scenario_under_study[0])
number_hours_morning = TI1_max - TI1_min
number_hours_afternoon = TI2_max - TI1_max
TI0_min = 0
TI1_min = TI1_min * 60
TI0_max = TI1_min - 1
TI1_max = TI1_max * 60
TI2_min = TI1_max + 1
TI2_max = TI2_max * 60
TI3_min = TI2_max + 1
Tmax = Tmax * 60
TI3_max = Tmax

 219

NPP = []
for j in range(len(number_picav_beginning)):
 NPP.append(int(number_picav_beginning[j]))

low_critical_thresholds = []
for j in range(len(low_critical_threshold)):
 low_critical_thresholds.append(int(low_critical_threshold[j]))

high_critical_thresholds = []
for j in range(len(high_critical_threshold)):
 high_critical_thresholds.append(int(high_critical_threshold[j]))

low_buffer_thresholds = []
for j in range(len(low_buffer_threshold)):
 low_buffer_thresholds.append(int(low_buffer_threshold[j]))

high_buffer_thresholds = []
for j in range(len(high_buffer_threshold)):
 high_buffer_thresholds.append(int(high_buffer_threshold[j]))

station_capacity = []
for j in range(len(stations_capacity)):
 station_capacity.append(int(stations_capacity[j]))

number_picav = 0
for j in range(number_stations):
 number_picav = number_picav + NPP[j]

The file “OD_matrix.py”

from inputdata import *

OD_A_1= [[0,1,2,1,1,1,0],
 [1,0,0,0,1,1,0],
 [1,0,0,0,2,1,0],
 [1,0,0,0,1,1,0],
 [1,1,2,2,0,1,0],

 220

 [1,1,2,1,1,0,0],
 [0,0,1,1,0,0,0]]

OD_B_1= [[0,1,1,0,0,1,0,1,1],
 [0,0,0,0,0,1,0,1,1],
 [1,0,0,0,1,3,1,3,2],
 [1,0,0,0,0,1,1,2,2],
 [0,1,1,0,0,1,0,2,1],
 [0,1,1,0,0,0,0,2,1],
 [0,0,0,0,0,0,0,1,0]]

OD_D_1 = []
OD_E_1 = []

OD_A_2 = []
OD_B_2 = []
OD_D_2 = []
OD_E_2 = []

factor_afternoon = 1.45
say factor afternoon = 0 if you don't declare it. In this case, define OD_A_2, etc.
explicitly

if case_study == 3:
 from demand_units import *

if case_study == 2:
 OD_A_choiceset1 = [[1,1,1],
 [1,1,1],
 [3,2,1],
 [3,2,1],
 [2,1,1],
 [2,1,1],
 [1,1,1]]

 OD_B_choiceset1 = [[1,1,0],
 [1,1,1],
 [1,1,1],
 [0,0,0],
 [1,0,0],
 [3,2,1],

 221

 [1,1,0],
 [6,4,3],
 [4,2,2]]

 OD_A_1 = OD_A_choiceset1

The file “distances_slopes.py”

distances_stations = [[0,1060,976,1200,1400,604,1100,489,1060],
 [1060,0,316,846,1180,732,1100,489,747],
 [976,316,0,414,516,569,829,563,326],
 [1200,846,414,0,481,848,1080,866,379],
 [1400,1180,516,481,0,834,804,1050,372],
 [604,732,569,848,834,0,678,458,464],
 [1100,1100,829,1080,804,678,0,961,610],
 [489,489,563,866,1050,458,961,0,670],
 [1060,747,326,379,372,464,610,670,0]]

slopes_stations = [[0,2.28,1.95,2.17,0.23,-0.60,-0.17,4.95,1.95],
 [-2.28,0,-1.03,0.81,-0.05,-2.16,-0.69,1.36,-0.28],
 [-1.95,1.03,0,2.16,0.50,-2.75,-0.72,2.08,-0.38],
 [-2.17,-0.81,-2.16,0,-0.42,-3.96,-2.49,-0.42,-1.35],
 [-0.23,0.05,-0.50,0.42,0,-2.69,-2.97,-0.35,-0.42],
 [0.60,2.16,2.75,3.96,2.69,0,-2.68,5.04,3.26],
 [0.17,0.69,0.72,2.49,2.97,2.68,0,2.65,3.21],
 [-4.95,-1.36,-2.08,0.42,0.35,-5.04,-2.65,0,-0.93],
 [-1.95,0.28,0.38,1.35,0.42,-3.26,-3.21,0.93,0]]

distances_points_points = []
slopes_points_points = []
distances_points_stations = []
distances_stations_points = []
slopes_points_stations = []
slopes_stations_points = []

from distances_slopes_units import *

 222

The file input_manipulation.py

-*- coding: cp1252 -*-

from numpy import *
from math import *

----------------- DEMAND PART -------------------
Do not act here, do not touch this code

afternoon_factor = 0
from OD_matrix import *
The OD matrix for the four types of trips is given
Type A trip: trip chain inside the intervention area, origin and destination on the border
Type B trip: single mission trip with origin on the border and destination inside the
intervention area
Type C trips: does not exist anymore, it was the return trip of type B trip, which is
assumed for hypothesis the opposite of type B.
Type D trip: single mission trip with origin and destination at units
Type E trip: trip chain with origin and destination at units
Case study 1- 2: only type A + type B trips
Case study 3: all

The afternoon factor is given, i.e. the factor which allows to calculate the afternoon
OD_matrixes directly without giving it in advance

We consider in the border of the intervention area that in case study 3 the trips have
origin and end at the stations,
while inside the intervention area they have origin and end at some parking lots

class demands:
 name = 999999
 origin = 999999
 destination = 999999
 typology = 999999
 activity_pattern = 999999

demand = []
dom_1 = {}

 223

c = 0

Takes the matrixes A,B,D,E for the morning period and converts them into objects. Puts
the objects in a dictionary, dom_1
in order that they can be easily taken from the simulator. Also the return trips of Type B
will be defined

for k in range(len(OD_A_1)):
 PP = []
 PP = OD_A_1[k]
 for j in range(len(PP)):
 if PP[j]>0:
 counter = PP[j] +1
 counter = counter - 1
 while counter > 0:
 d = demands()
 d.name = c
 d.origin = k+1
 d.destination = j+1
 d.typology = 1
 if case_study == 3:
 d.typology_origin = 1
 d.typology_destination = 1
 if case_study == 2:
 d.origin = k+1
 d.provenience = j+1
 d.destination = 999999
 d.activity_pattern = 1
 dom_1[c] = d
 c = c+1
 counter = counter - 1

for k in range(len(OD_B_1)):
 PP = []
 PP = OD_B_1[k]
 for j in range(len(PP)):
 if PP[j]>0:
 counter = PP[j]+1
 counter = counter - 1
 while counter > 0:

 224

 d = demands()
 d.name = c
 d.origin = k+1
 d.destination = j+1
 d.typology = 1
 if case_study == 3:
 d.typology_destination = 2
 d.typology_origin = 1
 d.destination = j
 if case_study == 2:
 d.provenience = 999999
 d.activity_pattern = 2
 dom_1[c] = d
 c = c+1
 counter = counter - 1

OD_B_1_provv = OD_B_1
if case_study == 2:
 OD_B_1 = OD_B_choiceset1

for k in range(len(OD_B_1)):
 PP = []
 PP = OD_B_1[k]
 for j in range(len(PP)):
 if PP[j]>0:
 counter = PP[j]+1
 counter = counter - 1
 while counter > 0:
 d = demands()
 d.name = c
 d.origin = j+1
 d.destination = k+1
 d.typology = 2
 if case_study == 3:
 d.typology_origin = 2
 d.typology_destination = 1
 d.origin = j
 if case_study == 2:
 d.origin = k+1
 d.provenience = j+1
 d.destination = 999999

 225

 d.activity_pattern = 2
 dom_1[c] = d
 c = c+1
 counter = counter - 1

for k in range(len(OD_D_1)):
 PP = []
 PP = OD_D_1[k]
 for j in range(len(PP)):
 if PP[j]>0:
 counter = PP[j]+1
 counter = counter - 1
 while counter > 0:
 d = demands()
 d.name = c
 d.origin = k
 d.destination = j
 d.typology = 3
 d.typology_origin = 2
 d.typology_destination = 2
 d.activity_pattern = 2
 dom_1[c] = d
 c = c+1
 counter = counter - 1

for k in range(len(OD_E_1)):
 PP = []
 PP = OD_E_1[k]
 for j in range(len(PP)):
 if PP[j]>0:
 counter = PP[j]+1
 counter = counter - 1
 while counter > 0:
 d = demands()
 d.name = c
 d.origin = k
 d.destination = j
 d.typology = 3
 d.typology_origin = 2
 d.typology_destination = 2
 d.activity_pattern = 1

 226

 dom_1[c] = d
 c = c+1
 counter = counter - 1

Determines total number of arrivals in 1 morning hour
The number of arrivas is set equal to the length of the dictionary
number_users_hour = len(dom_1)

creates some auxiliary quantities for calculating the morning demand

nor_morning = []

for j in range(number_hours_morning):
 nor_morning.append(number_users_hour*(j+1))

number_users_morning = number_users_hour * number_hours_morning

Appends the dictionary nor_morning in the demand list.
Creates the demand for the morning period
for j in range(len(nor_morning)):
 for k in range(number_users_hour):
 demand.append(dom_1[k])

Calculates the afternoon matrixes in case the afternoon factor is given.

OD_B_1 = OD_B_1_provv
if case_study == 2:
 OD_B_choiceset2 = []

if factor_afternoon > 0:
 for i in range(len(OD_B_1)):
 BET = OD_B_1[i]
 for k in range(len(BET)):
 BET[k] = round(BET[k] * factor_afternoon)
 OD_B_2.append(BET)
 BET = []

 if case_study == 2:
 for i in range(len(OD_B_choiceset1)):
 BET = OD_B_choiceset1[i]

 227

 for k in range(len(BET)):
 BET[k] = round(BET[k] * factor_afternoon)
 OD_B_choiceset2.append(BET)
 BET = []

 for i in range(len(OD_A_1)):
 BET = OD_A_1[i]
 for k in range(len(BET)):
 BET[k] = round(BET[k] * factor_afternoon)
 OD_A_2.append(BET)
 BET = []

 for i in range(len(OD_D_1)):
 BET = OD_D_1[i]
 for k in range(len(BET)):
 BET[k] = round(BET[k] * factor_afternoon)
 OD_D_2.append(BET)
 BET = []

 for i in range(len(OD_E_1)):
 BET = OD_E_1[i]
 for k in range(len(BET)):
 BET[k] = round(BET[k] * factor_afternoon)
 OD_E_2.append(BET)
 BET = []

Takes the matrixes A,B,C,D,E for the afternoon period and converts them into objects.
Puts the objects in a dictionary, dom_1
Also the return trips of Type B and Type C will be defined

dom_2 = {}
c = 0

for k in range(len(OD_A_2)):
 PP = []
 PP = OD_A_2[k]
 for j in range(len(PP)):
 if PP[j]>0:
 counter = PP[j]+1

 228

 counter = counter - 1
 while counter > 0:
 d = demands()
 d.name = c
 d.origin = k+1
 d.destination = j+1
 d.typology = 1
 if case_study == 3:
 d.typology_origin = 1
 d.typology_destination = 1
 if case_study == 2:
 d.origin = k+1
 d.provenience = j+1
 d.destination = 999999
 d.activity_pattern = 1
 dom_2[c] = d
 c = c+1
 counter = counter - 1

for k in range(len(OD_B_2)):
 PP = []
 PP = OD_B_2[k]
 for j in range(len(PP)):
 if PP[j] > 0:
 counter = PP[j]+1
 counter = counter - 1
 while counter > 0:
 d = demands()
 d.name = c
 d.origin = k+1
 d.destination = j+1
 d.typology = 1
 if case_study == 3:
 d.typology_origin = 1
 d.typology_destination = 2
 d.destination = j
 if case_study == 2:
 d.provenience = 999999
 d.activity_pattern = 2
 dom_2[c] = d

 229

 c = c+1
 counter = counter - 1

if case_study == 2:
 OD_B_2 = OD_B_choiceset2

for k in range(len(OD_B_2)):
 PP = []
 PP = OD_B_2[k]
 for j in range(len(PP)):
 if PP[j] > 1:
 counter = PP[j]+1
 counter = counter - 1
 while counter > 0:
 d = demands()
 d.name = c
 d.origin = j+1
 d.destination = k+1
 d.typology = 2
 if case_study == 3:
 d.typology_origin = 2
 d.typology_destination = 1
 d.origin = j
 if case_study == 2:
 d.origin = k+1
 d.provenience = j+1
 d.destination = 999999
 d.activity_pattern = 2
 dom_2[c] = d
 c = c+1
 counter = counter - 1

for k in range(len(OD_D_2)):
 PP = []
 PP = OD_D_2[k]
 for j in range(len(PP)):
 if PP[j] > 1:
 counter = PP[j]
 counter = counter - 1

 230

 while counter > 0:
 d = demands()
 d.name = c
 d.origin = k
 d.destination = j
 d.typology = 3
 d.typology_origin = 2
 d.typology_destination = 2
 d.activity_pattern = 2
 dom_2[c] = d
 c = c+1
 counter = counter - 1

for k in range(len(OD_E_2)):
 PP = []
 PP = OD_E_2[k]
 for j in range(len(PP)):
 if PP[j]>0:
 d = demands()
 d.name = c
 d.origin = k
 d.destination = j
 d.typology = 3
 d.typology_origin = 2
 d.typology_destination = 2
 d.activity_pattern = 1
 dom_2[c] = d
 c = c+1
 if PP[j] > 1:
 counter = PP[j]
 counter = counter - 1
 while counter > 0:
 d = demands()
 d.name = c
 d.origin = k
 d.destination = j
 d.typology = 3
 d.typology_origin = 2
 d.typology_destination = 2
 d.activity_pattern = 1
 dom_2[c] = d

 231

 c = c+1
 counter = counter - 1

Determines the number of arrivals by hour in the afternoon
number_users_hour = len(dom_2)
nor_afternoon = [] # dictionary of the arrivals by hour

for j in range(number_hours_afternoon):
 nor_afternoon.append(number_users_hour*(j+1))

number_users_afternoon = number_users_hour * number_hours_afternoon
number_users = number_users_morning + number_users_afternoon

for j in range(len(nor_afternoon)):
 for k in range(number_users_hour):
 demand.append(dom_2[k])

for j in range(len(nor_afternoon)):
 nor_afternoon[j] = nor_afternoon[j]+ number_users_morning

