
Acta Cybernetica 20 (2011) 331–346.

Mining High Utility Itemsets in Massive

Transactional Datasets∗

Vu Duc Thi† and Nguyen Huy Duc‡

Abstract

Mining High Utility Itemsets from a transaction database is to find item-

sets that have utility beyond an user-specified threshold. Existing High Utility

Itemsets mining algorithms suffer from many problems when being applied

to massive transactional datasets. One major problem is the high memory

dependency: the gigantic data structure built is assumed to fit in the com-

puter main memory. This paper proposes a new disk-based High Utility

Itemsets mining algorithm, which achieves its efficiency by applying three

new ideas. First, transactional data is converted into a new database layout

called Transactional Array that prevents multiple scanning of the database

during the mining phase. Second, for each frequent item, a relatively small in-

dependent tree is built for summarizing co-occurrences. Finally, a simple and

non-recursive mining process reduces the memory requirements as minimum

candidacy generation and counting is needed. We have tested our algorithm

on several very large transactional databases and the results show that our

algorithm works efficiently.

Keywords: High Utility Itemset Mining, COUI-tree

1 Introduction

A framework for high utility itemset mining was proposed recently by Yao et al
(H. Yao and H. J. Hamilton, 2006) [6]. In this, the value of one item is a number
(the quantity of the sold item, we can call it an objective value), otherwise, it has
a utility table that contains utility of all items in the dataset (we can call it a
subjective value, determined by manager). Utility of a itemset is the sum of all
utility of all items in that itemset. The high utility itemset mining problem is to

∗This work was funded by the Vietnam’s National Foundation for Science and Technology
Development (NAFOSTED) via a research grant for fundamental sciences, grant number: 102.01-
2010.09

†Institute of Information Technology. Viet Namese Academy of Science and Technology.,
E-mail: vdthi@ioit.ac.vn

‡Faculty of Information and Computer, National Training College for Teachers, Ha Noi, Viet
Nam., E-mail: ducnghuy@yahoo.com

DOI: 10.14232/actacyb.20.2.2011.6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147062398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


332 Vu Duc Thi and Nguyen Huy Duc

find all itemsets that have utility larger than a user specified value of minimum
utility.

In [6], H. Yao and H. J. Hamilton proposed a mining method and described
pruning strategies based on the mathematical properties of utility constraints. They
also developed an algorithm named Umining and another heuristic based algorithm
Umining H to discover high utility itemsets.

Recent research has focused on efficient high utility mining algorithms using
intermediate anti-monotone measures for pruning the search space. In [7], Liu et
al. (Y. Liu, Liao, & Choudhary, 2005) propose a two phase algorithm to mine high
utility itemsets. They use a transaction weighted utility (TWU) measure in the
first phase to find the supersets of high utility itemsets, followed by a rescan of the
database to determine the actual high utility itemsets among them. However, their
algorithm is based on the candidate generation-and-test approach and so suffers
from poor performance when mining dense datasets and long patterns in the same
way as the Apriori algorithm for frequent pattern mining.

In this paper, we propose an efficient algorithm for utility mining in massive
datasets. This algorithm rearranges database and saves it the external memory,
in mining process only a small part of data is put into the internal memory and
mining is based on the idea of COFI-tree algorithm by Mohammad El-Hajj and
Osmar R. Zaiane presented in 2003. After all data is rearranged and stored in
the external memory, we can mine high utility itemsets with a different threshold
without reorganizing the database.

The rest of the paper is organized as follows: In Section 2, we define the relevant
terms. Section 3 summarizes the COFI-tree algorithm used in mining frequent
patterns. Section 4 describes our new algorithm for mining high utility itemsets in
large datasets. The performance studies of the algorithm are given in Section 5.
Section 6 contains the conclusions of the paper.

2 High Utility Itemset Mining

In this Section, we give the basic notations and the definitions of terms to describe
high utility itemset mining, based on (H. Yao and H. J. Hamilton, 2006) [6]. Let
I = {i1, . . . , in} be a set of items. A transaction T is a subset of I, T ⊆ I. DB =
{T1, . . . , Tm} is a transaction database. Each transaction is assigned by an ID

called TID. A subset X ⊆ I which contains k different items is called k-itemset.
Transaction T contains X if X ⊆ T .

