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Abstract

We show that the support of a recognizable series over a zero-sum free,

commutative semiring is a recognizable language. We also give a sufficient

and necessary condition for the existence of an effective transformation of a

weighted automaton recognizing a series S over a zero-sum free, commutative

semiring into an automaton recognizing the support of S.
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1 Introduction

One stream in the rich theory of formal power series deals with connections to
formal languages. To each formal power series, one associates a certain language,
called the support, which consists of all words which are not mapped to zero.

It is well-known that the support of a recognizable series is not necessarily a
recognizable language. However, for large classes of semirings, it is known that
the support of a recognizable series is always recognizable, see [3, 5, 9] for recent
overviews. These classes include all positive semirings (semirings which are both
zero-divisor free and zero-sum free), all finite, and more generally, all locally finite
semirings.

Wang introduced the notion of a quasi-positive semiring (that is, for every
k ∈ K \ {0}, ℓ ∈ K, n ∈ N, we have kn + ℓ 6= 0), and showed that the support of a
recognizable series over a commutative, quasi-positive semiring is always a recog-
nizable language [11]. Every quasi-positive semiring is zero-sum free by definition.

In 2008, Manfred Droste raised the question whether Wang’s result holds
for commutative, zero-sum-free semirings. In the present paper, we answer this

†The results were achieved in 2008 when the author was employed in Manfred Droste’s
group at Leipzig University. An extended abstract was presented at DLT’09 [6].
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question positively (see Theorem 3.1(1), below). The proof relies on Dickson’s
lemma.

Further, we investigate under which assumptions we can effectively transform
a weighted automaton recognizing a series S over a zero-sum free, commutative
semiring into an automaton recognizing the support of S. For this, we introduce
the zero generation problem (see Sect. 3) and show that the decidability of the
zero generation problem is a sufficient and necessary condition for the existence of
such an effective transformation. Surprisingly, the computability of the semiring
operations is not related to the effectivity of the transformation.

The paper is organized as follows: in Sect. 2, we deal with some preliminaries.
In Sect. 3, we present known results and the contribution of the paper. To keep
Sect. 3 as a succinct survey, the main proofs are shifted to Sect. 4.

2 Preliminaries

2.1 Notations

Let N = {0, 1, . . .}.
Let n ∈ N. Given a tuple x̄ ∈ Nn, we denote by xi the i-th component of x̄

for i ∈ {1, . . . , n}. Given two tuples x̄, ȳ ∈ Nn, we write x̄ ≤ ȳ if xi ≤ yi for every
i ∈ {1, . . . , n}. If x̄ ≤ ȳ and xi < yi for some i ∈ {1, . . . , n}, then we write x̄ < ȳ.

Given a subset M ⊆ Nn, we denote by Min(M) the set of all minimal tuples of
M , that is, Min(M) = {x̄ ∈ M | for every ȳ ∈ M, ȳ ≤ x̄ implies x̄ = ȳ}.

The following lemma is well-known in combinatorics, order theory, and commu-
tative algebra. We include its proof for the convenience of the reader.

Lemma 2.1 (Dickson’s lemma). For every M ⊆ Nn, the set Min(M) is finite.

Proof. For n = 1, the claim is obvious.
Choose some n ∈ N, and assume by induction that the claim holds for all subsets

of Nn. We show the claim for an arbitrary M ⊆ Nn+1.
For z ∈ N, let

Mz :=
{
(x1, . . . , xn)

∣
∣ (x1, . . . , xn, z) ∈ Min(M)

}
.

Clearly, Min(Mz) = Mz, and hence, Mz is finite by induction. Let

MN :=
⋃

z∈N

Mz.

By induction Min(MN) is finite, and thus, there is some z′ ∈ N such that

Min(MN) ⊆
⋃

z≤z′

Mz.