CALCULATES THE ATTRACTIVITY OF UNITS IN ORDER TO DETERMINE THE
UNIT IN
WHICH THE SUPERVISOR IS CALLED
from attractivity_units import *
total_att = 0
for j in range(number_units):
 units[j].cumul_att = units[j].attr + total_att
 total_att = units[j].cumul_att

 # --------------- DISTANCES AND SLOPES PART -------------------------------

class distance:
 origin = 999999
 destination = 999999
 value = 999999

from distances_slopes import *

 232

#initialization of all dictionaries

dist_pls_pls = {}
pend_pls_pls = {}
dist_points_pls = {}
pend_points_pls = {}
dist_pls_points = {}
pend_pls_points = {}
dist_points_points = {}
pend_points_points = {}

distances and slopes dictionaries creation. Case considered:
stations - stations, stations - units, units - stations, units - units

c = 0
for k in range(len(distances_stations)):
 PP = []
 PP = distances_stations[k]
 for j in range(len(PP)):
 d = distance()
 d.origin = k+1
 d.destination = j+1
 d.value = PP[j]
 dist_pls_pls[c] = d
 c = c + 1

w = 0
for k in range(len(slopes_stations)):
 RR = []
 RR = slopes_stations[k]
 for j in range(len(RR)):
 s = distance()
 s.origin = k+1
 s.destination = j+1
 s.value = RR[j]
 pend_pls_pls[w] = s
 w = w + 1

if case_study == 1:
 distances_points_stations = {}
 distances_stations_points = {}

 233

 distances_points_points = {}
 slopes_points_stations = {}
 slopes_stations_points = {}
 slopes_points_points = {}

c = 0
for k in range(len(distances_points_stations)):
 PQ = []
 PQ = distances_points_stations[k]
 for j in range(len(PQ)):
 d = distance()
 d.origin = k
 d.destination = j+1
 d.value = PQ[j]
 dist_points_pls[c] = d
 c = c + 1

c = 0
for k in range(len(slopes_points_stations)):
 PQ = []
 PQ = slopes_points_stations[k]
 for j in range(len(PQ)):
 d = distance()
 d.origin = k
 d.destination = j+1
 d.value = PQ[j]
 pend_points_pls[c] = d
 c = c + 1

c = 0
for k in range(len(distances_stations_points)):
 PQ = []
 PQ = distances_stations_points[k]
 for j in range(len(PQ)):
 d = distance()
 d.origin = k+1
 d.destination = j
 d.value = PQ[j]
 dist_pls_points[c] = d
 c = c + 1

 234

c = 0
for k in range(len(slopes_stations_points)):
 PQ = []
 PQ = slopes_stations_points[k]
 for j in range(len(PQ)):
 d = distance()
 d.origin = k+1
 d.destination = j
 d.value = PQ[j]
 pend_pls_points[c] = d
 c = c + 1

c = 0
for k in range(len(distances_points_points)):
 PQ = []
 PQ = distances_points_points[k]
 for j in range(len(PQ)):
 d = distance()
 d.origin = k
 d.destination = j
 d.value = PQ[j]
 dist_points_points[c] = d
 c = c + 1

c = 0
for k in range(len(slopes_points_points)):
 PQ = []
 PQ = slopes_points_points[k]
 for j in range(len(PQ)):
 d = distance()
 d.origin = k
 d.destination = j
 d.value = PQ[j]
 pend_points_points[c] = d
 c = c + 1

dom_1[j].name,dom_1[j].origin,dom_1[j].destination,dom_1[j].typology_origin,dom_1[j].t
ypology_destination,dom_1[j].typology,dom_1[j].activity_pattern

 235

The file “simulatore.py”
-*- coding: cp1252 -*-
from numpy import *
from numpy.random import *
from numpy.oldnumeric.random_array import *
from math import *
from input_manipulation import *

class simulator:

#------------------ INITIALIZATION -------------------

 time_queue = []
 max_time_queue = []
 users = {}
 vehicles = {}
 stations = {}
 unit = {}
 counter_vehicles = {} # takes memory of vehicles
 queue = [] # queue of the stations: it is a list made of some sub-lists, one for each station
 queue_unit = [] # queue of users at units
 users_rejected = 0
 number_stations = 0
 number_users_queue = []
 time_queue = []
 max_time_queue = []
 number_picav_state1 = [] # number of vehicles in state 1 = occupied
 number_picav_state2 = [] # number of vehicles in state 2 = in charge
 number_picav_state3 = [] # number of vehicles in state 3 = relocating
 number_picav_state4 = [] # number of vehicles in state 4 = redirected if the station is full
 number_picav_state5 = [] # number of vehicles in state 5 = approaching the user
 number_picav_state0 = [] # number of vehicles in state 0 = available for all
 number_total_relocations = [] # number of total relocations
 number_impossible_relocations = [] # number of impossible relocations
 number_vehicles_available = [] # number of available vehicles in p.l.s
 time_stayed_queue = [] # auxiliary list for statistics
 coeff_activity_pattern = 1
 total_relocation_time = 0
 supervis = []
 max_waiting_time = []

 236

 counter_veh_recharging = []

 def simulation(self):

#-------------- INITIALIZATION OF ALL THE PARAMETERS -----------------

 # and importation of all the parameters from the input data to the simulator method.

 self.case_study = case_study
 self.supervis = []
 self.number_unit = number_unit
 self.number_users = number_users
 if scenario_under_study == 1:
 self.choice_sets = choice_sets
 self.number_simulated_users = [] #number of users in simulation
 self.time_queue = [] #time in the queue
 self.max_time_queue = [] #max time in the queue
 self.users = {} # dictionary of the users
 self.vehicles = {} # dictionary of vehicles
 self.stations = {} # dictionary of stations
 self.counter_vehicles = {} # counter of vehicles
 self.queue = [] # queues at stations
 self.users_rejected = 0 # users are rejected when the system closes
 self.number_stations = number_stations
 self.number_simulated_users = [] # number of users in simulation in each p.l.
 self.time_queue = [] # time in the queue for each p.l.
 self.max_time_queue = [] # max time in the queue for each p.l.
 self.number_picav_state1 = [] # number of vehicles in state 1
 self.number_picav_state2 = []
 self.number_picav_state3 = []
 self.number_picav_state0 = []
 self.number_picav_state4 = []
 self.number_picav_state5 = []
 # states of vehicles are the following: 1 = occupied, 0 = free, 2 = in charge, 3 =
relocating between stations,
 # 4 = redirected if the station destination is full, 5 = goes encounter the user at the
user's unit
 self.number_vehicles_available = [] # number of available vehicles in p.l.s
 self.time_stayed_queue = []
 self.unit = {}

 237

 self.NPP = NPP # number of picavs in each parking lot at the beginning of the
simulation
 self.low_critical_thresholds = low_critical_thresholds
 self.low_buffer_thresholds = low_buffer_thresholds
 self.high_critical_thresholds = high_critical_thresholds
 self.high_buffer_thresholds = high_buffer_thresholds
 if case_study != 2: # if case study = 2 there is the call of the supervisor before the last
trip
 self.coeff_activity_pattern = 5
 elif self.case_study == 2:
 self.coeff_activity_pattern = 4
 self.number_stations = number_stations

 self.total_relocation_time = 0
 self.number_relocations = 0
 self.number_total_relocations = [] # number of total relocations
 self.number_impossible_relocations= [] # number of impossible relocations

 # the following are some stathistical dictionaries, initialized for the online or offline
statistics
 for j in range(number_stations):
 self.time_queue.append(0)
 self.max_time_queue.append([])
 self.number_simulated_users.append(0)
 self.number_vehicles_available.append([])
 self.counter_veh_recharging.append([])
 self.number_users_queue.append([])

 # Parameter of the model: definition of the number of picavs for every parking
 self.NPP = NPP

 # ------------------ Calculations -------------------------

 # calculation of the number of PICAVs
 number_picav = 0
 for j in range(number_stations):
 number_picav = number_picav + NPP[j]
 self.number_picav = number_picav

 238

----------- RELATION SPEED DENSITY ---------------

 B = 1.57751
 A = -1.44677
 B_autom = 1.37751
 self.vel_morning = A * dens_morn + B
 self.vel_aftern = A * dens_aft + B
 self.vel_autom_morn = A * dens_morn + B_autom
 self.vel_autom_aft = A * dens_aft + B_autom
 self.vel_evening = A * dens_even + B
 self.vel_autom_even = A * dens_even + B_autom

-------------- main -----------------

 # creates the permanent objects parkings

 for k in range(number_stations):
 p = parking()
 p.name = k+1
 p.n_vehicles = self.NPP[k] # defines the number of vehicles in each station
 p.n_veh_relocation = self.NPP[k] # n veh relocation is the number of vehicles
assigned to each station.
 # This last indicator avoids that a station in defect of vehicles continuously recalls
vehicles until its
 # number of vehicles is arise. Without this indicator, this station passes from e.g. 0
vehicles to 10 vehicles
 p.capacity = station_capacity[k]
 self.stations[k] = p
 self.queue.append([])

 #creates the permanent objects units
 unit = {}
 for k in range(number_units):
 un = sections()
 un.name = k
 un.n_vehicles = 0
 if scenario_under_study == 1:
 un.attr = units[k].attr # attractivity of a unit (in %)
 un.cumul_att = units[k].cumul_att # the cumulative attractivity is created because
of this.

 239

 # the last stop of the trip chain, in which the supervisor is recalled, is assessed
through a random
 # extraction in an uniform distribution between 0 and sum of all units attractivities
 self.unit[k] = un
 self.queue_unit.append([])

 # creates the object supervisor, if required
 sup = supervisor() #creates the supervisor
 self.supervis.append(sup)

 # Makes that users hereditate demand characterics and gives them the arrival instant
 # creates the objects users

 for i in range(number_users):
 u = user()
 u.name = i
 # imports all the attributes of the demand of transport
 u.origin = demand[i].origin
 u.destination = demand[i].destination
 if self.case_study == 2:
 u.provenience = demand[i].provenience
 else:
 u.provenience = 999999
 if self.case_study == 1:
 if u.origin == u.destination:
 # print 'error'
 STOPP
 u.activity_pattern = demand[i].activity_pattern
 u.typology = demand[i].typology
 if self.case_study == 3:
 u.typology_origin = demand[i].typology_origin
 u.typology_destination = demand[i].typology_destination
 else:
 u.typology_origin = 1
 u.typology_destination = 1
users are in order, hour by hour. The following method istant arrival defines the exact
minute
in which a given user appears at its origin station/unit.
 u.istant_arrival(i,self)

 240

 self.users[i] = u

 # creates the objects picav

 for k in range (self.number_picav): #(number_picav)
 p = picav()
 p.name = k
 self.vehicles[k] = p
 # presence picav assigns to each station the right number of picavs
 self.vehicles[k].presence_picav(k,self)

 # time queue

 for t in range (0,Tmax):
 if t > TI0_max:
 # print '---'
 hhh = t / 60
 mmm = t - hhh*60
 # print 'T =',t,'; hh mm',hhh,':',mmm

 rl = 0 # counter of impossible relocations
 rt = 0 # counter of total relocations
 # Checks if some of vehicles has finished his single mission trip or trip chain
 # If so, calls the method "end occupation" of the vehicle
 for j in range(self.number_picav):
 if ((self.vehicles[j].travel_time == t)&(self.vehicles[j].activity_pattern ==
2)&(self.vehicles[j].state == 1)):
 # print 'the vehicle',self.vehicles[j].name,'is arrived at the station/unit'
 self.vehicles[j].end_occupation(t,self)
 if ((self.vehicles[j].activity_time == t)&(self.vehicles[j].activity_pattern ==
1)&(self.vehicles[j].state == 1)):
 self.vehicles[j].end_occupation(t,self)
 # print 'the vehicle',self.vehicles[j].name,'is arrived at the station/unit'

 # Checks if some of vehicles has finished its redirection trip. If so, calls the
method "end redirection" of the vehicle
 if ((self.vehicles[j].redirection_time == t)&(self.vehicles[j].state == 4)):
 # print 'the vehicle',self.vehicles[j].name,'is arrived at the station'
 self.vehicles[j].end_redirection(t,self)

 for j in range(self.number_picav):

 241

 # The vehicle has been recalled by the user and has begun its trip towards the
user. The following checks if the vehicle has
 # reached the user and this trip is ended.
 if ((self.vehicles[j].travel_time == t)&(self.vehicles[j].state ==
5)&(self.vehicles[j].unit == 999999)&(self.vehicles[j].parking == 999999)):
 # print '---'
 # print 'the picav has reached the user'
 self.vehicles[j].end_occupation(t,self)
 if ((self.vehicles[j].parking < 99999)&(self.vehicles[j].unit <
99999))|((self.vehicles[j].parking > 99999)&(self.vehicles[j].unit >
99999)&(self.vehicles[j].state == 0)):
 print 'error: the vehicle cannot be contemporary in a station and in a unit, or
be nowhere'
 stop

 for j in range(self.number_users):
 if ((self.users[j].travel_time == t)&(self.users[j].activity_pattern ==
2)&(self.users[j].state == 1)):
 self.users[j].exits(self)
 if ((self.users[j].activity_time == t)&(self.users[j].activity_pattern ==
1)&(self.users[j].state == 1)):
 self.users[j].exits(self)

 # Checks if some vehicle has finished to relocate
 # If so, calls the method "end relocation" of the destination station
 for j in range(self.number_picav):
 if (self.vehicles[j].relocation_time == t)&(self.vehicles[j].state == 3):
 for k in range(self.number_stations):
 if (self.stations[k].name ==
self.vehicles[j].destination)&(self.vehicles[j].destination < 99999):
 self.stations[k].end_relocation(self.vehicles[j],t,self)
 break

 # Checkes if some users are at the last stop of the trip chain. If so, the supervisor
is called.
 # The method "choice final destination" of the supervisor is recalled
 if (self.case_study == 2):
 for j in range(self.number_picav):
 if (self.vehicles[j].final_time == t)&(self.vehicles[j].activity_pattern ==
1)&(self.vehicles[j].state == 1):

 242

 self.supervis[0].choice_final_destination(self.vehicles[j],self,t)