Definition 1. The value of item ip in transaction Tq (at column ip row Tq of
database) is an objective value denoted as (ip, Tq).

Definition 2. Calling value, which is assigned by manager for item ip in database,
based on estimating utility gaining from one unit of that item is a called subjective
value denoted as s(ip).

Normally, the subjective value is given in a table called the utility table. For



Mining High Utility Itemsets in Massive Transactional Datasets 333

example, in Table 1 and 2, the objective value of item B at transaction T2 is
o(B, T2) = 12, the subjective value of item B is s(B) = 5.

Definition 3. Let x be an objective value and y be a subjective value of one item.
Function f(x, y) : R × R −→ R is called the utility function calculated as follow:
f(x, y) = x× y.

Table 1: Transactional database

TID A B C D E
T 1 0 12 2 0 2
T 2 0 12 0 2 1
T 3 2 0 1 0 1
T 4 1 0 0 2 1
T 5 0 0 4 0 2
T 6 1 2 0 0 0
T 7 0 20 0 2 1
T 8 3 0 25 6 1
T 9 1 2 0 0 0
T 10 0 0 16 0 1

Table 2: Utility table

Item Profit ($/unit)
A 3
B 5
C 1
D 3
E 5

Definition 4. Let f(x, y) be an utility function. The utility of item ip in transac-
tion Tq (denoted as u(ip, Tq) ) is the value of f(x, y) at o(ip, Tq) and s(ip), that is
u(ip, Tq) = f(o(ip, Tq), s(ip)).

Definition 5. Let X be an itemset in transaction Tq. Utility of X in transaction
Tq, denoted as u(X,Tq), is defined as: u(X,Tq) =

∑
ip∈X⊆Tq

u(ip, Tq).

An itemset X has an associated set of transactions in DB, denoted as dbX ,
where dbX = {Tq : X ⊆ Tq, Tq ∈ DB}.

Definition 6. Utility of itemset X in database DB, denoted as u(X), is utility
sum of X itemset at all transactions of dbX , that is: u(X) =

∑
Tq∈dbX

u(X,Tq)

=
∑

Tq∈dbX

∑
ip∈X u(ip, Tq).



334 Vu Duc Thi and Nguyen Huy Duc

For example, in Table 1 and 2, u(B, T2) = 12 · 5 = 60. Consider X = {B,D},
u(X,T2) = u(B, T2)+u(D,T2) = 12·5+2·3 = 66, there are two transactions T2 and
T7 which contain itemset X , so dbX = {T2, T7}, u(X) = u(X,T2)+u(X,T7) = 172.

Definition 7. Given a minutil (> 0) and a itemset X. X is called high utility
itemset if u(X) ≥ minutil; otherwise, X is called low utility itemset.

Definition 8. Given a transaction database DB and a minutil. The problem of
mining high utility itemsets is to find HU set such that it contains all high utility
itemsets, i.e.:

HU = {X : X ⊆ I, u(X) ≥ minutil}.

The problem of mining frequent itemsets can be seen as a special case of mining
high utility itemsets when all items have the objective value of 0 or 1 and subjective
value of 1. The main property used for mining frequent itemsets is Apriori. The
Apriori property states that all nonempty subsets of a frequent itemset must also be
frequent. It is not hard to see that this property is not correct in the case of utility.
For example, in database of Table 1, we have, u(BC) = 62 < 72 = u(BCE), while
u(BC) = 62 > 0 = u(BCD). The following section will present the fundamental
idea of IM algorithm [9] for mining frequent itemsets using COFI-tree structure.

3 Mining frequent itemsets based on the structure

of COFI-tree.

In 2003, Mohammad El-Haj and Osmar R. Zaiane in Department of Computing
Science University of Alberta Edmonton, AB, Canada proposed IM (Inverted Ma-
trix) algorithm [9] for mining frequent itemsets in large databases.