Now, we show the claim by showing that

Min(M) ⊆
⋃

z≤z′

Mz × {z}, (1)
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i.e., Min(M) is included in a finite union of finite sets. The notation Mz × {z}
means to adjoin z as (n+ 1)-st component to each n-tuple in Mz.

Choose any x̄ ∈ Min(M). Clearly, (x1, . . . , xn) ∈ Mxn+1
⊆ MN. There is some

ȳ ∈ Min(MN) satisfying ȳ ≤ (x1 . . . , xn). There is some z ≤ z′ such that ȳ ∈ Mz. If
z < xn+1 then (y1 . . . , yn, z) < x̄ contradicts x̄ ∈ Min(M). Hence, xn+1 ≤ z ≤ z′.
Consequently, x̄ belongs to the right hand side of (1).

Let Σ be a finite alphabet. We denote the empty word by ε. We denote by |w|
the length of a word w ∈ Σ∗. For every w ∈ Σ∗, a ∈ Σ, let |w|a be the number of
occurrences of the letter a in w.

A monoid (M, ·, 1) consists of a set M together with a binary associative oper-
ation · and an identity 1.

We call a monoid (M, ·, 1) commutative if kℓ = ℓk for every k, ℓ ∈ M.
We call 0 ∈ M a zero, if k0 = 0k = 0 for every k ∈ M.
Given a monoid M, m ∈ N, and s1, . . . , sm ∈ M, we denote by 〈s1, . . . , sm〉 the

submonoid of M generated by s1, . . . , sm, that is, the smallest monoid M′ ⊆ M

satisfying s1, . . . , sm ∈ M′.
Given a monoid M, an s ∈ M, and a submonoid M′ ⊆ M, we denote by s ·M′

the set {s · s′ | s′ ∈ M′}.
A semiring (K,+, ·, 0, 1) consists of a set K together with two binary operations

+ and · such that (K,+, 0) is a commutative monoid, (K, ·, 1) is a monoid with zero
0, and (K, ·, 1) distributes over (K,+, 0).

We call a semiring (K,+, ·, 0, 1) commutative if (K, ·, 1) is a commutative monoid.
We call K zero-divisor free if for every k, ℓ ∈ K \ {0}, we have kℓ 6= 0. We call K
zero-sum free if for every k, ℓ ∈ K \ {0}, we have k + ℓ 6= 0. Semirings which are
both zero-divisor free and zero-sum free are called positive semirings.

We call K locally finite if for every finite subset C ⊆ K, there is a finite semiring
K′ satisfying C ⊆ K′ ⊆ K.

2.2 Weighted Finite Automata

We recall some notions on (weighted) automata and recommend [1, 2, 4, 7, 8, 10]
for overviews.

Let (K,+, ·, 0, 1) be a semiring. Mappings from Σ∗ to K are often called series.
We denote the class of all series from Σ∗ to K by K〈〈Σ∗〉〉.

A weighted finite automaton (for shortWFA) overK is a tuple [Q,E, λ, ̺], where

• Q is a non-empty, finite set of states,

• E is a finite subset of Q× Σ×K×Q, and

• λ, ̺ : Q → K.

We call the tuples in E transitions. For every q ∈ Q, we call λ(q) resp. ̺(q)
the initial weight resp. accepting weight of q. We call states q ∈ Q which satisfy
λ(q) 6= 0 (resp. ̺(q) 6= 0) initial (resp. accepting) states.
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Let A = [Q,E, λ, ̺] be a WFA. Let n ≥ 1. A path π of length n is a sequence

(q0, a1, s1, q1) (q1, a2, s2, q2) . . . (qn−1, an, sn, qn)

of transitions in E. We call the word a1 . . . an the label of π. We define σ(π) =
λ(q0) · s1 · s2 · · · · · sn · ̺(qn), the weight of π. For every state q ∈ Q, we assume
some path from q to q which is labeled with ε and weighted with 1.