 # Updates the state of charge of vehicles. If the vehicle is in state 1,3,4,5 i.e. it is
moving, it discharges the battery.
 # If it is in state 0, it recharges.
 for k in range(self.number_picav):
 if (self.vehicles[k].state == 1)|(self.vehicles[k].state == 3)|(self.vehicles[k].state
== 4)|(self.vehicles[k].state == 5):
 self.vehicles[k].discharge(t,self) # discharges the battery if vehicle is
occupied or relocating
 if (self.case_study <3)|((self.case_study == 3)&(self.vehicles[k].parking <
99999)):
 if (self.vehicles[k].state == 2)&(self.vehicles[k].unit >
99999)&(self.vehicles[k].parking < 99999):
 self.vehicles[k].recharge(t,self) # recharges the battery if vehicle is idle at
pl
 if (self.vehicles[k].state == 0)&(self.vehicles[k].level_charge <
1)&(self.vehicles[k].unit > 99999)&(self.vehicles[k].parking < 99999):
 self.vehicles[k].recharge(t,self) # recharges the battery if vehicle is idle at
pl

 # Checks if some of vehicles has enough charge to be occupied or to relocate.
 # If so, calls the method "available vehicle" of the station where the vehicle is
 for k in range(self.number_picav):
 if (self.vehicles[k].state == 2)&(self.vehicles[k].level_charge >=
self.vehicles[k].minimal_charge):
 for j in range(self.number_stations):
 if (self.stations[j].name ==
self.vehicles[k].parking)&(self.vehicles[k].parking < 99999):
 # print 'the vehicle',self.vehicles[k].name,'has finished to recharge at the
station',self.stations[j].name
 self.stations[j].n_veh_relocation = self.stations[j].n_veh_relocation + 1
 self.stations[j].ready_vehicle(self.vehicles[k],t,self)
 break

 # Checks if some user arrives at the current instant or has finished the trip chain
 # If so, calls the method "user arrival" of the stations or of the units the users
arrive to
 for j in range(self.number_users):
 if (self.users[j].t_arrival == t):

 243

 if ((self.case_study == 3)&((self.users[j].typology ==
2)|(self.users[j].typology == 3))):
 for k in range(self.number_unit):
 if (self.unit[k].name == self.users[j].origin)&(self.users[j].origin <
99999):
 # print '---'
 # print 'arriva user',self.users[j].name
 self.unit[k].arrival_user(self.users[j],t,self)
 break
 else:
 for k in range(self.number_stations):
 if (self.stations[k].name == self.users[j].origin)&(self.users[j].origin <
99999):
 # print '---'
 # print 'arriva user',self.users[j].name
 self.stations[k].arrival_user(self.users[j],t,self)
 break

 # At the end of the day, the users still in queue go home. All stations queues are
set empty.
 if t > 1300:
 for i in range(number_users):
 if (self.users[i].state == 2)|(self.users[i].state == 4):
 self.users[i].state = 3 # state 3 = gone away
 self.users[i].time_queue = t - self.users[i].time_entrance_queue #
calculates the queuetime for all the users
 # print 'The user',self.users[i].name,'renounces and goes.
Queue:',self.users[i].parking
if self.case_study == 3: # tells if the user was in queue at a unit or at a
station
if self.users[i].typology_origin == 1:
print 'origin at a pl'
else:
print 'origin at a unit'
 self.users[i].pikav = 999999
 self.users_rejected = self.users_rejected + 1 # updates the number of
rejected users. A user is rejected only
 # when the end of the day is reached, not when the user is in queue for
more e.g. of 15 mins.
 for i in range(len(self.queue)): # sets all queues empty

 244

 self.queue[i] = []
 for i in range(len(self.queue_unit)):
 self.queue_unit[i] = []

 # checks if vehicles charging level is positif. If not, makes an error message.
 for k in range(self.number_picav):
print 'vehicle charge level',self.vehicles[k].name,'=',
self.vehicles[k].level_charge
 if self.vehicles[k].level_charge <= 0:
 print 'error charge'
 STOP

 # Beginning of relocation procedure
 # If in some stations the number of vehicles is below or above the thresholds, a
request of relocation
 # is generated. The method "begin relocation" of the stations in request is recalled
 if (t < 1330)&((case_study == 1)|(case_study == 3)):
 for j in range(self.number_stations):
 if (self.stations[j].n_veh_relocation <= self.low_critical_thresholds[j]):
 self.problem = 1 # problem = zero vehicle time: request of a vehicle
 # print '-----'
 # print 'the number of vehicles assigned at the
station',self.stations[j].name,'is ',self.stations[j].n_veh_relocation
 # print 'the low critical threshold is',self.low_critical_thresholds[j]
 # print 'the high critical threshold is',self.high_critical_thresholds[j]
 # print 'problem ',self.problem
 self.stations[j].begin_relocation(t,self)
 elif (self.stations[j].n_vehicles >= self.high_critical_thresholds[j]):
 self.problem = 2 # problem = full port time: offer of a vehicle
 # print '-----'
 # print 'the number of vehicles currently at the
station',self.stations[j].name,'is ',self.stations[j].n_vehicles
 # print 'the low critical threshold is',self.low_critical_thresholds[j]
 # print 'the high critical threshold is',self.high_critical_thresholds[j]
 # print 'problem ',self.problem
 self.stations[j].begin_relocation(t,self)

 # checks of the picavs, if their final time or travel time or activity time has a
clearly wrong value.

 245

 # this prevents from loosing vehicles "on the way"
 for j in range(self.number_picav):
 if self.vehicles[j].state == 1:
 if (self.vehicles[j].final_time > 10000)&(self.vehicles[j].travel_time >
10000)&(self.vehicles[j].activity_time > 10000):
 print 'error'
 STOP
 if (self.vehicles[j].final_time < t)&(self.vehicles[j].travel_time <
t)&(self.vehicles[j].activity_time < t):
 print 'error'
 STOP
 # prints online statistics
 self.online_statistics(t)
 self.offline_statistics() #prints offline statistics

 def online_statistics(self,t):
 # LENGTH OF QUEUES AND AVAILABLE VEHICLES at each station in each
time instant
 self.queue_lengths = [] # creates the statistics lists
 self.vehicles_available = []
 self.vehicles_ideally_present = [] # ideally present is related to the counter "n veh
relocation" exposed above
 # Ideally presents are the vehicle assigned to a unit (not actually present at a unit). For
example,if a vehicle
 # begins relocating, the destination station has a vehicle ideally present more, but not
an available vehicle more.
 # the vehciles available number will be updated when the vehicle effectively arrives.
 for i in range(len(self.queue)):
 self.queue_lengths.append(len(self.queue[i]))
 # print 'lengths of queue',self.queue_lengths
 for i in range(self.number_stations):
 self.vehicles_available.append(self.stations[i].n_vehicles)
 for i in range(self.number_stations):
 self.vehicles_ideally_present.append(self.stations[i].n_veh_relocation)
 # print 'vehicles available',self.vehicles_available
 # print 'vehicles ideally present',self.vehicles_ideally_present
 # controls that in any station the number if vehices available is negative
 for k in range(number_stations):
 if (self.vehicles_ideally_present[k] < 0)|(self.vehicles_available[k] < 0):

 246

 print 'error severe: impossible to have negative vehicles available'
 stop
 # severe case: controls that a vehicle is available "nowhere"
 for i in range(self.number_picav):
 if (self.vehicles[i].state == 0)&(self.vehicles[i].parking >
9999)&(self.vehicles[i].unit > 9999):
 # print
'vehicle',self.vehicles[i].name,'state',self.vehicles[i].state,'parking',self.vehicles[i].parking,'u
nit',self.vehicles[i].unit
 print 'error very severe'
 STOP
 if case_study == 3:
 # the name ideally of the following list is an unhappy choice. However, it contains the
number of vehicle that are present at a unit, i.e.
 # along the road in proximity of it. It checks that the number of vehicles available at
the units is positive.
 self.vehicles_ideally_unit = []
 for k in range(number_unit):
 self.vehicles_ideally_unit.append(self.unit[k].n_vehicles)
 # print 'vehicles available units',self.vehicles_ideally_unit
 for k in range(number_unit):
 if self.vehicles_ideally_unit[k] < 0:
 print 'error severe: impossible to have negative vehicles available'
 stop

 # NUMBER OF VEHICLES IN EACH STATE

 # initialization of counters of all the states
 self.picav_user = 0 # occupied by a user
 self.picav_relocation = 0 #relocating
 self.picav_charge = 0 # recharging
 self.picav_available_all = 0 # available
 self.picav_encounter = 0 # going towards the user
 self.picav_full_redirect = 0 # redirected because the station is full

 # update of the 5 counters

 247

 for j in range(self.number_picav):
 if self.vehicles[j].state == 1:
 self.picav_user = self.picav_user + 1
 if self.vehicles[j].state == 2:
 self.picav_charge = self.picav_charge + 1
 if self.vehicles[j].state == 3:
 self.picav_relocation = self.picav_relocation + 1
 if self.vehicles[j].state == 0:
 self.picav_available_all = self.picav_available_all + 1
 if self.vehicles[j].state == 4:
 self.picav_full_redirect = self.picav_full_redirect + 1
 if self.vehicles[j].state == 5:
 self.picav_encounter = self.picav_encounter + 1

update of the lists. Each list contains the number of picavs in one of the 4 states at the
current time instant.
not considered states 4 and 5.
 self.number_picav_state1.append(self.picav_user)
 self.number_picav_state2.append(self.picav_charge)
 self.number_picav_state3.append(self.picav_relocation)
 self.number_picav_state0.append(self.picav_available_all)
 self.number_picav_state4.append(self.picav_full_redirect)
 self.number_picav_state5.append(self.picav_encounter)

 # calculates the total number of relocations, and also the number of impossible
relocations
 rt = 0
 rl = 0
 for j in range(number_stations):
 rt = rt + self.stations[j].rt # updates the relocations' counter for the current time
instant
 rl = rl + self.stations[j].rl # rt = counter of total relocations; rl = counter of
impossible relocations
 self.stations[j].rt = 0
 self.stations[j].rl = 0
if (self.case_study == 1)|(self.case_study == 3):
 # print 'total relocations',rt
 # print 'impossible relocations',rl
 # updates the two lists which keep the number of impossible relocations and the total
number
 # of relocations at each time instant, for all the simulation period

 248

 self.number_impossible_relocations.append(rl)
 self.number_total_relocations.append(rt)
 self.calc_max_waiting(t)
 for i in range(number_stations):
 self.number_vehicles_available[i].append(self.stations[i].n_vehicles)
 self.max_time_queue[i].append(self.stations[i].max_waiting_time)
 self.number_users_queue[i].append(len(self.queue[i]))

 def offline_statistics(self):

 # determines the total and average time in queue spent by users
 for i in range(number_users):
 self.time_stayed_queue.append(self.users[i].time_queue)
 self.total_time_queue = 0.0
 for i in range(number_users):
 self.total_time_queue = self.total_time_queue + self.time_stayed_queue[i]
 self.average_time_queue = float(self.total_time_queue / number_users)

 # # prints some final statistics
 # print 'total time in queue (min) =',self.total_time_queue
if (self.case_study == 1)|(self.case_study == 3):
 # print 'total relocation time (min) =',self.total_relocation_time
 # print 'number of relocations =',self.number_relocations
 # print 'average wait time (min) =',self.average_time_queue
 # print 'number of users',number_users

 # Calculates percentiles and creates the list of all wait times of all users
 self.time_stayed_queue.sort()
 # print 'wait times =',self.time_stayed_queue
 lll_lista = len(self.time_stayed_queue)
 self.provv_95 = int(lll_lista*0.95+0.5)
 self.provv_90 = int(lll_lista*0.90+0.5)
 self.provv_50 = int(lll_lista*0.50+0.5)
 self.percentile_95 = self.time_stayed_queue[self.provv_95]
 self.percentile_90 = self.time_stayed_queue[self.provv_90]
 self.percentile_50 = self.time_stayed_queue[self.provv_50]
 self.lista = self.time_stayed_queue
 self.total_queuetime = self.total_time_queue

 249

Calculates the maximum waiting time for all the stations. Recalled by the
 def calc_max_waiting(self,t):
 self.max_waiting_time = []
 for j in range(number_stations):
 self.max_waiting_time.append(0)
 for k in range(number_users):
 if (self.users[k].state == 2)&(self.users[k].queue ==
self.stations[j].name)&(self.users[k].queue < 99999):
 provv = t - self.users[k].time_entrance_queue
 if self.max_waiting_time[j] < provv:
 self.max_waiting_time[j] = provv
 globale = []
 for j in range(number_stations):
 self.stations[j].max_waiting_time = self.max_waiting_time[j]
 globale.append(self.stations[j].max_waiting_time)
 # print 'max waiting time at stations',globale

#--------------- BEGIN DEFINITION OF CLASSES ----------------

class user:
 name = 0 #name
 distance = 0 # distance and slope are related to the user's trip and are transferred to the
picav unit.
 slope = 0
 travel_time = 0
 t_arrival = 999999 #arrival time
 time_waiting = 0 #waiting time # FREE VARIABLE USE IT!!!
 time_entrance_queue = 999999 #time of entering queue
 destination = 0 #destination
 activity_pattern = 0
 provenience = 0 #provenience
 travel_time = 0 #travel time
 activity_time = 0 #activity time
 parking_arrival = 999999 #parking of arrival

 250

 state = 0 # 0 = initialized, still has to be generated, 1 = in the vehicle, 2 = in the queue, 3
= dead, 4 = already assigned a vehicle
 parking = 999999 #parking
 pikav = 999999
 prob = 0
 typology = 0 #1 = trip from a station on the border of the intervention area ; 2 = return
trip to a station on the border of the intervention area; 3 = trip among units
 queue = 999999
 time_queue = 0
 time_provv_queue = 0
 memory_pl = 999999
 final_time = 999999
 reapparance_place = 999999
 unit = 99999

def case_study_management(self,sim):
if sim.case_study == 3:
for j in range(sim.number_users):
if self.typology == 2:
self.typology_origin = 2
else:
self.typology_origin = 1

 def istant_arrival (self,k,sim): # defines the exact instant in which the user arrives at the
origin parking lot
 # the parking lot origin and the users hourly arrival period are given
 if k < nor_morning[0]: # this is for the users arrived in the morning
 self.t_arrival = int(uniform(TI1_min,TI1_min+60))
 for j in range(1,len(nor_morning)):
 if (k >= nor_morning[j-1])&(k < nor_morning[j]):
 self.t_arrival = int(uniform((TI1_min+60*j),(TI1_min+60*(j+1))))
 if (k < nor_afternoon[0])&(k >= number_users_morning): # this is for the users
arrived in the afternoon
 self.t_arrival = int(uniform(TI2_min,TI2_min+60))
 for j in range(1,len(nor_afternoon)):
 if (k >= nor_afternoon[j-1])&(k < nor_afternoon[j]):
 self.t_arrival = int(uniform((TI2_min+60*j),(TI2_min+60*(j+1))))
 # in the evening no users arrive, they only finish their activities
 self.parking_arrival = self.origin # arrival pl of user is the same as origin