IM algorithm can be divided into two phases:
Phase 1: (pre-processing) It rearranges data into matrix and saves this matrix

in the external memory.
Phase 2: This phase is mining matrix by using COFI-tree (Co-Occurrence Fre-

quent Item Tree) for each item [8].
In the first phase, the Inverted Matrix is a disk-based data layout made of two

parts: the index and the transactional arrays. The index contains the items and
their respective frequencies. The transactional array is a set of rows in which each
row is associated with one item in the index part. Each row is made of a pairs of
pointers holding following information: the physical address in the index part of
the next item in the same transaction, and the physical address in the row of the
next item in the same transaction. Building the Inverted Matrix is accomplished
in two passes of the database during the pre-processing phase. The first pass
scans the whole database to find the frequency of each item. The item list is then
ordered in ascending order according to their frequency. The second pass reads
each transaction from the database and also orders it into ascending order based
on the frequency of each item. In the index part, the location of the first item in
the transaction is sought and an entry to its transactional array is added that holds



Mining High Utility Itemsets in Massive Transactional Datasets 335

the location of the next item in this transaction. For the second item, the same
process is applied, in which an entry in the transactional table of the second item is
added to hold the location of the third item in the transaction. The process is then
repeated for all items in this transaction. The following transaction is read next
and the same applies to all of its items. This process repeats for all transactions in
the database.

In the second phase, it mines the data matrix (transactional array) by using
the structure of COFI-tree. It traverses the index part and ignores all non-frequent
items, with each frequent item, it reads all transactions that contain the items and
build a COFI-tree for this item, after that it mines all frequent itemsets in this
tree. The trees are discarded as soon as mining ends and exactly the same process
is repeated for other items.

COFI-tree of one item is a tree constructed by this item and all the others
that have frequencies equal or greater than of that item. Each tree has a header
table which contains a collection of frequent items, these items in header table
are also sorted in ascending order of their frequency. Each entry in the header
table have three data fields: item’s name, local frequency in the COFI-tree and a
pointer pointing to the first and the same item in the tree. A link list is maintained
between all positions of those items in the tree. Each node of COFI-tree contains
4 data fields: item’s name, S (it’s support), P (it’s participation, this field keeps
track of how many times this item participates in a candidate generation), pointers
pointing to the next same label node or null if not. More details of the algorithm
could found in [8, 9].

4 Mining high utility itemsets in large dataset

Liu et al. (Y. Liu, Liao, & Choudhary, 2005) proposed the concepts of Transaction
Utility (TU) and TransactionWeighted Utility (TWU) to prune the search space for
mining high utility itemsets. Transaction Utility of a transaction, denoted tu(Tq)
is the sum of the utilities of all items in Tq, tu(Tq) =

∑
ip∈Tq

u(ip, Tq). Transaction

Weighted Utility of an itemset X , denoted as twu(X) is the sum of the transaction
utilities of all the transactions containing X , twu(X) =

∑
Tq∈DB∧X⊆Tq

tu(Tq).

For example, in Table 1 and 2, tu(T2) = 12 · 5 + 2 · 3 + 1 · 5 = 71.
Let X = DE, dbX = {T2, T4, T7, T8}, twu(X) = tu(T2) + tu(T4) + tu(T7) +

tu(T8) = 253.
Note: u(X,Tq) ≤ tu(Tq)
⇒ u(X) =

∑
Tq∈DB∧X⊆Tq

u(X,Tq) ≤
∑

Tq∈DB∧X⊆Tq
tu(Tq) = twu(X).

Consider twu(X) as the upper bound of u(X). If X is a high utility itemset for
a threshold minutil, then X is also a high utility TWU because twu(X) ≥ u(X) >
minutil. Vice versa, if X is not a high utility TWU then X is also not a high
utility itemset.

TWU-utility constraint has anti-monotone property [7], i.e.: All itemsets that
contain a low utility TWU itemset (twu(X) < minutil ) is a low utility itemset.
So, if X is a low utility TWU itemset ( twu(X) < minutil), X and all itemsets



336 Vu Duc Thi and Nguyen Huy Duc

that contain it are low utility itemsets, and could be removed while mining high
utility itemsets.

Based on this idea, we propose a new COUI-Mine algorithm (Co-Occurrence
Utility Item Mine) for mining high utility itemsets in large datasets. This algorithm
can be divided into 2 phases:

Phase 1: Construct transactional array and saves it in the external memory.
Phase 2: Mining high utility itemsets by using the structure of COUI-tree.