For every p, q ∈ Q and every w ∈ Σ∗, we denote by p
w
 q the set of all paths

with label w which start at p and end at q. Then, A defines a series |A| : Σ∗ → K

by

|A|(w) =
∑

p,q∈Q, π ∈ p
w
 q

σ(π)

for every w ∈ Σ∗.
We call a series S : Σ∗ → K recognizable if S = |A| for some WFA A.
We define the support of a series S : Σ∗ → K as

supp(S) = {w ∈ Σ∗ |S(w) 6= 0}.

An (unweighted) automaton is a tuple A = [Q,E, I, F ], where Q is a finite set,
E ⊆ Q× Σ×Q, I ⊆ Q, and F ⊆ Q.

Let A = [Q,E, λ, ̺] be an automaton. Let n ≥ 1. A path π of length n is a
sequence

(q0, a1, q1) (q1, a2, q2) . . . (qn−1, an, qn)

of transitions in E. As above, we call a1 . . . an the label of π. We call π successful,
if q0 ∈ I and qn ∈ F . We denote by L(A) the language of A, that is, the language
consisting of all labels of successful paths.

3 Overview, Main Results, and Discussion

The supports of recognizable series are well-studied objects, see [3, 9] for recent
overviews.

It is well known that there are recognizable series S such that supp(S) is not a
recognizable language.

Example 3.1. A folklore example is the series S over the semiring of the integers
(Z,+, ·, 0, 1) defined by S(w) = 2|w|a3|w|b − 3|w|a2|w|b. For every w ∈ Σ∗, we have
S(w) = 0 iff |w|a = |w|b. Hence,

supp(S) =
{
w ∈ Σ∗

∣
∣ |w|a 6= |w|b

}

which is not a recognizable language. Nevertheless, S is a recognizable series: just
consider the WFA given below.

1 2
1 1

a, 2 b, 3

−1 1

a, 3 b, 2
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However, for large classes of semirings, the support of a recognizable series is
always a recognizable language. It is well known that these classes include all
positive semirings, all finite and moreover even all locally finite semirings [3, 5, 9].

Moreover, Wang [11] defined the notion of a quasi-positive semiring: a semiring
K is called quasi-positive if for every k ∈ K \ {0}, ℓ ∈ K, n ∈ N, we have kn + ℓ 6=
0. Every positive semiring is quasi-positive, and every quasi-positive semiring is
zero-sum free. There are quasi-positive semirings which are not positive. Just let
K = N× N equipped with componentwise addition and multiplication of integers.

Moreover, there are zero-sum free semirings which are not quasi-positive.

Example 3.2. Let K be the semiring of (2 × 2)-matrices over the non-negative
rational numbers (Q+,+, ·, 0, 1) and let

k =

(
0 1
0 0

)

and ℓ =

(
0 0
0 0

)

.

Clearly, k2 + ℓ yields the zero matrix, and hence, K is not quasi-positive but zero-
sum-free.

In the context of our main result, it raises the question for a commutative, zero-
sum free semiring which is not quasi-positive. Indeed,1 let K′ be the subset of K
consisting of all matrices of the form

(
x y
0 x

)

for x, y ∈ Q+.

It is easy to verify that K′ is a commutative subsemiring of K. It is zero-sum-free,
and since k, ℓ ∈ K′, it is not quasi-positive.

Wang showed that for every recognizable series S over a commutative, quasi-
positive semiring, supp(S) is recognizable [11]. In 2008, Manfred Droste raised
the question whetherWang’s result holds for commutative, zero-sum-free semirings
in a lecture script on weighted automata theory. In the present paper, we answer
this question positively (see Theorem 3.1(1), below). Our approach is quite different
from Wang’s paper [11], since Wang was mainly interested in other but related
questions and achieved his result as a byproduct.

One key observation is that for zero-sum-free semirings, a word w belongs to
the support of the series of some WFA iff the WFA admits at least one path for
w with a non-zero weight. In contrast to Example 3.1, it cannot happen that the
weights of all paths for w are summarized to 0.