 251

 def mission_generation (self,t,sim): # defines if the user will have an activity travel
pattern or not
 # defines also the distances and the slopes that the user will encounter in its trip
 # calculates the user travel time and the activity time as a function of travel time
 if (sim.case_study == 2)&(self.activity_pattern == 1): # case study of
supervisor/flexible users; all users have a trip chain.
 self.calculate_reapparance_place(sim) # if the user has a trip chain and the case of
study is with the supervisor
 self.destination = 999999 # it calculates the last stop in the trip chain in
which the supervisor is called
 self.calculate_activity_time(sim,t) # recalls the method which calculates the
activity time duration. In this case of
 self.activity_time = 9999999 # study, the time duration calculated is the one
before the supervisor call
 # print 'the user will reappear at the unit',self.reapparance_place,'after a
time',self.final_time
 if self.reapparance_place > 1000:
 print 'error'
 STOP
 if self.final_time > 10000:
 print 'error'
 stop
 elif (sim.case_study == 2)&(self.typology == 2): # case study of supervisor/flexible
users.
 self.destination = 999999 # users are performing single mission trip from
inside the city centre to outside
 elif (sim.case_study == 3)&((self.activity_pattern == 2)|(self.typology == 3)):
 self.calculate_activity_time(sim,t) # calculates the duration of the travel time and
the activity time. This is for case of study 3
 # and users having origin or destination at a unit
 else: # all case study 1, case study 2 single mission trip from outside to inside the
intervention area, case study 3 with both
 # origin and destination at some parking lots.
 for j in range(len(dist_pls_pls)): # here calculates the travel time between the origin
and destination station
 if (dist_pls_pls[j].origin == self.origin)&(dist_pls_pls[j].destination ==
self.destination):
 self.distance = dist_pls_pls[j].value
 self.slope = pend_pls_pls[j].value
 if (sim.case_study == 1):

 252

 # print 'origin',self.origin,'; destination',self.destination,'; the parking lot is
distant mt.',self.distance
 # distance: in metres; speed: in metres/seconds.
 # travel time: in minutes
 if (t < TI2_min):
 self.travel_time = round(self.distance / (sim.vel_morning*60))
 elif (t <= TI2_max):
 self.travel_time = round(self.distance / (sim.vel_aftern*60))
 else:
 self.travel_time = round(self.distance / (sim.vel_evening*60))
 # print 'travel time',self.travel_time
 if self.travel_time == 0:
 self.travel_time = 1
 if ((sim.case_study == 2)&(self.typology == 1)&(self.activity_pattern == 2)):
 # print 'origin',self.origin,'; destination',self.destination,'; the parking lot is
distant mt.',self.distance
 # distance: in metres; speed: in metres/seconds.
 # travel time: in minutes
 if (t < TI2_min):
 self.travel_time = round(self.distance / (sim.vel_morning*60))
 elif (t <= TI2_max):
 self.travel_time = round(self.distance / (sim.vel_aftern*60))
 else:
 self.travel_time = round(self.distance / (sim.vel_evening*60))
 # print 'travel time',self.travel_time
 if self.travel_time == 0:
 self.travel_time = 1
 if ((sim.case_study == 3)&(self.activity_pattern == 1)):
 # print 'origin',self.origin,'; destination',self.destination,'; the parking lot is
distant mt.',self.distance
 # distance: in metres; speed: in metres/seconds.
 # travel time: in minutes
 if (t < TI2_min):
 self.travel_time = round(self.distance / (sim.vel_morning*60))
 elif (t <= TI2_max):
 self.travel_time = round(self.distance / (sim.vel_aftern*60))
 else:
 self.travel_time = round(self.distance / (sim.vel_evening*60))
 # print 'travel time',self.travel_time
 if self.travel_time == 0:
 self.travel_time = 1

 253

 # calculates the activity time and the final time. Final time is the time in which the user
performs the last stop of
 # the trip chain and calls the supervisor.
 if (sim.case_study == 2)&(self.activity_pattern == 1):
 self.final_time = self.travel_time * sim.coeff_activity_pattern
 # print 'supervisor call time',self.final_time
 if (sim.case_study != 2)&(self.activity_pattern == 1):
 self.activity_time = self.travel_time * sim.coeff_activity_pattern
 # print 'activity time',self.activity_time
 if self.activity_pattern == 2:
 self.activity_time = 9999999
 self.final_time = 99999999
 if self.travel_time == 0:
 self.travel_time = 1
 if self.activity_time == 0:
 self.activity_time = 1
 if self.final_time == 0:
 self.final_time = 1

 def calculate_reapparance_place(self,sim):
 # defines the reapparance place, i.e. the unit in which the user performs the last stop of
his trip chain and recalls the supervisor.
 prob = uniform (0,100)
 zzz = 999999
 if (prob <= sim.unit[0].cumul_att):
 self.reapparance_place = sim.unit[0].name
 zzz = 0
 else:
 for j in range (1,number_units):
 if (prob > sim.unit[j-1].cumul_att)&(prob <= sim.unit[j].cumul_att):
 self.reapparance_place = sim.unit[j].name
 zzz = j

 def exits(self,sim):
 self.state = 3
 # print 'the user',self.name,'exits the system'

 def calculate_activity_time(self,sim,t):
 # trip with origin at a station and destination at a unit
 if (sim.case_study == 2)|((sim.case_study == 3)&(self.typology == 1)):
 for j in range(len(dist_pls_points)):

 254

 if (dist_pls_points[j].origin == self.origin)&((dist_pls_points[j].destination ==
self.reapparance_place)|(dist_pls_points[j].destination == self.destination)):
 self.distance = dist_pls_points[j].value
 self.slope = pend_pls_points[j].value
 # distance: in metres; speed: in metres/seconds.
 # travel time: in minutes

 # trip with origin at a unit and destination at a station
 if (sim.case_study == 3)&(self.typology == 2):
 for j in range(len(dist_points_pls)):
 if (dist_points_pls[j].origin == self.origin)&(dist_points_pls[j].destination ==
self.destination):
 self.distance = dist_points_pls[j].value
 self.slope = pend_points_pls[j].value

 # trip with both origin and destination at a unit
 if (sim.case_study == 3)&(self.typology == 3):
 for j in range(len(dist_points_points)):
 if (dist_points_points[j].origin == self.origin)&(dist_points_points[j].destination
== self.destination):
 self.distance = dist_points_points[j].value
 self.slope = pend_points_points[j].value
 # distance: in metres; speed: in metres/seconds.
 # travel time: in minutes

 # calculates the travel time and the activity time
 if (t < TI2_min):
 self.travel_time = round(self.distance / (sim.vel_morning*60))
 elif (t <= TI2_max):
 self.travel_time = round(self.distance / (sim.vel_aftern*60))
 else:
 self.travel_time = round(self.distance / (sim.vel_evening*60))
 if self.travel_time == 0:
 self.travel_time = 1
print 'travel time',self.travel_time
 if sim.case_study == 2:
 self.final_time = self.travel_time * sim.coeff_activity_pattern # final time is always
the instant of the supervisor call.
 else:
 self.activity_time = self.travel_time * sim.coeff_activity_pattern

 255

class picav:
 name = 999999
 parking = 999999 #parking
 provenience = 999999 # parking origin
 destination = 999999 # destination parking, or destination perypheral area
 state = 0 # 0 free, 1 occupied by user, 2 in charge, 3 in relocation, 4 available only to
users but not for relocation (too low battery)
 activity_time = 999999 #activity time
 distance = 999999 # distance travelled
 travel_time = 999999 #travel time
 activity_pattern = 999999
 time_discharge = 999999 # remaining time for using the battery
 minimal_charge = 0.1 # important: remember to update!
 # It is the minimum charging level, i.e. for performing the longest relocation
 state_charge = 999999 # Actual level of battery charge
 final_time = 999999 # time of the last stop of the activity chain
 user = 999999 # name of PICAV user
 parking_arrival = 100000
 level_charge = 1
 problem_relocation = 0
 relocation_time = 9999999
 redirection_time = 9999999
 battery_discharge_time = 1
 slope = 0.0
 distances = 999999
 reapparance_place = 999999 # unit in which the picav user calls the supervisor
 final_time = 999999
 unit = 999999
 typology_trip = 0

----- ATTRIBUTES OF THE BATTERY, NOT SUBJECTED TO MODIFICATION -----

Battery is composed of 15 blocks connected in serial, each of them is composed of 27
cells connected in parallel
 time_considered = battery_discharge_time # TIME OF DISCHARGE IN MINUTES
 height = 1.698 # m
 width = 0.8 # m
 length = 1.62 # m

 256

 weight = 250 # kg
 Cx = 0.7 # aerodynamic coefficient
 frontal_area = 1.3584 # mq
 mechanical_efficiency = 0.93
 motor_voltage = 48 # V DC
 battery_voltage = 48 # V = Vblock * n.blocks
 gravity_constant = 9.81 # m/s^2
 air_density = 1.239 # km / mc
 electrical_efficiency = 0.92
 battery_capacity = 202 # Ampere hour (energy provided by the battery in 1 hour)
 accelleration = 0
 balancing_time = 0.1
 added_weight = weight # weight of a person
 rolling_coefficient = 0.015

 def presence_picav (self,k,sim): # the picav is generated and its initial station is defined
 station_vehicle = []
 counter = 0
 for j in range(number_stations):
 counter = counter + sim.NPP[j]
 station_vehicle.append(counter)
 if self.name < (station_vehicle[0]):
 self.parking = 1
 else:
 for j in range(1,number_stations):
 if (self.name >= station_vehicle[j-1])&(self.name < station_vehicle[j]):
 self.parking = j+1
 self.level_charge = 1
 self.unit = 999999

 def occupation (self,user,t,sim): # occupation of the vehicle from the user
print 'the user',user.name,'enters the vehicle',self.name
 user.mission_generation(t,sim) # determines the destination and the end of the trip or
trip chain of the occupying user
 user.memory_pl = user.origin
 self.origin = user.origin # assigns to the picav all the attributes that have belonged to
the user.
 self.activity_pattern = user.activity_pattern # the attributes of the picav
 self.destination = user.destination # from the attributes of the user

 257

 self.parking_arrival = user.parking_arrival
 self.provenience = user.provenience
 self.reapparance_place = user.reapparance_place
 self.typology_destination = user.typology_destination
 self.typology_trip = user.typology
 if (self.reapparance_place > 1000)&(sim.case_study == 2)&(self.activity_pattern ==
1):
 print 'vehicle',self.name,'user',user.name
 print 'error',self.reapparance_place,user.reapparance_place
 stop
 self.parking = 9999999
 self.unit = 999999
 self.state = 1
 user.state = 1
 user.pikav = self.name
 self.user = user.name
 if user.travel_time == 0:
 user.travel_time = 1
 if user.activity_time == 0:
 user.activity_time = 1
 if user.final_time == 0:
 user.final_time = 1
 user.travel_time = user.travel_time + t # updates the travel time, activity time and
final time with the current time instant
 user.activity_time = user.activity_time + t # in order to determine the instant of end of
the user's trip
 user.final_time = user.final_time + t
 self.final_time = user.final_time
if (sim.case_study == 2)&(user.activity_pattern == 1):
print 'supervisor call time',user.final_time
 self.travel_time = user.travel_time
 self.activity_time = user.activity_time
 self.slope = user.slope
if sim.case_study != 2:
if self.activity_pattern == 1:
print 'and will end the trip chain at the instant',self.activity_time
else:
print 'and will end the single mission trip at the instant',self.travel_time
print 'user name',user.name,'type of user', user.typology,'vehicle
occupied',self.name
if sim.case_study == 2:

 258

if self.activity_pattern == 1:
print 'and will end the trip chain at the instant',self.final_time
elif user.typology == 1:
print 'and will end the single mission trip at the instant',self.travel_time
print 'user name',user.name,'type of user', user.typology,'vehicle
occupied',self.name

if (sim.case_study == 1):
print 'origin pl',self.origin,'destination pl',self.destination
if sim.case_study == 2:
if (self.activity_pattern == 2)&(user.typology == 1):
print 'origin pl',self.origin,'destination pl',self.destination
if self.destination > 99999:
print 'error: destination',self.destination
stop
else:
print 'origin pl',self.origin,'destination area',self.provenience
if self.provenience > 99999:
print 'error: destination area',self.provenience
stop
 if (sim.case_study == 2)&(self.activity_pattern == 2)&(user.typology == 2):
 self.reapparance_place = self.origin
 sim.supervis[0].choice_final_destination(self,sim,t)
if (sim.case_study == 3):
print 'origin pl/unit',self.origin,'destination pl/unit',self.destination

the picav begins to approach the user's position
 def begin_approach(self,sim,section):
 self.state = 5 # 5 = approaching the unit
 self.travel_time = section.travel_time
 if self.travel_time > 5*Tmax:
 print 'error: travel time too high. Travel time =',self.travel_time
 stop
 self.destination = section.destination
 self.unit = 999999
 self.parking = 999999
 if self.destination > 999:
 print 'error'
 stop
print '-----'

 259

print 'the call or the offer of vehicle is begun from the destination
unit',self.destination
print 'the arriving vehicle is the',self.name,'after a time',self.travel_time

end of the picav occupation
 def end_occupation (self,t,sim): # picav vehicles begins being recharged
 # state of Picav vehicle: 0 = available/free, 1 = occupied by a user, 2 = in charge, 3 =
relocating, 4 = in charge(2), 5 = moving towards a unit
 # re-initializes all the picav parameters
 self.activity_pattern = 999999
 if (sim.case_study == 3)&(self.typology_destination == 2):
 self.unit = self.destination
 self.state = 0
 else:
 self.parking = self.destination
 self.final_time = 99999999
 self.activity_time = 99999999
 self.travel_time = 99999999
 self.destination = 99999999
 self.origin = 9999999
 self.provenience = 999999
 self.typology_trip = 0
 self.reapparance_place = 999999
 # recalls the method "arrival vehicle" at the destination unit or at the destination station
 if ((sim.case_study == 3)&(self.typology_destination == 2)):
 for j in range(sim.number_unit):
 if (sim.unit[j].name == self.unit)&(self.unit < 99999):
 # print 'the vehicle is arrived at the unit',self.unit
 sim.unit[j].arrival_vehicle(self,t,sim)
 break
 else:
 for j in range(sim.number_stations):
 if (sim.stations[j].name == self.parking)&(self.parking < 99999):
 sim.stations[j].n_veh_relocation = sim.stations[j].n_veh_relocation + 1
 # print 'the vehicle',self.name,'is arrived at the station',self.parking
 sim.stations[j].arrival_vehicle(self,t,sim)
 break

end of the picav redirection trip: the redirection trip occurs when the destination station is
full. In this case, the
vehicle needs to be redirected to another station