4.1 Construct transactional array:

The algorithm separates disk-based data into two parts: the index and the transac-
tional array. Each entry in index part contains 5 data fields: item’s name, quantity,
profit of one unit, frequency and its TWU. In this part, items are sorted in ascend-
ing order of their frequencies. The transactional array is a set of rows in which each
row is associated with one item in the index part. Each element in the transactional
array stores 4 data fields : quantity in transaction, TU of transaction and location
[row, column] of the next item in this transaction. If that item is the last element
in a transaction, its location should be empty.

In the first scanning of the database, we calculate transaction utility, total quan-
tity, frequency, TWU of each item. Sort the items in ascending order of frequencies
and build the index part.

During the second scanning of the database, we sort each transaction, in as-
cending order of item’s frequency and put it into transactional array as follows:

Based on the Index part we determine the position of the first item. Then in
the item’s row, we find the first empty place (cell) and save item’s information here.
Then the location of next item is determined in exactly the same way as it was
done for the first item (note that this location will be stored in the cell of the first
item). We repeat this for all items in the transaction, in the cell of the last item
the location fields are empty.

This transactional array is constructed and saved in the external memory.
The Tables below are used for the demonstration of our algorithm.
To give an example, suppose we have a database in Table 1 and 2, threshold =

30% (of total utility), and minutil = 30% x 398 = 119,4.
The algorithm scans the database for the first time, calculates the transaction

utility (in Table 3), total quantity, frequency, and TWU of each item (in Table
4). It then sorts items in ascending order of frequencies and builds the index part
(Table 5).

The algorithm then scans the database for the second time, and for each trans-
action, it sorts the items into ascending order of frequencies and put them into the
transactional array. Table 6 illustrates the sorted transactions. In case of trans-
action T 1 = (B : 12, C : 2, E : 2) the search in the index part gives that B is in
position 3, C is in position 4 and E is in position 5, so the 3 blocks which are used
to save the information of these items are in row 3, row 4 and row 5 of the trans-
actional array. First we find the first empty block in row 3 and we have [3,1], this
block will save B’s information and the address (or location) of C as well. The first



Mining High Utility Itemsets in Massive Transactional Datasets 337

Table 3: Utility of transactions of database in table 1 and 2

TID A B C D E tu

T 1 0 12 2 0 2 72
T 2 0 12 0 2 1 71
T 3 2 0 1 0 1 12
T 4 1 0 0 2 1 14
T 5 0 0 4 0 2 14
T 6 1 2 0 0 0 13
T 7 0 20 0 2 1 111
T 8 3 0 25 6 1 57
T 9 1 2 0 0 0 13
T 10 0 0 16 0 1 21
Sum 8 48 48 12 10 398

Table 4: Quantity, twu and Frequency of items

Item Quantity Frequency twu
A 8 5 109
B 48 5 280
C 48 5 176
D 12 4 253
E 10 8 372

Table 5: Index part of transactional array

Pos Item Quantity Profit/Unit Frequency Twu
1 D 12 3 4 253
2 A 8 3 5 109
3 B 48 5 5 280
4 C 48 1 5 176
5 E 10 5 8 372

empty block in row 4 is [4,1] so [3,1] will contain the following parts: 12 (quantity
of B), 72 (Transaction Utility), [4,1] (Address of next item in transaction). Then
the same process is applied to C and E. Since E is the last item, the location field
of E will be empty. We repeat that for all other transactions to obtain the final
transactional array given in Table 7.

All needed information from Table 1 and 2 has been transformed into the trans-



338 Vu Duc Thi and Nguyen Huy Duc

Table 6: Sorted transaction in order of frequency.

TID D A B C E tu

T 1 0 0 12 2 2 72
T 2 2 0 12 0 1 71
T 3 0 2 0 1 1 12
T 4 2 1 0 0 1 14
T 5 0 0 0 4 2 14
T 6 0 1 2 0 0 13
T 7 2 0 20 0 1 111
T 8 6 3 0 25 1 57
T 9 0 1 2 0 0 13
T 10 0 0 0 16 1 21

actional array so that we can use this array for mining high utility itemsets (even
with different threshold).

