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Identification of the Place and Materials of

Knocking Objects in Flow Induced Vibration
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László Doszpod∗, and Gábor Pór∗

Abstract

Flow induced vibration can be found and identified by acoustic methods.
Using acoustic sensors, the first task, the event detection has been solved
using the sequential probability ratio test after autoregressive filtering the
measured signal. The LABView program and actual test of the event recog-
nition technique are presented. The signals were recorded in a 100 m long test
loop having artificially placed flow induced vibrating objects hitting the wall.
Time delay between the fronts of detected events has been used to localize
the actual place of the acoustic source. The recognition of the material of
the knocking object is based traditionally on the spectrum estimation. How-
ever, this is rather time consuming task by naked eyes. We are proposing to
introduce the skeleton method for event identification.

Keywords: Autoregressive filtering, Sequential Probability Ratio Test,
IAEA Benchmark measurement, event detection, skeleton method

Introduction

Many industrial systems contain pipes with fluid flow either for transmitting mate-
rials or for cooling purposes. If solid parts of the system are detached or loosened
they may go to chaotic or deterministic motion due to forces gained from the flow
energy. It is also quite common when either a disattached part of the equipment
or just a forgotten object after maintenance work remains in the pipes causing so
called loose parts, which might be even dangerous for the given industrial system.
If a loose part knocks on the inner surface of the tube (or other compartment)
then audible events are generated. These are surface waves traveling on the metal
surfaces. The place of the knocks and the knocking material are crucial from the
point of view of the fate of the given industrial objects. Therefore detection of
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the event, finding of its place and identification of knocking material have primary
importance from the point of view of the safety and maintenance of the system.

Flow via piping systems in industry may excite vibrations. They are called
flow-induced vibration. Some of those vibrations are expressed as eigenvalues of
the pipes filled with streaming liquid. In some other cases solid parts transported
by the liquid phase may also emit sound. These sounds are regarded as background
noise in our case.

The task is to notice sound emissions due to loose parts on a relatively large
background level and to identify their origin [1, 2, 3, 4]. In this paper we investigate
the following areas. Improvement of the identification of the event recognition using
autoregressive (AR) modeling based filtering and sequential probability ratio test
(SPRT). The test measurements are described in Section 1. Data processing has
been realized in LABVIEW. This was a very important preparation for identifying
the event, since the correct event selection is the basic for that. The method and
the program test are presented in Section 2.

To give a hint on the material of the knocking objects first we estimated the
auto power spectral density function (APSD). Then we divided the total frequency
band into high frequency part and low frequency part. It was shown, that the ratio
of these partial root mean square (RMS) values are different for knocking object
of different materials. We present the first results of division of APSD into several
parts. It can be clearly seen, that this may improve the identification. (See Section
4.) Besides the identification the source localization is also important (Section 3.2.).

In event identification we are going to use skeleton method, neutral network
and later a specifically designed expert system, which has its own library based on
experiments (Section 4.).

1 Measurement

1.1 Test section

We carried out measurement sampling signals of accelerometers in frequency range
from 1kHz up to 50 kHz. The lower frequencies may have very high industrial noise,
while the frequency range above audible 16 kHz is still containing weak components
from the knocks of the loose parts and the background noise is surprisingly weak
in that range [2, 4].

The test section where measurements have been made generally serves for cool-
ing a shaker. The test section has two iron tubes: the cold leg and the hot leg
(see Fig. 1). We installed 4 accelerometers on the cold leg. We generated internal
and external events on the tube. For internal excitation we inserted different small
objects in the tube. Due to turbulent flow, small parts fixed on a wire went on
wild vibration knocking on inner wall of the tube. For external excitation we hit
the outer side of the tube with an iron stack.
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Figure 1: Measurement Setup

We put 3 different types of objects into the tube (Table 1):

• The first was the biggest one: a M10 iron bolt of 11g.

• The second was the middle sized one: M8 iron bolt of about 6g

• And the last one was a piece of Bakelite with weight of 1.7 g.

There was only one object at one time inside the tube.

Table 1: Objects in the tube.

Type M10 bolt M8 bolt bakelite piece
Mass 11,16g 5,58g 1,67g

Photo
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1.2 Measurement software

Based on LABVIEW we developed a software for measurement, which can sample
and store the signals of accelerometers up to 4 sensors in ASCII format specified
by us.