 260

 def end_redirection(self,t,sim):
 self.redirection_time = 999999
 self.parking = self.destination
 self.unit = 999999
 for j in range(number_stations):
 if (self.destination == sim.stations[j].name)&(self.destination < 99999):
 # print 'the vehicle',self.name,'has finished its redirection and is arrived at the
station',self.parking
 sim.stations[j].n_veh_relocation = sim.stations[j].n_veh_relocation + 1
 self.destination = 999999
 sim.stations[j].arrival_vehicle(self,t,sim)
 break

implementation of the law of the battery discharge process
 def discharge(self,t,sim):
 # Remember: here the speed is expressed in mt/sec
 if (self.state == 1)|(self.state == 4):
 if (t < TI2_min):
 self.speed = sim.vel_morning
 elif (t <= TI2_max):
 self.speed = sim.vel_aftern
 else:
 self.speed = sim.vel_evening
 elif (self.state == 3)|(self.state == 5):
 if (t < TI2_min):
 self.speed = sim.vel_autom_morn
 elif (t <= TI2_max):
 self.speed = sim.vel_autom_aft
 else:
 self.speed = sim.vel_autom_even
 self.slope = self.slope / 100
 if self.slope < 0:
 self.slope = 0.0
 self.angulation = atan(self.slope)
 self.first_contribution = (self.weight + self.added_weight)* self.accelleration
 self.second_contribution = (self.weight + self.added_weight)* self.gravity_constant *
self.rolling_coefficient * cos(self.angulation)
 self.third_contribution = ((1/2)* self.frontal_area * self.air_density * self.Cx *
((self.speed)*(self.speed)))
 self.fourt_contribution = (self.weight + self.added_weight)* self.gravity_constant *
sin(self.angulation)

 261

 self.resistenz = self.speed * (self.first_contribution + self.second_contribution +
self.third_contribution + self.fourt_contribution)
 self.power =
(1/self.electrical_efficiency)*((1/self.mechanical_efficiency)*self.resistenz)/10
 self.ampere_consumed = (self.power * 1000)/self.motor_voltage
 # follows the output of the method
 self.battery_consumed = 0.01*(self.ampere_consumed *
self.time_considered)/(60*self.battery_capacity)
 if self.activity_pattern == 1:
 self.battery_consumed = self.battery_consumed/sim.coeff_activity_pattern
print 'battery consumed by the vehcile',self.name,'=',self.battery_consumed
 self.level_charge = self.level_charge - self.battery_consumed
 if self.level_charge > 1:
 self.level_charge = 1
print 'level of charge of the vehicle',self.name,'=',self.level_charge

implementation of the law of the battery recharge process. The normal recharge technique
has been considered. The fast recharge indeed damages the battery
 def recharge(self,t,sim):
 self.recharge_time = 1
 self.initial_level_recharge = self.level_charge
 if (self.initial_level_recharge >= 0.8):
 self.final_level_recharge = self.initial_level_recharge + 0.1/(60*(1 +
self.balancing_time))
 if (self.initial_level_recharge < 0.8):
 self.final_level_recharge = self.initial_level_recharge + 0.3/(60*(1 +
self.balancing_time))
 if (self.final_level_recharge >= 0.8):
 self.final_level_recharge = 0.8 + 0.1 *(((self.initial_level_recharge -
0.8)/0.3)+(1/(60*(1 + self.balancing_time))))
 if (self.final_level_recharge < 0)|(self.initial_level_recharge
<0)|(self.initial_level_recharge > self.final_level_recharge):
 print ' mistake on the charge level'
 STOP
 self.level_charge = self.final_level_recharge
 if self.level_charge > 1:
 self.level_charge = 1

 def calculate_travel_time(self,sim,t): # travel time between a unit and a station. It
defines this travel time which is needed for the supervisor call

 262

 for j in range(len(dist_points_pls)):
 if (dist_points_pls[j].origin == self.origin)&(dist_points_pls[j].destination ==
self.destination):
 self.distance = dist_points_pls[j].value
 self.slope = pend_points_pls[j].value
if self.activity_pattern == 2:
print 'origin unit',self.origin,', destination pl',self.destination,'. The parking
lot is distant',self.distance
 # distance: in metres; speed: in metres/seconds.
 # travel time: in minutes
 if (t < TI2_min):
 self.travel_time = round(self.distance / (sim.vel_morning*60))
 elif (t <= TI2_max):
 self.travel_time = round(self.distance / (sim.vel_aftern*60))
 else:
 self.travel_time = round(self.distance / (sim.vel_evening*60))
 if self.travel_time == 0:
 self.travel_time = 1
print 'travel time',self.travel_time
 break

 def travel_time_pls(self,sim,t): # travel time among parking lots
 for j in range(len(dist_pls_pls)):
 if (dist_pls_pls[j].origin == self.origin)&(dist_pls_pls[j].destination ==
self.destination):
 self.distance = dist_pls_pls[j].value
 self.slope = pend_pls_pls[j].value
print 'origin pl',self.origin,', destination pl',self.destination,'. The parking lot is
distant',self.distance
 # distance: in metres; speed: in metres/seconds.
 # travel time: in minutes
 if (t < TI2_min):
 self.travel_time = round(self.distance / (sim.vel_morning*60))
 elif (t <= TI2_max):
 self.travel_time = round(self.distance / (sim.vel_aftern*60))
 else:
 self.travel_time = round(self.distance / (sim.vel_evening*60))
 if self.travel_time == 0:
 self.travel_time = 1
 if self.origin == self.destination:
 self.travel_time = 999999

 263

print 'travel time',self.travel_time
 break

 def calculate_parking_lot(self,sim,t): # gives the supervisor all the travel times of all the
possible user's destinations stations
 for j in range(number_stations):
 self.destination = sim.stations[j].name
print 'destination =',self.destination
 if self.activity_pattern == 1:
 self.calculate_travel_time(sim,t) # recalls the method to determine the
destination station.
 elif self.activity_pattern == 2:
 self.travel_time_pls(sim,t)
 if self.travel_time == 0:
 self.travel_time = 999999
 sim.stations[j].travel_time = self.travel_time
 self.destination = 999999

class parking:
 max_waiting_time = 0 # maximum waiting time
 n_vehicles = 0
 name = 999999
 user = 999999
 travel_time = 999999
 rt = 0
 rl = 0
 problem = 999999 # 1 = zero vehicle time ; 2 = full port time

 def arrival_user(self,user,t,sim): # arrival of user
 # print 'the user',user.name,'is now arrived at the station',self.name
 if (self.n_vehicles > 0):
 for j in range(sim.number_picav):
 if (sim.vehicles[j].state == 0)&(sim.vehicles[j].parking ==
self.name)&(sim.vehicles[j].parking < 99999):
 self.n_vehicles = self.n_vehicles - 1
 self.n_veh_relocation = self.n_veh_relocation - 1
 # print 'subtraction of a vehicle',sim.vehicles[j].name,'at the station',self.name
 sim.vehicles[j].occupation(user,t,sim)

 264

 break
 else:
 nnn = self.name - 1
 user.queue = self.name
 user.state = 2
 user.parking = self.name
 user.time_entrance_queue = t
 sim.queue[nnn].append(user)
 # print 'the user',user.name,'is now in queue at the station',self.name

 def arrival_vehicle(self,picav,t,sim): # the vehicles arrives at the parking
 picav.parking = self.name
 picav.unit = 999999
 if self.n_vehicles < self.capacity:
 picav.state = 0
 picav.parking = self.name
 picav.travel_time = 99999999
 picav.relocation_time = 9999999
 picav.user = 9999999
 if picav.level_charge >= picav.minimal_charge:
 picav.state = 0 # available in toto
 # print 'the picav',picav.name,'is now recharging'
 # print 'I call the event ready vehicle'
 self.ready_vehicle(picav,t,sim)
 else:
 picav.state = 2
 self.n_veh_relocation = self.n_veh_relocation - 1
 # print 'the picav',picav.name,'is now recharging'

 # if the station is full, the vehicle must be redirected.
 else:
 # print 'the station',self.name,'is full and the vehicle must be redirected'
 self.n_veh_relocation = self.n_veh_relocation - 1
 picav.parking = 999999
 picav.unit = 999999
 index = -1
 distance = 999999
 # among the stations, chooses the nearest one which is able to accept the vehicle
 for i in range(number_stations):
 if sim.stations[i].n_vehicles < high_buffer_thresholds[i]:

 265

 for j in range(len(dist_pls_pls)):
 if (dist_pls_pls[j].origin == self.name)&(dist_pls_pls[j].destination ==
sim.stations[i].name):
 if dist_pls_pls[j].value < distance:
 distance = dist_pls_pls[j].value
 index = sim.stations[i].name
 if index == -1:
 # print 'error, no receiving station. The picav will push in the destination station
hoping for some space soon'
 picav.state = 0
 picav.parking = self.name
 picav.travel_time = 99999999
 picav.relocation_time = 9999999
 picav.user = 9999999
 if picav.level_charge >= picav.minimal_charge:
 picav.state = 0 # available in toto
 # print 'the picav',picav.name,'is now recharging'
 # print 'I call the event ready vehicle'
 self.ready_vehicle(picav,t,sim)
 else:
 picav.state = 2
 self.n_veh_relocation = self.n_veh_relocation - 1
 # print 'the picav',picav.name,'is now recharging'

 else:
 # if there is a receiving station, the picav is sent to it
 # print 'supporting station',index
 self.origin = self.name
 self.destination = index
 picav.destination = index
 picav.origin = self.name
 picav.travel_time_pls(sim,t) # calculation of the travel time to the receiving
station
if picav.travel_time > Tmax:
print 'ERRORE'
STOP
 picav.travel_time = picav.travel_time + t
 picav.redirection_time = picav.travel_time
 if picav.state == 1: # updates the instant of end of the trips also to the occupying
user
 picav.typology = 1

 266

 for j in range(number_users):
 if (sim.users[j].name == picav.user)&(picav.user <
99999)&(sim.users[j].state == 1):
 sim.users[j].activity_time = picav.redirection_time
 sim.users[j].travel_time = picav.redirection_time
 break
 picav.state = 4
 picav.parking = 999999
 picav.unit = 999999
 # print 'the picav will arrive at the destination at the
instant',picav.redirection_time

 # the vehicle has enough charging level and therefore it is free for being occupied.
 def ready_vehicle(self,picav,t,sim):
 picav.parking = self.name
 nnn = self.name - 1
 if (len(sim.queue[nnn])>0)&(picav.level_charge > picav.minimal_charge):
 # print 'length of queue',nnn,'=',len(sim.queue[nnn])
 uuu = sim.queue[nnn].pop(0)
 # print 'I estract the user',uuu.name,'from the queue at the station',self.name
 for j in range(number_users):
 if (sim.users[j].name == uuu.name)&(uuu.name < 99999):
 sim.users[j] = uuu
 sim.users[j].state = 2
 sim.users[j].time_queue = t - uuu.time_entrance_queue
 self.n_veh_relocation = self.n_veh_relocation - 1
 if (uuu.time_entrance_queue == 0)|(uuu.time_entrance_queue > 99999):
 print 'errore grave'
 stop
 picav.state = 1
 picav.occupation(sim.users[j],t,sim)
 else:
 if picav.level_charge > picav.minimal_charge:
 picav.state = 0 # available in toto
 self.n_vehicles = self.n_vehicles + 1
 # print 'the vehicle',picav.name,'is now free at the station',self.name
 # print 'addiction of a vehicle to station',self.name

 # Beginning of relocation procedure

 267

 def begin_relocation(self,t,sim):
 minimal = 100000000
 misser = -1
 pppp = -1
 receiver = -1
 if sim.problem == 1: # zero vehicle time
 receiver = self.name
 if sim.problem == 2: # full port time
 misser = self.name
 for i in range(len(dist_pls_pls)):

 # it checkes which can be the supporting station
 if ((dist_pls_pls[i].destination == self.name)&(sim.problem ==
1))|((dist_pls_pls[i].origin == self.name)&(sim.problem == 2)):
 for j in range(sim.number_stations):
 pppp = sim.stations[j].name - 1
 if (sim.stations[j].n_vehicles >=
sim.low_buffer_thresholds[pppp])&(sim.problem == 1)&(sim.stations[j].name !=
self.name):
 if sim.stations[j].name == dist_pls_pls[i].origin:
 # print 'possible misser =',sim.stations[j].name,'; distance
=',dist_pls_pls[i].value
 if (dist_pls_pls[i].value < minimal):
 minimal = dist_pls_pls[i].value
 misser = dist_pls_pls[i].origin
 if (sim.stations[j].n_vehicles <=
sim.high_buffer_thresholds[pppp])&(sim.problem == 2)&(sim.stations[j].name !=
self.name):
 if sim.stations[j].name == dist_pls_pls[i].destination:
 # print 'possible receiver =',sim.stations[j].name,'; distance
=',dist_pls_pls[i].value
 if (dist_pls_pls[i].value < minimal):
 minimal = dist_pls_pls[i].value
 receiver = dist_pls_pls[i].destination

 # if there is a supporting station, updates all the picav and stations' attributes and
counters
 if ((misser != -1)&(receiver != -1)):
 self.rt = self.rt + 1
 # print 'The relocation is now beginning. A vehicle is send from the
station',misser,'to the station',receiver

 268

 # print 'total relocations',self.rt
 # print 'impossible relocations',self.rl
 # print 'and they are distant metres',minimal
 for k in range(sim.number_stations):
 # updates the counter of the vehicles available at the current station and at the
supporting station
 if sim.stations[k].name == misser:
 if sim.problem == 1:
 sim.stations[k].n_vehicles = sim.stations[k].n_vehicles - 1
 sim.stations[k].n_veh_relocation = sim.stations[k].n_veh_relocation - 1
 self.n_veh_relocation = self.n_veh_relocation + 1
 # print 'the misser is the station',misser,' whereas I decurt a vehicle from the
station',sim.stations[k].name
 if sim.stations[k].name == receiver:
 if sim.problem == 2:
 self.n_vehicles = self.n_vehicles - 1
 self.n_veh_relocation = self.n_veh_relocation - 1
 # print 'the receiver is the station',receiver,' whereas I add a vehicle to the
station',sim.stations[k].name