Table 7: Transactional array of table 1 and 2

Transactional Array
Pos Index 1 2 3 4 5 6 7 8 9
1 D, 12, 3 2, 71 2, 14 2, 111 6, 57

4, 253 [3,2] [2,2] [3,4] [2,4]
2 A, 8, 3 2, 12 1,14 1,13 3, 57 1, 13

5, 109 [4,2] [5,4] [3,3] [4,4] [3,5]
3 B, 48, 5 12, 72 12, 71 2, 13 20,111 2, 13

5, 280 [4,1] [5,2] [∅, ∅] [5,6] [∅, ∅]
4 C, 48, 1 2, 72 1, 12 4, 14 25, 57 16, 21

5, 176 [5,1] [5,3] [5,5] [5,7] [5,8]
5 E, 10, 5 2, 72 1, 71 1, 12 1,14 2, 14 1, 111 1, 57 1, 21

8, 372 [∅, ∅] [∅, ∅] [∅, ∅] [∅, ∅] [∅, ∅] [∅, ∅] [∅, ∅] [∅, ∅]

The following is our algorithm for building transactional array:

Algorithm 1. (Build transactional array).
Input: Database DB.

Output: Transactional array in external memory.
Method:

1. for each T ∈ DB // First time scanning database
2. begin

3. - Calculate transaction utility tu(T );
4. - Calculate frequency, quantity, TWU of each item;

5. end;
6. Sort all items in ascending order of frequency;



Mining High Utility Itemsets in Massive Transactional Datasets 339

7. Based on sorted items list, build index part of transactional array;
8. for each T ∈ DB // Second time scanning database
9. begin
10. Sort items in T in order of index part, we have following list:

T list = (A1 : s1, A2 : s2, ..., Ak : sk) ;
// si is quantity of item in transaction T .

11. Determine address [d1, c1] to save information of item A1 in
transactional array;

12. for i:=1 to k − 1 do // With each item in TList .
13. begin
14. - Determine address [di+1, ci+1] where save information of Ai+1;
15. - Save at [di, ci] :Quantity si ,Transaction Utility tu(T ),

Address [di+1, ci+1];
16. end;
17. Save at [dk, ck]: Quantity sk , Transaction Utility tu(T ) , empty

address [∅, ∅];
18. end;

4.2 Mining transactional array

Consider all items of the index part of transactional array (top down). For each item
ip, if TWU(ip) ≥ minutil the algorithm gets all transactions from the transactional
array that contains that item. From these transactions, it builds the COUI-tree
for that item and mines that tree for high utility itemset. It then discards the tree
as soon as it has been mined and moves to the next item. COUI-tree of item x
must have x as its root. Each COUI-tree has a header table that contains three
data fields: item’s name, TWU and pointer (pointing to the first and same item
in COUI-tree). Each node of COUI-tree includes 4 data fields: item’s name, TWU
(Utility of transaction that it’s inside), an array of quantity of all items from this
node up to the root, pointers pointing to the next same label node or null if not.
Each transaction is read and inserted into COUI-tree as follow:

Let [x |L] be a transaction, where x is the first item and L is the rest of the
transactions. The algorithm checks whether item x is one of child nodes of the
root. If it is, then update the information for that node correspondingly, otherwise,
add a new node as a child of root and labels it x. Consider the present node as the
root, repeat the process on the next item in L if it is not empty. When adding a
new node, an update of horizontal link of the corresponding item in header table
is needed.

The COUI-tree building process is illustrated by an example with the transac-
tional array in Table 7.

To mine the high utility itemsets on the transactional array in Table 7 we need
to build COUI-tree for the items: D, B and C. We call COUI-tree corresponding for
each item as D-COUI-tree, B-COUI-tree and C-COUI-tree respectively. It is not
necessary to build A-COUI-tree since twu(A) = 109 < minutil, not for E-COUI-
tree because there is only one node (E as root) in this tree. D-COUI-tree contains



340 Vu Duc Thi and Nguyen Huy Duc

all items co-occurring with D in the transactions. B-COUI-tree contains all items
co-occuring with B in the transactions except for D and A. C-COUI-tree contains
all items co-occuring with C in the transactions except for D, B and A.

- Building process of D-COUI-tree:

From the index part we know that D’s frequency is 4, so there are 4 transactions
that contains D inside. Start at the first block in row 1 of transactional array, read
information in this block and the address saved in the Location field to reach the
next item. Here we get the following sequence.