Figure 2: Display of measurement software during sampling

While measuring the program shows the time series, the coherence, the transfer
function and the phase in real-time (cf. Fig. 2) for the operator. The user has to set
the length of the measure, while a process bar shows the actual state of measuring.
The software has three states:

Beginning state First the operator has to set the sampling frequency, the time
length of measurement, the method of storage.

Calibrating state In the second step the user can select sensor pairs to see the
cross functions. It is possible to zoom into special points of functions.

Measuring state If every sensor pairs has coherence peaks than the last step is
the measuring. All the buttons are gray colored except the STOP button.

2 Event Detection

Once we did the record, we have to find and select events from the whole time
series. Our preferred method is the Sequential Probability Ratio Test (SPRT),
since it is generally accepted [5] and we also found that they are the most effective
and reliable for this purposes. However, for carrying out the SPRT first we have to
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filter the signal to remove large background noise. We did that using Autoregressive
(AR) filtering.

2.1 Autoregressive filtering

We build an autoregressive model using Durbins method on a record without acous-
tic events, to describe the background without the acoustic events.

The expression of autoregressive modeling is:

yk =

P∑
i=1

aiyk−i + wk (1)

where y are the sampled data, ai are the autoregressive coefficients, while the
w is a white, additional noise. It is supposed, that the autoregressive model will
describe everything, what is deterministic in the background having in mind, that
P is the degree of freedom of the system. This AR model was used for filtering the
actual records with events.

The formula of autoregression filtering:

xfiltered
k = xmeasured

k −
P∑
i=1

aix
measured
k−i (2)

This filtering method is very effective in real-time environment, because after
the model has been built, i.e. the autoregressive coefficients have been estimated
from the background measurements, the filtering can be made by subtracting the
AR modeled data from the actually measured data.

Figure 3: Test of autoregressive filtering

On Fig. 3 one may see a simulated example for autoregressive filtering. The red
line shows a generated (simulated) signal: one period of sine function with added
white Gaussian noise and one transient event (burst) on it. The white is the filtered
signal.
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2.2 Sequential Probability Ratio Test

The next step is the Sequential Probability Ratio Test, which serves for event
detection in the filtered signal. The theoretical formula of SPRT [2]:

λi = ln

(
p(x1, x2, . . . , xi|H1)

p(x1, x2, . . . , xi|H0)

)
(3)

The point-by-point formula of SPRT:

∆λi = λi − λi−1 = ln
f1(xi|Hi)

f1(xi|H0)
(4)

Lambda function (3) is a logarithm of a ratio of two conditioned probabilities.
In the numerator we have the probability that the samples belong to the probability
functions with condition H1, i.e. the probability density function of that. While in
the denominator we have the probability that the samples belong to the probability
function conditioned by hypothesis H0. If we substitute the normal distribution
probability variable density function to the elementary lambda increment function
of SPRT (4) then we get the following equation (5):

∆λi =
σ2

1 − σ2
0

2σ2
1σ

2
0

x2
i − ln

σ1

σ0
(5)

To take decision by the SPRT lambda function we need two parameters A and
B. When the measured signal similar in statistical sense to the background, i.e.
when process can be described by HypothesisH0 the lambda function has a negative
increment values and tends to go to negative infinity, step by step. We take decision,
that the signal belongs to background type when the value of the lambda function
exceeds value A (becomes less than A). When the measured signal deviation is
different from the background then lambda function has positive increment value
and tends to raise. We take decision, when it exceeds value B.

A can be calculated from the probability inequality [2]

1−AFP ≤ FAP · eA (6)

Expressing A:

A = ln
AFP

1− FAP
(7)

B can be calculated also from:

1−AFP ≥ FAP · eB (8)

Expressing B:

B = ln
1−AFP
FAP

(9)

where AFP means the Alarm Failure Probability and FAP means False Alarm
Probability.
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Table 2: The A and B parameters

AFP FAP A B
10% 10% -2,2 2,2
1% 1% -4,6 4,6

0,1% 0,1% -6,91 6,91
1% 10% -4,5 2,29

0,1% 10% -6,8 2,3

Calculated [2] values for A and B using equation (7) and (9) are presented in
Table 2.

If the value of lambda hits one of the limits then SPRT takes a decision A or
B, where A means that, there was no any changes in the signal in comparison to
the background, and B means that something has happened in the signal. After a
decision has been taken we set the next lambda value to zero.

There is a trivial example on Fig. 4 showing how SPRT works. One can see the
acoustic event in the upper time signal. SPRT shown in the bottom window goes
down regularly exhibiting a saw tooth shape until there is only background noise in
the time signal. At the beginning of the acoustic event lambda function will start
to grow toward the positive values. However, this is a trivial case, here one does
not need really the SPRT for event recognition.