 # determines the vehicle which is relocating and assigns to it the relocation time
 for i in range(sim.number_picav):
 if (sim.vehicles[i].state == 0)&(sim.vehicles[i].parking == misser):
 sim.vehicles[i].state = 3
 sim.vehicles[i].parking = 9999999
 sim.vehicles[i].unit = 9999999
 sim.vehicles[i].distance = minimal
 if sim.problem == 1:
 sim.vehicles[i].destination = self.name
 elif sim.problem == 2:
 sim.vehicles[i].destination = receiver
 if (t < TI2_min):
 sim.vehicles[i].relocation_time =
round(((sim.vehicles[i].distance)/(sim.vel_autom_morn*60))+t)
 elif (t < TI2_max):
 sim.vehicles[i].relocation_time =
round(((sim.vehicles[i].distance)/(sim.vel_autom_aft*60))+t)
 else:
 sim.vehicles[i].relocation_time =
round(((sim.vehicles[i].distance)/(sim.vel_autom_even*60))+t)
 if sim.vehicles[i].relocation_time == t:

 269

 sim.vehicles[i].relocation_time = t+1
 sim.total_relocation_time = sim.total_relocation_time +
sim.vehicles[i].relocation_time - t
 sim.number_relocations = sim.number_relocations + 1
 # print 'the vehicle',sim.vehicles[i].name,'relocates now between the
stations',misser,'and',receiver
 sim.vehicles[i].problem_relocation = sim.problem
 # print 'will finish relocating at time instant',sim.vehicles[i].relocation_time
 break

 # if the case of study is the 1 the relocation is impossible
 elif (misser == -1)&(sim.problem == 1)&(case_study == 1):
 # print 'impossible relocation'
 self.rt = self.rt + 1
 self.rl = self.rl + 1

 # if the case study is 3 checks if it is possible to get some vehicle from a unit
 elif (misser == -1)&(sim.problem == 1)&(case_study == 3):
 # print 'impossible relocation. Try if some vehicle is available from the units'
 self.rt = self.rt + 1
 self.rl = self.rl + 1
 distdist = 999999
 index = -1

 # checks if some vehicle is at a unit and takes the nearest one.
 for i in range(sim.number_picav):
 if (sim.vehicles[i].state == 0)&(sim.vehicles[i].unit < 99999):
 originprovv = sim.vehicles[i].unit
 destinationprovv = self.name
 for j in range(len(dist_points_pls)):
 if (dist_points_pls[j].origin == originprovv)&(dist_points_pls[j].destination
== destinationprovv):
 distprovv = dist_points_pls[j].value
 if distprovv < distdist:
 distdist = distprovv
 index = sim.vehicles[i].unit
 originprovv = 999999
 destinationprovv = 999999
 # print 'origin unit',index

 270

 # If there is a supporting unit, updates the number of vehicles at the supporting unit
and at the current station
 for j in range(number_unit):
 if (sim.unit[j].name == index)&(index > -1):
 sim.unit[j].n_vehicles = sim.unit[j].n_vehicles - 1
 if (index > -1)&(index < 99999):
 self.n_veh_relocation = self.n_veh_relocation + 1

 # calculate the distance from the parking lot and the unit. It doesnt use the method
"calculate travel time" because here the velocity considered is the one
 # for the automatic movement of the picav.
 for i in range(sim.number_picav):
 if (index == sim.vehicles[i].unit)&(index != -1):
 sim.vehicles[i].origin = sim.vehicles[i].unit
 sim.vehicles[i].destination = self.name
 for j in range(len(dist_points_pls)):
 if (dist_points_pls[j].origin ==
sim.vehicles[i].origin)&(dist_points_pls[j].destination == sim.vehicles[i].destination):
 sim.vehicles[i].distance = dist_points_pls[j].value
 sim.vehicles[i].slope = pend_points_pls[j].value
 break
 # print 'origin unit',sim.vehicles[i].origin,', destination
pl',sim.vehicles[i].destination,'. The unit is distant',sim.vehicles[i].distance
 # distance: in metres; speed: in metres/seconds.
 # travel time: in minutes
 if (t < TI2_min):
 sim.vehicles[i].travel_time = round(sim.vehicles[i].distance /
(sim.vel_autom_morn*60))
 elif (t <= TI2_max):
 sim.vehicles[i].travel_time = round(sim.vehicles[i].distance /
(sim.vel_autom_aft*60))
 else:
 sim.vehicles[i].travel_time = round(sim.vehicles[i].distance /
(sim.vel_autom_even*60))
 if sim.vehicles[i].travel_time == 0:
 sim.vehicles[i].travel_time = 1
 sim.vehicles[i].travel_time = sim.vehicles[i].travel_time + t
 # print 'travel time',sim.vehicles[i].travel_time
 if sim.vehicles[i].travel_time > 99999:
 print 'error'
 stop

 271

 sim.vehicles[i].unit = 999999
 sim.vehicles[i].state = 3
 sim.vehicles[i].relocation_time = sim.vehicles[i].travel_time
 break

 #end of relocation. Reinitialization of all the picav parameters and recall of the method
"arrival vehicle" of the picav
 def end_relocation(self,picav,t,sim):
 # print 'the picav',picav.name,'has now finished relocating and currently is at the
station',self.name
 if self.name != picav.destination:
 print 'error: the picav has gone to the wrong station'
 picav.parking = self.name
 picav.unit = 999999
 self.final_time = 99999999
 picav.activity_time = 99999999
 picav.destination = 99999999
 picav.origin = 99999999
 picav.user = 99999999
 picav.provenience = 9999999
 picav.typology_trip = 0
 picav.reapparance_place = 9999999
 if picav.problem_relocation == 2:
 self.n_veh_relocation = self.n_veh_relocation + 1
 self.arrival_vehicle(picav,t,sim)

class supervisor:

 def choice_final_destination(self,picav,sim,t):

 ppl = -1
 # print '--'
 if picav.activity_pattern == 1: # call of the supervisor from the last stop of the trip
chain
 picav.origin = picav.reapparance_place
 # print 'vehicle',picav.name,'calls supervisor from the unit',picav.reapparance_place
 picav.calculate_parking_lot(sim,t) # calculates the distance from the current unit to
all stations in the user's choice set

 272

 if picav.reapparance_place > 1000:
 print 'error'
 error
 elif picav.activity_pattern == 2: # call of the supervisor from the origin parking lot
 picav.reapparance_place = picav.origin
 # print 'vehicle',picav.name,'calls supervisor from the parking lot',picav.origin
 picav.calculate_parking_lot(sim,t) # calculates the distance from the current station
to all the other stations in the user's choice set
 if picav.reapparance_place > 1000:
 print 'error'
 error
 # print 'provenience of the vehicle',picav.provenience
 sim.calc_max_waiting(t) # calculates the maximum waiting time at each station
 flag = 0
 idt = picav.provenience - 1
 stations_provv = sim.choice_sets[idt]
 ttp_waiting = 0
 # takes the best station, i.e. the one for which the ratio: maximum waiting time / travel
time , is the greatest
 for k in range(len(stations_provv)):
 for j in range(number_stations):
 if (sim.stations[j].name == stations_provv[k])&(sim.stations[j].name !=
picav.origin):
 # print 'origin pl or unit',picav.origin,', destination pl',sim.stations[j].name,'.
Distance mins',sim.stations[j].travel_time,'wait
time',sim.stations[j].max_waiting_time,'vehicles',sim.stations[j].n_vehicles
 if sim.stations[j].max_waiting_time / sim.stations[j].travel_time > ttp_waiting:
 ppl = sim.stations[j].name
 ttp_waiting = sim.stations[j].max_waiting_time/sim.stations[j].travel_time
 flag = 1
 # otherwise takes the station for which the product: number vehicles available * travel
time, is the minimum
 if ppl == -1:
 nveicc = 100000
 for k in range(len(stations_provv)):
 for j in range(number_stations):
 if (sim.stations[j].name == stations_provv[k])&(sim.stations[j].name !=
picav.origin):
 if sim.stations[j].n_vehicles*sim.stations[j].travel_time < nveicc:
 nveicc = sim.stations[j].n_vehicles * sim.stations[j].travel_time
 flag = 2

 273

 ppl = sim.stations[j].name
 picav.destination = ppl
 if picav.destination == -1:
 error
 if flag == 0:
 error
 picav.origin = picav.reapparance_place
 # CALCULATES THE TRAVEL TIME from the current user's position and the
chosen destination station
 if picav.activity_pattern == 1:
 picav.calculate_travel_time(sim,t)
 elif picav.activity_pattern == 2:
 picav.travel_time_pls(sim,t)
 picav.travel_time = picav.travel_time + t
 picav.activity_time = picav.travel_time
 if picav.travel_time > 10000:
 error
 # print 'the picav vehicle has been assigned to station',picav.destination,'and it will
take',picav.travel_time
 if (picav.travel_time > 10000)|(picav.activity_time > 10000):
 # print picav.travel_time, picav.activity_time, 'error'
 stop
 for j in range(number_users):
 if (sim.users[j].name == picav.user)&(picav.user < 99999):
 sim.users[j].destination = picav.destination
 sim.users[j].travel_time = picav.travel_time
 sim.users[j].activity_time = picav.activity_time
Now it updates the state of the user who has been assigned the picav vehicle
 max_waiting_time = 0
 index = -1
 if flag == 1:
 for k in range(number_users):
 if (sim.users[k].queue == picav.destination)&(sim.users[k].state ==
2)&(picav.destination < 99999):
 provv = t - sim.users[k].time_entrance_queue
 if max_waiting_time < provv:
 max_waiting_time = provv
 index = sim.users[k].name
 sim.users[index].state = 4

 274

class sections:
 n_vehicles = 0
 destination = 999999
 name = 999999
 travel_time = 999999
 origin = 999999
 typology_misser = 999999
 picav = 999999

 # calculates the distances among the units
 def calculate_distance_unit(self,sim,t):
 for j in range(len(dist_points_points)):
 if (dist_points_points[j].origin == self.origin)&(dist_points_points[j].destination ==
self.destination)&(self.origin < 99999)&(self.destination < 99999):
 self.distance = dist_points_points[j].value
 self.slope = pend_points_points[j].value
 if (t < TI2_min):
 self.travel_time = round(self.distance / (sim.vel_morning*60))
 elif (t <= TI2_max):
 self.travel_time = round(self.distance / (sim.vel_aftern*60))
 else:
 self.travel_time = round(self.distance / (sim.vel_evening*60))
 if self.travel_time == 0:
 self.travel_time = 1
 # print 'travel time between the units',self.travel_time
 break

 # calculates the distances from a station to an unit
 def calculate_distance_stations(self,sim,t):
 # print 'origin',self.origin,'destination',self.destination
 for j in range(len(dist_pls_points)):
 if (dist_pls_points[j].origin == self.origin)&(dist_pls_points[j].destination ==
self.destination)&(self.origin < 99999)&(self.destination < 99999):
 self.distance = dist_pls_points[j].value
 self.slope = pend_pls_points[j].value
 if (t < TI2_min):
 self.travel_time = round(self.distance / (sim.vel_morning*60))
 elif (t <= TI2_max):
 self.travel_time = round(self.distance / (sim.vel_aftern*60))

 275

 else:
 self.travel_time = round(self.distance / (sim.vel_evening*60))
 if self.travel_time == 0:
 self.travel_time = 1
 # print 'travel time between the units',self.travel_time
 break

 # calculates the distance from a unit to a station. Similar to calculate travel time but here
it involves the units and not the vehicles
 def calculate_distance_stations_reverse(self,sim,t):
 flag = 0
 for j in range(len(dist_points_pls)):
 if (dist_points_pls[j].origin == self.origin)&(dist_points_pls[j].destination ==
self.destination)&(self.origin < 99999)&(self.destination < 99999):
 self.distance = dist_points_pls[j].value
 self.slope = pend_points_pls[j].value
 if (t < TI2_min):
 self.travel_time = round(self.distance / (sim.vel_morning*60))
 elif (t <= TI2_max):
 self.travel_time = round(self.distance / (sim.vel_aftern*60))
 else:
 self.travel_time = round(self.distance / (sim.vel_evening*60))
 if self.travel_time == 0:
 self.travel_time = 1
 # print 'travel time between the units',self.travel_time
 flag = 1
 break
 if flag == 0:
 print 'impossible to calculate travel time. Information missing'
 stop

 # arrival of the user at the unit
 def arrival_user(self,user,t,sim):
 # print 'the user',user.name,'is now arrived at the unit',self.name
 if (self.n_vehicles > 0):
 for j in range(sim.number_picav):
 if (sim.vehicles[j].state == 0)&(sim.vehicles[j].unit ==
self.name)&(sim.vehicles[j].unit < 99999):
 self.n_vehicles = self.n_vehicles - 1
 # print '--'
 # print 'subtraction of a vehicle at the unit',self.name

 276

 sim.vehicles[j].occupation(user,t,sim)
 break
 # no vehicles available at the current unit
 else:
 # print '--'
 # print 'no vehicles available, the request of a vehicle is generated from the
unit',self.name
 user.unit = self.name
 user.state = 2
 user.time_entrance_queue = t
 product = 0
 timetravel = 999999
 index = -1
 # checks if there are some vehicles at the units
 for j in range(sim.number_unit):
 if sim.unit[j].n_vehicles > 0:
 self.origin = sim.unit[j].name
 self.destination = self.name
 # print 'unit of origin',self.origin,'number vehicles',sim.unit[j].n_vehicles
 self.calculate_distance_unit(sim,t)
 if (1/self.travel_time) > product:
 timetravel = self.travel_time
 index = sim.unit[j].name
 product = 1/self.travel_time
 timetravel_unit = timetravel
 unit_misser = index
 if index == -1:
 # checks if there are some vehicles at the stations
 for j in range(sim.number_stations):
 if sim.stations[j].n_vehicles > 0:
 self.origin = sim.stations[j].name
 self.destination = self.name
 # print 'station of origin',self.origin,'number
vehicles',sim.stations[j].n_vehicles
 self.calculate_distance_stations(sim,t)
 if (1/self.travel_time) > product:
 timetravel = self.travel_time
 index = sim.stations[j].name
 product = 1/self.travel_time
 timetravel_stations = timetravel
 station_misser = index

 277

 # updates the user's attributes
 if index != -1:
 self.travel_time = timetravel_stations
 self.origin = station_misser
 self.typology_misser = 2
 user.state = 4
 # print 'station misser',station_misser
 else:
 # print 'the user must wait, no vehicles available in the whole area in this
moment'
 user.state = 2
 else:
 self.travel_time = timetravel_unit
 self.origin = unit_misser
 self.typology_misser = 1
 user.state = 4
 # print 'unit misser',unit_misser