Further, we examine under which assumptions we can effectively construct an
automaton recognizing supp(S) from a WFA recognizing S. Surprisingly, the com-
putability of + or · is not related to the effectivity of the construction. To achieve an
effective construction, we introduce the zero generation problem (for short ZGP):

Let M be a monoid with a zero. An instance of the ZGP consists of two integers
m,m′ ∈ N and s1, . . . , sm, s′1, . . . , s

′
m′ ∈ M. The ZGP means to decide whether

1The semiring K′ was provided by an anonymous referee.
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0 ∈ s1 · · · sm · 〈s′1, . . . , s
′
m′〉, i.e., whether there exists some s ∈ 〈s′1, . . . , s

′
m′〉 such

that the product s1 · · · sm · s yields zero. The presentation of the ZGP seems to be
circumstantial, but we want to avoid using the computability of the product in M.

Note that the integers m and m′ in the ZGP are allowed to be 0. Consequently,
the problem to decide whether for given m ∈ N and s1, . . . , sm ∈ M, we have
s1 · · · sm = 0 is a particular case of the ZGP.

We can show that the decidability of the ZGP of the monoid (K, ·, 1) is a suffi-
cient and necessary condition for the effectivity of the construction of the automaton
recognizing the support of some recognizable series over a semiring K.

To sum up:

Theorem 3.1. Let Σ be an alphabet and (K,+, ·, 0, 1) be a zero-sum free, commu-
tative semiring.

1. For every recognizable series S ∈ K〈〈Σ∗〉〉, supp(S) is a recognizable language.

2. Assume |Σ| ≥ 2. Given a WFA A over K, we can effectively construct an
automaton which recognizes supp(|A|) iff (K, ·, 1) has a decidable ZGP.

Clearly, the construction in (2) is also effective for |Σ| = 1. But if |Σ| = 1 we
cannot show that the decidability of the ZGP is a necessary condition.

Unfortunately, we cannot give any reasonable upper bound in the construction
in Theorem 3.1(2). Given a WFA A over a zero-sum free, commutative semiring K,
the number of states of an automaton recognizing supp(|A|) does not only depend
on the number of states of A and the weights in A, but also it highly depends
on structural properties of the semiring K. The construction of the automaton
recognizing supp(|A|) in the proof of Theorem 3.1(2) involves a certain bound which
is computed in a brute search using some algorithm for the ZGP. The existence of
this bound is guaranteed by Dickson’s lemma (Lemma 2.1).

4 The Main Proof

4.1 Dickson’s Lemma and Computability

Throughout this section, let (M, ·, 1) be a commutative monoid with a zero 0 and
let C = (c1, . . . , cn) ∈ Mn for some n ∈ N.

The homomorphism J K : (Nn,+, (0, . . . , 0)) → (M, ·, 1) defined by

Jx̄K = cx1

1 · · · cxn

n

for every x̄ = (x1, . . . , xn) ∈ Nn plays a central role in the entire construction.
Let us remark that the commutativity of M is crucial for the fact that J K is a
homomorphism which will be of crucial importance, e.g., in the proof of Lemma 4.1,
below.

We are interested in the set of all x̄ ∈ Nn satisfying Jx̄K = 0, i.e., we are
interested in the set J0K−1.

Given x̄ ∈ J0K−1 and ȳ ∈ Nn satisfying x̄ ≤ ȳ, we have ȳ ∈ J0K−1.
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By Lemma 2.1, the set Min(J0K−1) is finite. We denote by dg(C) the degree of C
which is defined as the least non-negative integer such that Min(J0K−1) is a subset
of {0, . . . , dg(C)}n.

Example 4.1. Let us consider a commutative monoid which admits large degrees.
Let M :=

{
q ∈ Q

∣
∣ 0 ≤ q ≤ 1

}
. We define an operation ⋆ on M by setting

p ⋆ q := min{p+ q, 1} for p, q ∈ M. Clearly, (M, ⋆, 0) is a commutative monoid with
zero 1.