Starting at [1, 1] we get item D with quantity of 2, this block refers to [3, 2].
At [3, 2] we get item B with quantity of 12, this block refers to [5, 2]. At [5, 2] we
get item E with quantity of 1 and an empty Location field so the algorithm stops
at this point.

At this first link we get the first transaction of D, T1 = (D : 2, B : 12, E : 1)
and tu(T1) = 71. Likewise, we could get all D’s transactions and have: T4 = (D :
2, A : 1, E : 1) with tu(T4) = 14, T7 = (D : 2, B : 20, E : 1) with tu(T7) = 111,
and T8 = (D : 6, A : 3, C : 25, E : 1) with tu(T8) = 57. Each transaction is read
and inserted into D-COUI-tree. It is noted that twu of the header table needs to
be adjusted correctly. Figure 1 shows the D-COUI-tree.

Figure 1: D-COUI-tree

- Mining D-COUI-tree:

Mining D-COUI-tree is to find all high utility itemsets that contain D inside.
In D-COUI-tree, twu of item A and C is smaller than minutil, so the itemsets
that contain them cannot be high utility itemsets and in the candidate generating
process we do not generate candidates containing these items.

In turn, consider all items in the header table but this time we do it bottom
up, therefore, E will be the first item we encounter. From the pointer in the header
table of item E we find 3 nodes in D-COUI-tree labeled E. In the path from the
first E to the root we will have (E:2, B:32, D:4) with twu = 182; Push it and all its
subsets plus D into D − list (a list contains all high utility candidates containing
D) and we will have:



Mining High Utility Itemsets in Massive Transactional Datasets 341

D − List = {(E : 2, B : 32, D : 4) : 182; (E : 2, D : 4) : 182; (B : 32, D : 4) : 182}.

Adjust twu and the array of quantity of each node E, B and D on that path.
Twu is subtracted to 182 and the array of quantity is subtracted corresponding
(step 1).

The path to root of the second E (E:1, A:1, D:2) with twu = 14 does not
generate any candidate that contains A, so only (E:1, D:2) is pushed into D−List.
In D−List, (E:1, D:2) has twu = 182 so this value will be adjusted to 196; Adjust
all the values for items E, A and D (step 2).

Likewise, for the third E and we add (E:1, D:6):57 into D−List. At this point
we have done with item E and move to the next item in the header table. The next
items in the header table are C, B and A but all of them have twu = 0 so there is
no need to generate any candidates from them. Figure 2 shows this process.

Finish mining D-COUI-tree we have a candidate list in D− List. Traverses all
candidates and with each X ∈ D − List, we calculate actual utility, if u(X) ≥
minutil then X is a high utility itemset. With D-COUI-tree we find HU =
{EBD(182),BD(172)}. Repeat this process for the next items, in the end, the
result will be:

HU = {EBD(182),BD(172), EB(240), B(240)}.

We can describe the algorithm for building and mining COUI-tree as follows

Algorithm 2 (Build and mine COUI-tree).
Input: Transactional array, utility function, threshold minutil.
Output: HU set contains all high utility itemsets of database DB.
Method:

1. From top down, A = first item in index part satisfy twu(A) ≥ minutil;
2. repeat
3. if twu(A) < minutil then goto 15;
4. Calculate utility of A; // base on quantity and unit utility.
5. if u(A) > minutil then HU := HU ∪ {A};
6. Read frequency s and location of row d that contains A in transaction;
7. Create root R with label A of (A)-COUI-tree, assign twu = 0, quantity = 0;
8. for i:=1 to s do //traverse all s blocks in row d of transactional array;

9. begin

10. - Start at [d, i], determine T = (A1 : s1, A2 : s2, , Ak : sk) and
transaction utility tu(T ); //A1 is item A.

11. - Call insert tree(T,R) function to insert T into (A)-COUI-tree;
12. end;
13. Call MineCOUI-tree (A); // a function mines (A)-COUI-tree.
14. Free (A)-COUI-tree;
15. A = next item in index part;
16. Until (A is the last one in index part);
17. Calculate utility of A;
18. if u(A) > minutil then HU := HU ∪ {A};

Here is MineCOUI-Tree function.