 # the user begins waiting at the unit
 nnn = self.name
 sim.queue_unit[nnn].append(user)
 # print 'the user',user.name,'is now in queue at the unit',self.name
 if index != -1:
 self.travel_time = self.travel_time + t
 # if the misser is a unit, it updates the attributes of the unit misser and of the
current unit (receiver).
 # Determines the vehicle which will reach the user and updates its attributes
 if self.typology_misser == 1:
 for j in range (sim.number_unit):
 if (sim.unit[j].name == self.origin)&(self.origin < 99999):
 sim.unit[j].n_vehicles = sim.unit[j].n_vehicles - 1
 # print 'a vehicle will arrive at the user place at time',self.travel_time,'from
the unit',self.origin
 user.state = 4
 chck = -1
 for i in range(sim.number_picav):
 if (sim.vehicles[i].unit == self.origin)&(self.origin <
99999)&(sim.vehicles[i].state == 0):
 self.destination = self.name
 if self.destination == -1:
 print 'error on destination; method arrival user'

 278

 stop
 # print 'recall from arrival user'
 sim.vehicles[i].parking = 999999
 sim.vehicles[i].unit = 999999
 sim.vehicles[i].typology_destination = 2
 sim.vehicles[i].begin_approach(sim,self) # the vehicle is now
approaching
 chck = sim.vehicles[i].name
 break
 if chck == -1:
 print 'wrrore1!!!'
 print 'unit',self.origin
 stop
 # if the misser is a station, it updates the attributes of the station misser and of the
current unit (receiver).
 # Determines the vehicle which will reach the user and updates its attributes
 elif self.typology_misser == 2:
 for j in range (sim.number_stations):
 if (sim.stations[j].name == self.origin)&(self.origin < 99999):
 sim.stations[j].n_vehicles = sim.stations[j].n_vehicles - 1
 sim.stations[j].n_veh_relocation = sim.stations[j].n_veh_relocation - 1
 if sim.stations[j].n_vehicles < 0:
 print 'error severe',sim.stations[j].n_vehicles
 # print 'a vehicle will arrive at the user place at time',self.travel_time,'from
the station',self.origin
 user.state = 4
 chck = -1
 for i in range(sim.number_picav):
 if (sim.vehicles[i].parking == self.origin)&(self.origin <
99999)&(sim.vehicles[i].state == 0):
 sim.vehicles[i].parking = 999999
 sim.vehicles[i].unit = 9999999
 self.destination = self.name
 if self.destination == -1:
 print 'error on destination; method arrival user'
 stop
 # print 'recall from arrival user'
 sim.vehicles[i].typology_destination = 2
 sim.vehicles[i].begin_approach(sim,self) # the vehicle is now
approaching
 chck = sim.vehicles[i].name

 279

 break
 if chck == -1:
 print 'wrrore2!!!'
 print 'station',self.origin
 stop
 break
 elif index == -1: # if there is no vehicle available anywhere, the user simply waits
 self.origin = 999999
 self.destination = 999999
 # print 'the user stays in the unit',self.name,'waiting'

 def arrival_vehicle(self,picav,t,sim): # the vehicle arrives at the unit
 picav.user = 999999
 picav.unit = self.name
 picav.parking = 999999
 # print '---'
 # print 'the picav',picav.name,'is now arrived at unit',self.name
 www = self.name
 if picav.level_charge >= picav.minimal_charge:
 self.n_vehicles = self.n_vehicles + 1
 if len(sim.queue_unit[www]) == 0:
 time_waiting = 0
 index = 999999
 name_provv = 999999
 # if there are users waiting at a unit, takes the user who has been in queue for longer and
a vehicle is sent to him
 for j in range(sim.number_users):
 if (sim.users[j].unit < 99999)&(sim.users[j].parking >
99999)&(sim.users[j].state == 2):
 timewaiting = t - sim.users[j].time_entrance_queue
 if timewaiting > time_waiting:
 time_waiting = timewaiting
 index = sim.users[j].unit
 name_provv = sim.users[j].name
 # the receiving unit has been determined above. If a receiving unit exists, the attribute of
the current unit are updated,
 # as well as the attributes of the picav vehicle
 if (index != 999999)&(index != self.name):
 self.origin = self.name
 self.destination = index

 280

 self.calculate_distance_unit(sim,t)
 self.travel_time = self.travel_time + t
 for k in range(sim.number_users):
 if (name_provv == sim.users[k].name)&(name_provv < 99999):
 sim.users[k].state = 4
 # print 'recall from arrival vehicle'
 # print 'origin unit',self.name,'destination unit',self.destination
 self.n_vehicles = self.n_vehicles - 1
 picav.unit = 999999
 picav.parking = 999999
 picav.typology_destination = 2
 picav.begin_approach(sim,self)
 # if there are users waiting at a station, takes the user who has been in queue for longer
and a vehicle is sent to him
 else:
 index = 999999
 time_waiting = 0
 for k in range(sim.number_users):
 if (sim.users[k].unit > 99999)&(sim.users[k].parking <
99999)&(sim.users[k].state == 2):
 timewaiting = t - sim.users[k].time_entrance_queue
 if timewaiting > time_waiting:
 time_waiting = timewaiting
 index = sim.users[k].parking
 name_provv = sim.users[k].name
 # the receiving station has been determined above. If a receiving station exists, the
attribute of the current unit are updated,
 # as well as the attributes of the picav vehicle
 if (index != 999999)&(index != self.name):
 self.origin = self.name
 self.destination = index
 self.calculate_distance_stations_reverse(sim,t)
 self.travel_time = self.travel_time + t
 for f in range(sim.number_users):
 if (name_provv == sim.users[f].name)&(name_provv < 99999):
 sim.users[f].state = 4
 # print 'recall from arrival vehicle'
 # print 'origin unit',self.name,'destination station',self.destination
 self.n_vehicles = self.n_vehicles - 1
 picav.unit = 999999
 picav.parking = 999999

 281

 picav.typology_destination = 1
 picav.begin_approach(sim,self)
 # if there are users in the current unit, no need is to send the vehicle and the picav is
occupied again
 www = self.name
 if len(sim.queue_unit[www])>0:
 nnn = self.name
 u = sim.queue_unit[nnn].pop(0)
 for j in range(sim.number_users):
 if (sim.users[j].name == u.name)&(u.name < 99999):
 sim.users[j] = u
 sim.users[j].time_queue = t - u.time_entrance_queue
 if (u.time_entrance_queue == 0)|(u.time_entrance_queue > 99999):
 print 'errore grave'
 print u.name,u.time_entrance_queue,u.unit
 stop
 # print 'the picav is now occupied again'
 picav.unit = 9999999
 picav.parking = 9999999
 self.n_vehicles = self.n_vehicles - 1
 picav.occupation(sim.users[j],t,sim)
 break
 # if the state of charge of the vehicle is not enough, the vehicle is redirected to the nearest
station
 else:
 self.origin = self.name
 print 'not enough charge. The picav must be redirected to a station and put in charge'
 distmin = 9999999
 self.destination = -1
 for j in range(sim.number_stations):
 index = sim.stations[j].name
 for k in range(len(dist_points_pls)):
 if (dist_points_pls[k].origin == self.origin)&(dist_points_pls[k].destination ==
index):
 distprovv = dist_points_pls[k].value
 break
 if distprovv < distmin:
 self.destination = index
 distmin = distprovv
 if self.destination == -1:
 print 'error no charging station'

 282

 else:
 self.calculate_distance_stations_reverse(sim,t) #calculates the travel time to the
supporting station
 picav.origin = picav.unit
 picav.unit = 9999999
 picav.state = 4
 picav.destination = self.destination
 self.travel_time = self.travel_time + t
 picav.redirection_time = self.travel_time
 picav.distance = self.distance
 picav.slope = self.slope
 # print 'the picav is redirected to recharge at the station',picav.destination
 # print 'the picav will arrive there at time',picav.redirection_time

The file chiamasimulatore.py

-*- coding: cp1252 -*-
from numpy import *
from numpy.random import *
from numpy.oldnumeric.random_array import *
from simulatore import *

ss=simulator()
ss.simulation()

import csv

parking = csv.writer(open('PP.csv','wb'),
delimiter=',',quotechar='|', quoting=csv.QUOTE_NONE)
parking.writerow(('station id','time instant','n°veh
available','max_waiting_time','n°users_queue'))
for i in range(ss.number_stations):
 n_veh_available = ss.number_vehicles_available[i]
 max_time_queue = ss.max_time_queue[i]
 number_users_queue = ss.number_users_queue[i]
 for j in range(len(n_veh_available)):

parking.writerow((i+1,'',j+TI1_min,'',n_veh_available[j],'',m
ax_time_queue[j],'',number_users_queue[j]))

 283

queue = csv.writer(open('Users.csv','wb'),
delimiter=',',quotechar='|', quoting=csv.QUOTE_NONE)
queue.writerow(('identifier of user','time spent in queue'))
for j in range(ss.number_users):

queue.writerow((ss.users[j].name,'',ss.users[j].time_queue))

picav = csv.writer(open('Picav.csv','wb'), delimiter=',')
picav.writerow(('time instant','n°veh available','n°veh
occupied','n°veh in charge','n°veh relocating','n° veh
redirected for full station','n°veh approaching user'))
for j in range(len(ss.number_picav_state0)):

picav.writerow((j+TI1_min,'',ss.number_picav_state0[j],'',ss.
number_picav_state1[j],'',ss.number_picav_state2[j],'',ss.num
ber_picav_state3[j],'',ss.number_picav_state4[j],'',ss.number
_picav_state5[j]))

 284

Attachment B. Code of the optimization algorithm

-*- coding: cp1252 -*-
from numpy import *
from numpy.random import *
from numpy.oldnumeric.random_array import *
from simulatorefinale import *

---------------- INPUT DATA ------------------

flag = 0
flag is an indicator which defines whether to act on thresholds or on the fleet in case study
1 or 3.
flag is set equal to 0 for case of study 2 as thresholds are not relevant
flag is set equal to 1 if we are going to modify the fleet dimension and 2 if we are going
to modify thresholds

NPP = [11,11,11,11,11,11,11] # Number of vehicles in each station

low_critical_thresholds = [1,1,1,1,1,1,1] # critical thresholds
low_buffer_thresholds = [7,7,7,7,7,7,7] # buffer thresholds
print 'low critical thresholds =',low_critical_thresholds
print 'low buffer thresholds =',low_buffer_thresholds
print 'fleet =',NPP

cost_waiting = 0.10 # euro per minute
cost_vehicle = 4.117 # euro per vehicle
cost_relocation = 0.01 # euro per minute
constant = 20.82 # euro, due to energy consumption and management
mu = 1000.0 # penalty coefficient
memory = []

print 'MU =',mu

number_stations = len(NPP)

------------ INITIALIZATION ---------------

number_picav = 0
for j in range(number_stations):
 number_picav = number_picav + NPP[j]

count = 0
lists1 = []
percentile_95 = 0

 285

percentile_90 = 0
percentile_50 = 0
objective_function = 0
total_wait_cost = 0
total_relocation_cost = 0

Calculation of the objective function and percentiles.
this process is iterated 30 times in order to eliminate random effects

for w in range(30):
 print w
 ss=simulator()
 ss.simulation(NPP,low_critical_thresholds,low_buffer_thresholds)
 lists1.append(ss.lista)
 obj_fun = constant + cost_waiting*ss.total_queuetime + cost_vehicle*number_picav +
cost_relocation*ss.total_relocation_time
 c_wait = cost_waiting*ss.total_queuetime
 c_rel = cost_relocation*ss.total_relocation_time
 percentile_95 = percentile_95 + ss.percentile_95
 percentile_90 = percentile_90 + ss.percentile_90
 percentile_50 = percentile_50 + ss.percentile_50
 objective_function = objective_function + obj_fun
 total_wait_cost = total_wait_cost + c_wait
 total_relocation_cost = total_relocation_cost + c_rel

percentile_95 = percentile_95 / 30.0
percentile_90 = percentile_90 / 30.0
percentile_50 = percentile_50 / 30.0
objective_function = objective_function / 30.0
total_wait_cost = total_wait_cost / 30.0
total_relocation_cost = total_relocation_cost / 30.0

Update of the objective function with the penalty contribution (penalty contribution of
constraints)
if percentile_95 > (600.0/60.0):
 objective_function = objective_function + mu*cost_waiting*((percentile_95 -
(600.0/60.0))*(percentile_95 - (600.0/60.0)))
 print 'constraints not satisfied'
print '95th percentile =',percentile_95
if percentile_90 > (480.0/60.0):
 objective_function = objective_function + mu*cost_waiting*((percentile_90 -
(480.0/60.0))*(percentile_90 - (480.0/60.0)))
 print 'constraints not satisfied'
print '90th percentile =',percentile_90
if percentile_50 > (240.0/60.0):

 286

 objective_function = objective_function + mu*cost_waiting*((percentile_50 -
(240.0/60.0))*(percentile_50 - (240.0/60.0)))
 print 'constraints not satisfied'
print '50th percentile =',percentile_50

print 'objective function', objective_function
print 'total_wait_cost',total_wait_cost
print 'total_relocation_cost',total_relocation_cost

f_ob1 = objective_function # determines the objective function necessary for the cooling
schedule

--------------- FIRST ITERATION -----------------

print '------------------------'
recalls the number of vehicles and thresholds determined at the previous iteration
NPP_old = []
old_crit_thresholds = []
old_buffer_thresholds = []
number_picav_old = number_picav
for j in range(number_stations):
 old_crit_thresholds.append(low_critical_thresholds[j])
 old_buffer_thresholds.append(low_buffer_thresholds[j])
 NPP_old.append(NPP[j])

if (flag == 2)&((case_study == 1)|(case_study == 3)):

 # decides whether to modify low critical thresholds or low buffer thresholds
 i = uniform(0,1)
 if i >= 0.5:
 print 'act on critical thresholds'
 j = uniform(0,1)
 if ((j < 0.5)|(low_critical_thresholds[0] >= (NPP[0]-
1)))&(low_critical_thresholds[0]>0):
 for k in range(number_stations):
 low_critical_thresholds[k] = low_critical_thresholds[k]-1
 print 'decrease by one'
 else:
 for k in range(number_stations):
 low_critical_thresholds[k] = low_critical_thresholds[k]+1
 print 'increase by one'

 else:
 print 'act on buffer thresholds'
 j = uniform(0,1)