Now, let n ∈ N and ci ∈ M for i ∈ {1, . . . , n}. If ci 6= 0, then

(

0, . . . , 0,
⌈

1
ci

⌉

︸︷︷︸

ith position

, 0, . . . , 0
)

∈ MinJ1K−1,

where
⌈

1
ci

⌉

denotes the least integer larger than or equal to 1
ci
. Consequently,

dg(C) ≥ 1
ci
.

Given x̄ ∈ Nn and z ∈ N, we denote by ⌊x̄⌋z the tuple defined by
(
⌊x̄⌋z

)

i
=

min{xi, z} for every i ∈ {1, . . . , n}.

Lemma 4.1. For every x̄ ∈ Nn, we have Jx̄K = 0 iff
q
⌊x̄⌋dg(C)

y
= 0.

Proof. We have “⇐”, since x̄ ≥ ⌊x̄⌋dg(C).
We show “⇒”. Since x̄ ∈ J0K−1, there is a ȳ ∈ Min(J0K−1) satisfying ȳ ≤ x̄.

Let i ∈ {1, . . . , n}. If xi ≤ dg(C), then yi ≤ xi = (⌊x̄⌋dg(C))i. If xi > dg(C), then
yi ≤ dg(C) = (⌊x̄⌋dg(C))i by the definitions of dg(C) and ⌊x̄⌋dg(C). Consequently,
ȳ ≤ ⌊x̄⌋dg(C), and hence, ⌊x̄⌋dg(C) ∈ J0K−1.

For the effectivity of our construction of the support automaton, it is very
important to compute dg(C) from a given tuple C.

Lemma 4.2. If the ZGP is decidable in M, then we can effectively compute dg(C)
from C.

Proof. It suffices to show that for given n ∈ N, C = (c1, . . . , cn) ∈ Mn, and z ∈ N,
we can decide whether z < dg(C). The algorithm can then check for increasing
z ∈ {0, 1, 2, . . .} whether z < dg(C), and put out the least z which does not satisfy
z < dg(C).

So assume n,C, z as above. We want to show that z < dg(C) iff there exists a
tuple x̄ ∈ {0, . . . , z}n which satisfies the following properties:

1. We have xi = z for some i ∈ {1, . . . , n}.

2. We have Jx̄K 6= 0. Given C and x̄, it is decidable whether Jx̄K 6= 0 by the
decidability of the ZGP.

3. There is some ȳ ∈ Nn such that x̄ = ⌊ȳ⌋z and JȳK = 0.
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Given C and x̄, this condition is decidable as follows: Let m =
∑n

i=1 xi. Let
s1, . . . , sm be the list over M constructed by putting x1 times c1, x2 times c2,
. . . , and xn times cn. We have s1 · · · sm = Jx̄K.
Let m′ ≥ 1 and s′1, . . . , s

′
m′ ∈ M be a list of the ci’s for the i ∈ {1, . . . , n}

satisfying xi = z.

Clearly, there exists some ȳ ∈ Nn such that x̄ = ⌊ȳ⌋z and JȳK = 0 iff 0 ∈
s1 · · · sm · 〈s′1, . . . , s

′
m′〉. The latter condition is decidable.

Assume z < dg(C). Choose a ȳ ∈ Min
(
J0K−1

)
such that at least one entry of

ȳ equals dg(C). Let x̄ = ⌊ȳ⌋z. Obviously, x̄ satisfies (1) and (3). Since x̄ < ȳ, we
have x̄ /∈ J0K−1, and hence, x̄ satisfies (2).

Assume z ≥ dg(C). Let x̄, ȳ ∈ Nn such that (1) and (3) are satisfied. From
Lemma 4.1, it follows J⌊ȳ⌋dg(C)K = 0. Since dg(C) ≤ z, we have ⌊ȳ⌋dg(C) ≤ ⌊ȳ⌋z =
x̄, and hence, Jx̄K = 0, i.e., x̄ does not satisfy (2).