342 Vu Duc Thi and Nguyen Huy Duc

Figure 2: 4 steps to mining D-COUI-tree

Function: MineCOUI-tree (A);
Method:

1. (A) − List := ∅ //Initialize the empty candidate list.
2. for each (item B in header table of (A)-COUI-tree) //bottom up.
3. for each (node N on (A)-COUI-tree that labeled B)

//follow the pointer from header table.
4. begin



Mining High Utility Itemsets in Massive Transactional Datasets 343

5. - Read twu and quantity array of all items of node N;
6. - Determine pattern X in the path from N up to the root;
7. - Generate subset of X that contains A //discard all low utility TWU
items.
8. - Push all subsets generated above into (A)− List;
9. - Adjust twu and array of quantity of all items on the path of N to
the root;
10. end; //Finish mining (A) − COUI − tree.
11. for each Y ∈ (A)− List // Traverse all candidates in (A)− List.
12. begin

13. - Calculate utility u(Y ) of candidate Y;
14. - if u(Y ) > minutil then HU := HU ∪ {Y };
15. end;
16. Return HU ;

5 Algorithm Evaluation and Performance Study

5.1 Algorithm Evaluation

a) Algorithm 1: Transaction Array construction
+ Pass I:
- Calculation of transaction utility tu(T ), calculation of frequency, quantity,

TWU of each item. Hence, the total time complexity of this step is O(n).
- Sorting of all items in ascending order of frequency costs O(n.logn) in time.
- Based on the sorted item list, the building index part of transactional array

has time complexity of O(n).
+ Pass II: For each T of DB, we need to identify T list = (A1 : S1, A2 :

S2, ...., Ak : Sk), Si is number of Ai item in transaction T . With each item in
TList, address [di+1, ci+1] where save information of Ai+1 needs to be determined,
that makes the total time complexity of O(n2). In summary, the time complexity
for algorithm 1 is O(n2).

b) Algorithm 2: Mining the transaction array.
+ Building the COUI-tree: At the turn of a top-down data items, time com-

plexity for tree construction of algorithm is O(n2). Since there are n data items,
the total time complexity to build all trees COUI-tree is O(n3).

+ Minning the COUI-tree: Algorithms considers in turn each data item in
the header table, with each B data item to browse nodes in COUI-tree labeled
B. Suppose the height of the tree is h, to generates any candidate patterns then
generated sub patterns , need a running time complexity of 2h−1.

The greatest height of COUI-trees is equal to the length of the longest trans-
action in the database transaction: max(h) = max{|T |, T ∈ DB}, 1 ≤ h ≤ n. In
the worst case, the database have transactions that include all items, max{|T |, T ∈
DB} = n, somax(h) = n. In that case, time complexity to mine highest COUI-tree
is O(2n−1), thefore, the time complexiyty for algorithm 2 is O(2n).



344 Vu Duc Thi and Nguyen Huy Duc

Algorithm time complexity is the total time complexity of algorithm 1 and
algorithm 2 making it as O(2n) ( n is the number of data items).

Although in theory the worst case time complexity of the algorithm is O(2n),
in reality, transactions databases are often extremely sparse, the height h of the
tree COUI-tree could be very small compared to n, so the practical running of the
algorithm often does not suffer from combinatorial explosion.

5.2 Performance Study

The algorithm was written in Microsoft Visual C ++ 6.0, running on a PC with a
Pentium dual core 2.0 GHz CPU, 1 GB of RAM, using Windows XP Professional
operating system. The program reads data from files and outputs to a data file.
The algorithm was experimented on several real and synthetic data sets. Retail
is a market basket dataset from a Belgian supermarket (Brijs, Goethals, Swinnen,
Vanhoof, & Wets, 1999). Retail transaction file contains 88,162 transactions, 16,470
items and the average length of transactions is 10.31 [5]

We generated two synthetic datasets using our own program and IBM Quest
data generator [10]: (a) T10I500D100K, the average length of transactions is 10.74,
with 500 items and the number of transactions is 100K, (b) 10I1000D100K, the aver-
age length of transactions is 10.10, with 1000 items and the number of transactions
is 100K.

Table 8 shows the characteristics of the datasets. Since all these datasets are
normally used for testing traditional frequent itemset mining algorithms, we added
quantity and item utility values to the dataset. We generated a utility table based
on lognormal distribution with the utility values ranging from 0.1 to 10. The
quantities of items were generated randomly in the range of 1 to 10. Test results
are shown in Figure 3.