 287

 if ((j < 0.5)|(low_buffer_thresholds[0] >= (NPP[0]-
1)))&(low_buffer_thresholds[0]>(low_critical_thresholds[0]+1)):
 for w in range(number_stations):
 low_buffer_thresholds[w] = low_buffer_thresholds[w]-1
 print 'decrease by one'
 else:
 for w in range(number_stations):
 low_buffer_thresholds[w] = low_buffer_thresholds[w]+1
 print 'increase by one'

if (flag == 1)&((case_study == 1)|(case_study == 3)):
 print 'act on fleet dimension'
 j = uniform(0,1)
 if j < 0.5:
 number_picav = number_picav - len(NPP)
 component = -1
 print 'decrease by',len(NPP),'the number of vehicles'
 else:
 number_picav = number_picav + len(NPP)
 component = 1
 print 'increase by',len(NPP),'the number of vehicles'

 for j in range(number_stations):
 NPP[j] = NPP[j] + component

if case_study == 2:
 k = int(uniform(0,9))
 if k == 9:
 k = 5
 j = uniform(0,1)
 if j < 0.5:
 NPP[k] = NPP[k]-1
 print 'decrease by 1 in position',k+1
 else:
 NPP[k] = NPP[k]+1
 print 'increase by 1 in position',k+1
 print 'new solution:',NPP
 number_picav = 0
 for j in range(number_stations):
 number_picav = number_picav + NPP[j]

print 'low critical thresholds =',low_critical_thresholds

 288

print 'low buffer thresholds =',low_buffer_thresholds
print 'number of vehicles =',NPP

lists1 = []
percentile_95 = 0
percentile_90 = 0
percentile_50 = 0
objective_function = 0
total_wait_cost = 0
total_relocation_cost = 0

Calculation of the objective function and percentiles.

for w in range(30):
 print w
 ss=simulator()
 ss.simulation(NPP,low_critical_thresholds,low_buffer_thresholds)
 lists1.append(ss.lista)
 obj_fun = constant + cost_waiting*ss.total_queuetime + cost_vehicle*number_picav +
cost_relocation*ss.total_relocation_time
 c_wait = cost_waiting*ss.total_queuetime
 c_rel = cost_relocation*ss.total_relocation_time
 percentile_95 = percentile_95 + ss.percentile_95
 percentile_90 = percentile_90 + ss.percentile_90
 percentile_50 = percentile_50 + ss.percentile_50
 objective_function = objective_function + obj_fun
 total_wait_cost = total_wait_cost + c_wait
 total_relocation_cost = total_relocation_cost + c_rel

percentile_95 = percentile_95 / 30.0
percentile_90 = percentile_90 / 30.0
percentile_50 = percentile_50 / 30.0
objective_function = objective_function / 30.0
total_wait_cost = total_wait_cost / 30.0
total_relocation_cost = total_relocation_cost / 30.0

Updates the objective function with the constraints' penalty function
if percentile_95 > (600.0/60.0):
 objective_function = objective_function + mu*cost_waiting*((percentile_95 -
(600.0/60.0))*(percentile_95 - (600.0/60.0)))
 print 'constraints not satisfied'
print '95th percentile =',percentile_95
if percentile_90 > (480.0/60.0):

 289

 objective_function = objective_function + mu*cost_waiting*((percentile_90 -
(480.0/60.0))*(percentile_90 - (480.0/60.0)))
 print 'constraints not satisfied'
print '90th percentile =',percentile_90
if percentile_50 > (240.0/60.0):
 objective_function = objective_function + mu*cost_waiting*((percentile_50 -
(240.0/60.0))*(percentile_50 - (240.0/60.0)))
 print 'constraints not satisfied'
print '50th percentile =',percentile_50

print 'objective function', objective_function
print 'total_wait_cost',total_wait_cost
print 'total_relocation_cost',total_relocation_cost

f_ob2 = objective_function # determines the second objective function necessary for the
ooling schedule

------ DETERMINATION OF THE INITIAL TEMPERATURE AS REQUIRED BY
THE COOLING SCHEDULE ------

acceptance_ratio = 0.5
print 'acceptance_ratio',acceptance_ratio

if f_ob2 < f_ob1: # Determination of initial temperature
 diffp = f_ob1-f_ob2
else:
 diffp = f_ob2-f_ob1
temperat0 = diffp/log((1/acceptance_ratio))

print 'initial temperature',temperat0

f_ob = []
f_ob.append(f_ob1)
temperat = []
temperat.append(temperat0)

memory_critical = []
memory_buffer = []
memory_fleet = []

if f_ob2 < f_ob1: # determines which solution will be the best departure point for the
next iteration
 print 'solution 2 is better than solution 1 and therefore will be the departure point for the
next iteration'
 f_ob.append(f_ob2)

 290

 NPP_old = []
 old_crit_thresholds = []
 old_buffer_thresholds = []
 number_picav_old = number_picav
 for j in range(number_stations):
 old_crit_thresholds.append(low_critical_thresholds[j])
 old_buffer_thresholds.append(low_buffer_thresholds[j])
 NPP_old.append(NPP[j])

else:
 nnnnn = uniform(0,1)
 if nnnnn < 0.5:
 print 'accept the new solution; n=',nnnnn
 f_ob.append(f_ob2)
 old_crit_thresholds = []
 old_buffer_thresholds = []
 NPP_old = []
 number_picav_old = number_picav
 for j in range(number_stations):
 old_crit_thresholds.append(low_critical_thresholds[j])
 old_buffer_thresholds.append(low_buffer_thresholds[j])
 NPP_old.append(NPP[j])
 else:
 print 'the previous solution is the good one; n=',nnnnn
 low_critical_thresholds = []
 low_buffer_thresholds = []

 NPP = []
 number_picav = number_picav_old
 for j in range(number_stations):
 low_critical_thresholds.append(old_crit_thresholds[j])
 low_buffer_thresholds.append(old_buffer_thresholds[j])
 NPP.append(NPP_old[j])
for j in range(number_stations):
 memory_critical.append(low_critical_thresholds[j])
 memory_buffer.append(low_buffer_thresholds[j])
 memory_fleet.append(NPP[j])

--
----------------------- BODY OF THE ALGORITHM ----------------------------
--

local_optimum = 0
for m in range (500):
 print '------------------------'
 print 'iteration =',m

 291

 lists1 = []

 if (flag == 2)&((case_study == 1)|(case_study == 3)):

 # decides whether to modify low critical thresholds or low buffer thresholds
 i = uniform(0,1)
 if i >= 0.5:
 print 'act on critical thresholds'
 j = uniform(0,1)
 if ((j < 0.5)|(low_critical_thresholds[0] >= (NPP[0]-
1)))&(low_critical_thresholds[0]>0):
 for k in range(number_stations):
 low_critical_thresholds[k] = low_critical_thresholds[k]-1
 print 'decrease by one'
 else:
 for k in range(number_stations):
 low_critical_thresholds[k] = low_critical_thresholds[k]+1
 print 'increase by one'
 if low_critical_thresholds == memory_critical:
 print 'follows'
 continue

 else:
 print 'act on buffer thresholds'
 j = uniform(0,1)
 if ((j < 0.5)|(low_buffer_thresholds[0] >= (NPP[0]-
1)))&(low_buffer_thresholds[0]>(low_critical_thresholds[0]+1)):
 for w in range(number_stations):
 low_buffer_thresholds[w] = low_buffer_thresholds[w]-1
 print 'decrease by one'
 else:
 for w in range(number_stations):
 low_buffer_thresholds[w] = low_buffer_thresholds[w]+1
 print 'increase by one'
 if low_buffer_thresholds == memory_buffer:
 print 'follows'
 continue

 if (flag == 1)&((case_study == 1)|(case_study == 3)):
 print 'act on fleet dimension'
 j = uniform(0,1)
 if (j < 0.5)&(NPP[0]>low_buffer_thresholds[0]):
 number_picav = number_picav - len(NPP)
 component = -1
 print 'decrease by',len(NPP),'the number of vehicles'

 292

 else:
 number_picav = number_picav + len(NPP)
 component = 1
 print 'increase by',len(NPP),'the number of vehicles'

 for j in range(number_stations):
 NPP[j] = NPP[j] + component

 if NPP == memory_fleet:
 print 'follows'
 continue

 if case_study == 2:
 k = int(uniform(0,9))
 if k == 9:
 k = 5
 j = uniform(0,1)
 if (j < 0.5)&(NPP[k]>low_buffer_thresholds[k]):
 NPP[k] = NPP[k]-1
 print 'decrease by 1 in position',k+1
 else:
 NPP[k] = NPP[k]+1
 print 'increase by 1 in position',k+1
 print 'new solution:',NPP
 number_picav = 0
 for j in range(number_stations):
 number_picav = number_picav + NPP[j]

 if NPP == memory_fleet:
 print 'follows'
 continue

 print 'low critical thresholds =',low_critical_thresholds
 print 'low buffer thresholds =',low_buffer_thresholds
 print 'number of vehicles =',NPP

 # Calculates the objective function

 lists1 = []
 percentile_95 = 0
 percentile_90 = 0
 percentile_50 = 0
 objective_function = 0

 293

 total_wait_cost = 0
 total_relocation_cost = 0

 for w in range(30):
 print w
 ss=simulator()
 ss.simulation(NPP,low_critical_thresholds,low_buffer_thresholds)
 lists1.append(ss.lista)
 obj_fun = constant + cost_waiting*ss.total_queuetime + cost_vehicle*number_picav +
cost_relocation*ss.total_relocation_time
 c_wait = cost_waiting*ss.total_queuetime
 c_rel = cost_relocation*ss.total_relocation_time
 percentile_95 = percentile_95 + ss.percentile_95
 percentile_90 = percentile_90 + ss.percentile_90
 percentile_50 = percentile_50 + ss.percentile_50
 objective_function = objective_function + obj_fun
 total_wait_cost = total_wait_cost + c_wait
 total_relocation_cost = total_relocation_cost + c_rel

 percentile_95 = percentile_95 / 30.0
 percentile_90 = percentile_90 / 30.0
 percentile_50 = percentile_50 / 30.0
 objective_function = objective_function / 30.0
 total_wait_cost = total_wait_cost / 30.0
 total_relocation_cost = total_relocation_cost / 30.0

 # updates the objective function with the penaility function
 if percentile_95 > (600.0/60.0):
 objective_function = objective_function + mu*cost_waiting*((percentile_95 -
(600.0/60.0))*(percentile_95 - (600.0/60.0)))
 print 'constraints not satisfied'
 print '95th percentile =',percentile_95
 if percentile_90 > (480.0/60.0):
 objective_function = objective_function + mu*cost_waiting*((percentile_90 -
(480.0/60.0))*(percentile_90 - (480.0/60.0)))
 print 'constraints not satisfied'
 print '90th percentile =',percentile_90
 if percentile_50 > (240.0/60.0):
 objective_function = objective_function + mu*cost_waiting*((percentile_50 -
(240.0/60.0))*(percentile_50 - (240.0/60.0)))
 print 'constraints not satisfied'
 print '50th percentile =',percentile_50

 print 'objective function', objective_function
 print 'total_wait_cost',total_wait_cost
 print 'total_relocation_cost',total_relocation_cost

 294

 temperature = temperat[m-1]*0.9 # cooling schedule
 temperat.append(temperature)

 ll = size(f_ob)

 if local_optimum > 100:
 print 'Reached a local optimum. End of the algorithm'
 STOP

---------------------- Vaglio la funzione obiettivo --------------------------
 if f_ob[ll-1]>objective_function:
 print 'accept the new solution because the objective function is better'
 f_ob.append(objective_function)
 local_optimum = 0
 old_crit_thresholds = []
 old_buffer_thresholds = []
 NPP_old = []
 number_picav_old = number_picav
 for j in range(number_stations):
 old_crit_thresholds.append(low_critical_thresholds[j])
 old_buffer_thresholds.append(low_buffer_thresholds[j])
 NPP_old.append(NPP[j])
 else:
 provv = exp((f_ob[ll-1]-objective_function)/temperature)
 nnnnn = uniform(0,1)
 if nnnnn < exp((f_ob[ll-1]-objective_function)/temperature):
 print 'accept the new solution'
 print 'acceptance_ratio',provv,' ,n:',nnnnn
 f_ob.append(objective_function)
 local_optimum = 0
 old_crit_thresholds = []
 old_buffer_thresholds = []
 number_picav_old = number_picav
 NPP_old = []
 for j in range(number_stations):
 old_crit_thresholds.append(low_critical_thresholds[j])
 old_buffer_thresholds.append(low_buffer_thresholds[j])
 NPP_old.append(NPP[j])
 else:
 print 'the previous solution is the good one; n:',nnnnn,'acceptance ratio:',provv
 low_critical_thresholds = []
 low_buffer_thresholds = []
 NPP = []
 number_picav = number_picav_old
 for j in range(number_stations):
 low_critical_thresholds.append(old_crit_thresholds[j])

 295

 low_buffer_thresholds.append(old_buffer_thresholds[j])
 NPP.append(NPP_old[j])
 local_optimum = local_optimum + 1

 memory_critical = []
 memory_buffer = []
 memory_fleet = []

 for j in range(number_stations):
 memory_critical.append(low_critical_thresholds[j])
 memory_buffer.append(low_buffer_thresholds[j])
 memory_fleet.append(NPP[j])

	AAAAAPagina iniziale
	AAAAIndex
	AAALista simboli
	AAIndex of figures
	AIndex of tables
	BBBSommario + abstract
	BIntroduzioneElve
	Cap1-The context
	Cap2-State of the art on CarSharing
	2.1.4.3.2. Which is the supporting station?
	2.1.4.3.3. Performance of the criteria used for selecting the supporting station
	2.1.4.3.5. How is the relocation performed?
	2.1.4.3.6. Performance of the ridesharing relocation techniques
	2.1.5. Third generation car sharing systems

	Cap3-The proposed transport system
	Cap4-Simulatore
	4.4.1. Input data
	The simulation time period
	The road network
	The transport system characteristics
	The transport demand

	4.4.2. Output data
	Level of Service (LOS)
	Efficiency

	Cap5-ottimizzazione
	5.3.1. The cost function
	5.3.1.1. The independent variables for the management strategy involving flexible users
	5.3.1.2. The independent variables for the two management strategies involving automated vehicles

	Cap6-Calibration-ValidationELVE
	Cap7-Genoa case study
	Cap8-Barreiro
	Chapter 8. Barreiro case study.
	8.2.1. The transport demand
	8.3. Output of the simulator and conclusions

	Cap9-sensitivity-analysis
	Conclusioni
	REFERENCES
	ZA - Simulator's code
	ZB - Optimization's code