An algorithm to decide whether z < dg(C) can check by brute force whether
there is an x̄ ∈ {0, . . . , z}n which satisfies (1), (2), and (3).

4.2 The Construction of a Support Automaton

Proof of Theorem 3.1. In the first part of the proof we prove (1) and “⇐” in (2).
Let S be the series computed by a WFA A = [Q,E, λ, ̺].
Let C be a sequence (without repetition) of all weights occurring in A. That

is, let n ∈ N and C = (c1, . . . , cn) ∈ Kn such that:

• For every i ∈ {1, . . . , n}, there is a transition (p, a, ci, q) ∈ E or there is a
q ∈ Q satisfying λ(q) = ci or ̺(q) = ci.

• For every (p, a, s, q) ∈ E, there is exactly one i ∈ {1, . . . , n} satisfying ci = s.

• For every q ∈ Q, there is exactly one i ∈ {1, . . . , n} satisfying λ(q) = ci, and
there is exactly one i ∈ {1, . . . , n} satisfying ̺(q) = ci.

We construct an (unweighted) automaton As. We will use dg(C) in a crucial
way. If the ZGP is decidable, we can effectively compute dg(C) by Lemma 4.2 and
then, our construction is effective.

The state set of As is Qs = {0, . . . , dg(C)}n ×Q.
A state (x̄, q) ∈ Qs is an initial state iff there exists some i ∈ {1, . . . , n} such

that

• xi = 1, λ(q) = ci, and

• for every j ∈ {1, . . . , n}, j 6= i, we have xj = 0.

Consequently, Jx̄K = ci = λ(q). We denote the set of initial states by Is.
We could also define the set of initial states by I ′s =

{
(x̄, q) ∈ Qs

∣
∣ Jx̄K = λ(q)

}

which is a superset of Is. One can easily construct examples for which Is ( I ′s. Just
consider the case that for some (x̄, q) ∈ Qs, we have x1 = x2 = 1, x3 = · · · = xn = 0
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and c1c2 = λ(q). Our construction below remains correct even if we use I ′s instead
of Is. However, the definition of I ′s involves the decision problem Jx̄K = λ(q) which
we want to avoid to get an effective construction.

We define a partial mapping ⊕ : {0, . . . , dg(C)}n ×K 99K {0, . . . , dg(C)}n. The
key idea behind ⊕ is that given m ∈ N, s1, . . . , sm ∈ K, the operation

(· · · ((x̄⊕ s1)⊕ s2) · · · ⊕ sm)

counts (up to dg(C)) the number of occurrences of the ci’s in the sequence s1, . . . , sm.

Let x̄ ∈ {0, . . . , dg(C)}n and s ∈ K. We define x̄ ⊕ s iff there is some i ∈
{1, . . . , n} satisfying ci = s. Let ȳ ∈ {0, . . . , dg(C)}n be defined by

yj =

{

xj + 1 if j = i

xj if j 6= i.

We define x̄⊕ s = ⌊ȳ⌋dg(C).

A state (x̄, q) ∈ Qs is an accepting state iff Jx̄⊕̺(q)K 6= 0. Using the decidability
of the ZGP, we can decide whether (x̄, q) is an accepting state. We denote the set
of accepting states by Fs.

Let (x̄, p), (ȳ, q) ∈ Qs and a ∈ Σ. The triple
(
(x̄, p), a, (ȳ, q)

)
is a transition in

Es iff there exists a transition (p, a, s, q) ∈ E satisfying x̄ ⊕ s = ȳ. We say that
(
(x̄, p), a, (ȳ, q)

)
stems from (p, a, s, q) ∈ E.

Let As = [Qs, Es, Is, Fs]. We want to show L(As) = supp(S).
Let w ∈ L(As). There are (x̄0, q0) ∈ Is, (x̄|w|, q|w|) ∈ Fs, and some path

π ∈ (x̄0, q0)
w
 (x̄|w|, q|w|) satisfying

q
x̄|w| ⊕ ̺(q|w|)

y
6= 0.