Transactional data is converted into a new database layout set in the external
memory, so the algorithm can mine very large datasets. Running time of COUI-
Mine algorithm includes data conversion time for the transaction array and the
mining of transaction array. Once data has been converted into a new database
layout, it can be mined with different utility thresholds without converting the
data, hence, running time of the algorithm is reduced to the time to mine the
transaction array only. On the dataset Retail, the data conversion time was 4744
seconds. Table 9 shows the running time of the algorithm on dataset Retail with
different utility thresholds.

6 Conclusion

Based on the results of the experiments and analyses of the algorithm, some con-
clusions could be drawn as follow:

+ It needs to be scanned database twice to build transactional array and this
array contains enough information for mining high utility itemsets. This transac-
tional array is stored in the external memory, so the algorithm can mine very large



Mining High Utility Itemsets in Massive Transactional Datasets 345

Table 8: Characteristics of Datasets

Dataset Number of Number of Average

transactions Items Length

Retail 88.162 16.470 10,31
T10I500D100K 100.000 500 10,74
T10I1000D100K 100.000 1000 10,10

Table 9: Execution time on dataset Retail

Utility COUI-Mine

Threshold Phase 1 Phase 2 Total
0,2 702 5446
0,4 697 5411
0,6 4744 237 4981
0,8 99 4843
1 76 4820
5 12 4756
10 11 4755

Figure 3: Execution time with varying minimum utility thresholds on real and
synthetic datasets

databases.

+ Mining transactional array is based on small structure of COUI-tree. At each
time, only one tree is in the memory, it means that we only store in the memory
a small part of the data. Otherwise, mining COUI-tree is using non-recursive
algorithm so it reduces time and memory needed in the mining process.

+ After the transactional array is built, the algorithm can mine with arbitrary
thresholds.



346 Vu Duc Thi and Nguyen Huy Duc

+ The algorithm avoids massive computations because it does not need to
generate candidates and check for constraints like in some other approaches.

+ The algorithm also uses the concept of TWU effectively to reduce the time
complexity to generate candidates.

In conclusion, COUI-Mine is an effective algorithm for mining high utility item-
sets in large datasets.

References

[1] Nguyen Huy Duc, “Mining Association Rule in Large Databases”, In Proceed-
ing of the First National Symposium Fundamental and Applied Information
Technology Research (FAIR), Ha Noi, 2003.

[2] Nguyen Thanh Tung, “Mining High Utility Itemsets in Databases”. Journal
of Computer Science and Cybernetics, Viet Nam, vol. 23, no. 4, pp. 364-373,
2007.

[3] Vu Duc Thi and Nguyen Huy Duc, “Efficient Algorithm for Mining High Utility
Itemsets Based On Prefix-trees”, Journal of Computer Science and Cybernet-
ics, Viet Nam, vol. 24, no. 3, pp. 204-216, 2008.

[4] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules”.
In pro-ceedings of 20th International Conference on Very Large Databases,
Santiago, Chile, 1994.

[5] Frequent Itemset Mining Implementations Repository, 2003. http://fimi.
cs.helsinki.fi/data/

[6] H. Yao and H. J. Hamilton, “Mining itemset utilities from transaction
databases”. Data & Knowledge Engineering, vol. 59, pp. 603- 626, 2006.

[7] Y. Liu, W.-K. Liao, and A. Choudhary, “A Fast High Utility Itemsets Mining
Algorithm”, Proc. UBDM’05, Chicago Illinois, 2005.

[8] M. El-Hajj and Osmar R. Zaiane. “COFI-tree Mining: A New Approach to
Pattern Growth with Reduced Candidacy Generation”. In Proc. 2003 Intl Conf.
on Data Mining and Knowledge Discovery (ACM SIGKDD), August 2003.

[9] M. El-Hajj and Osmar R. Zaiane. “Inverted matrix: Efcient discovery of fre-
quent items in large datasets in the context of interactive mining”. In Proc.
2003 Intl Conf. on Data Mining and Knowledge Discovery (ACM SIGKDD),
pp. 109-118, August 2003.

[10] IBM Synthetic Data Generator, http://www.almaden.ibm.com/software/

quest/resources/index.html

Received 18th May 2009