We denote the states of π by (x̄0, q0), (x̄1, q1), . . . , (x̄|w|, q|w|).

For j ∈ {1, . . . , |w|}, let tj ∈ E such that the j-th transition of π stems from tj .

Clearly, t1 · · · t|w| ∈ q0
w
 q|w| is a path in A.

For every j ∈ {1, . . . , |w|}, let sj ∈ K be the weight of tj . For j ∈ {0, . . . , |w|},
let ȳj ∈ Nn be the tuple such that for every i ∈ {1, . . . , n}, yj,i is the number of
occurrences of ci among λ(q0), s1, . . . , sj . In particular ȳ0 = x̄0.

Let ȳ ∈ Nn such that for every i ∈ {1, . . . , n}, yi is the number of occurrences of
ci among λ(q0), s1, . . . , s|w|, ̺(q|w|). Clearly, JȳK is the weight of the path t1 · · · t|w|.

By a straightforward inductive argument, we can show that for every j ∈
{0, . . . , |w|}, x̄j = ⌊ȳj⌋dg(C), and x̄|w| ⊕ ̺(q|w|) = ⌊ȳ⌋dg(C).

Since (x̄|w|, q|w|) ∈ Fs, we have
q
x̄|w| ⊕ ̺(q|w|)

y
6= 0, and hence,

q
⌊ȳ⌋dg(C)

y
6= 0.

By Lemma 4.1, we have JȳK 6= 0, i.e., the weight of the path t1 · · · t|w| is different
from 0. Since K is zero-sum-free, we have w ∈ supp(|A|).

Thus, we have shown L(As) ⊆ supp(|A|). To show L(As) ⊇ supp(|A|), we can
proceed in the same way. We assume some w ∈ supp(|A|), some accepting path
t1 . . . t|w| with non-zero weight for w in A. For j ∈ {1, . . . , |w|}, we denote tj =
(qj−1, aj , sj , qj). Let x̄0 = (0, . . . , 0)⊕λ(q0). For j ∈ {1, . . . , |w|}, let x̄j = x̄j−1⊕sj.
We can argue as above to show that the transitions

(
(x̄i−1, qi−1), aj , (x̄i, qi)

)
form

an accepting path for w in As. To sum up, L(As) = supp(|A|).
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We have shown (1) and “⇐” in (2). It remains to show “⇒” in (2). Assume an
instance of the ZGP, i.e., let m,m′ ∈ N and s1, . . . , sm, s′1, . . . , s

′
m′ ∈ K.

Let w1, . . . , wm′ ∈ Σ∗ be mutually distinct, non-empty words of equal length.2

We sketch the construction of a WFAA. It has just one initial and one accepting
state. The initial and accepting weights are 1. Let a be some letter from Σ. For
now, there is exactly one path from the initial to the accepting state. This path is
labeled with am. The transition weights along this path are s1, . . . , sm. For every
j ∈ {1, . . . ,m′}, we add a loop at the accepting state which is labeled with wj . The
first transition of the loop is weighted with s′j , the remaining transitions of the loop
are weighted with 1.

For every n and i1, . . . , in ∈ {1, . . . ,m′}, we have

|A|(amwi1 . . . win) = s1 · · · sm · s′i1 · · · s
′
in
.

Moreover, we have supp(|A|) = am{w1, . . . , wm′}∗ iff 0 /∈ s1 · · · sm · 〈s′1 · · · s
′
m′〉.

By the assumption of “⇒” in (2), we can effectively construct an automaton As

which recognizes supp(|A|). By checking L(As) = am{w1, . . . , wm′}∗, we can check
whether supp(|A|) = am{w1, . . . , wm′}∗, i.e., whether 0 /∈ s1 · · · sm · 〈s′1 · · · s

′
m′〉.
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