There is a more realistic case on Fig. 5. The original sampled signal is shown
in red color. The white signal in the upper window is that signal filtered by AR.
Without the help of SPRT lambda function it is rather difficult to select real events,
real burst even in the filtered signal. With SPRT events are clearly marked, and
really one can see, that there is something in the filtered signal, which deviates at
those time spots from the general behavior of the background. SPRT senses the
standard deviation differences, where human eye doesnt see it at all.

We processed by this method all measured signals described in Section 1.

3 Analyses of selected time sequences

3.1 Identification of the event using spectra

The next task is to characterize the records classified by SPRT method into dif-
ferent classes. We calculated the averaged Power Spectrum Density function for
backgrounds (A decisions of SPRT) and the events (B decisions of SPRT). They
are shown on Figs. 6 and 7, respectively.

It is clearly seen on Fig. 6, that there are two peaks a and b sitting on the noise
level when there was no event in the measurement. The noise level is falling with
the growing frequency. We believe that peaks are due to eigenfrequencies of the
tube, while the falling noise level is due to friction of the flow. They characterize
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Figure 4: Trivial example

Figure 5: Real measurement example

the background noise of the measurements.

One can see a and b peaks and falling noise level from the background mea-
surement in the average power spectrum density function of events as well (Fig. 7).
But there are 3 other specific peaks (I,II,III) which are responsible for the events.

The numerical difference between the spectrum of events and the spectrum of
noises (Fig. 8), shows the specific descriptors of the event. The smaller peaks are
due to uncertainties in standard deviation of the measured signal, but the bigger
peaks marked on figure are useful for identification purposes.
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Figure 6: The averaged Power Spectrum Density function of background

Figure 7: Averaged Power Spectrum Density function of acoustic events, what
selected by SPRT.
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Figure 8: The numerical difference between the two spectrums, B-A.

3.2 Localization

The simplest method for localization is based on the front of the events identified
by SPRT. There are two cases clearly depicted on Figs. 9 and 10. The impact can
be either outside or inside of the section determined by the two sensors.

Figure 9: Hit outside the analyzed interval.

Figure 10: Hit intside the analyzed interval.

On these figures we used the following notations:

• The orange line is the tube itself.

• The purple arrow shows the point of hits.
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• The blue arrows show the propagation of the front of wave until it arrives to
the first sensor.

• The green arrows show the propagation after the front has passed the first
sensor. It is the time difference. It is the time delay.

• The black line shows the known distances in Fig. 9 and the unknown distances
in Fig. 10.

For localization procedure we have to estimate the time delays between the events
measured by different sensors.

3.2.1 Method using Cross Correlation Function (CCF)

In case of traditional localization one can calculate the Cross Correlation Function
(Fig. 11) to estimate the time delay and thus to localize the hits. The argument of
maximum of this function shows the time delay between the two signals.

Figure 11: Example CCF

3.2.2 Method using Impulse Response Function (IRF)

There is another function in traditional localization procedures [3]: one can cal-
culate the Impulse Response Function (Fig. 11) to estimate time delays and thus
to localize the hits. The argument of maximum of this function shows the time
delay between the two signals, like the cross correlation function. This method is
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better in the sense that it may show also the velocity distribution, but it has higher
uncertainties.

Figure 12: Example of IRF

3.2.3 New method

The new way of localization is to use learning algorithms. We hit the tube several
times on the marked points on Fig. 13. Then we calculate different description
parameters from power spectrums to train the learning algorithm (for example
neural network).

Figure 13: Localization with identification
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4 Identification

4.1 Traditional way

To distinguish the material of the hitting object at the beginning we applied the
spectrum division method proposed in [7]. We divide the power spectrum of acous-
tic events into four parts (see Fig. 14).

Figure 14: Spectrum dividing method

Using this spectrum division we can estimate their RMS Root Mean Square
value by formula:

RMSi = ∆f ×
i·(n/4)−1∑

j=(i−1)(n/4)

APSDj (10)

In this way, we have got 4 numbers, which characterize the actual event. This
method is insensitive for the position of peaks. However, the peaks contain im-
portant information. For example cutting a peak into two parts can produce big
mistake in this method.

4.2 New method

We are looking for methods to describe spectra in a more effective way using ma-
chine learning processes.

We are trying to calculate the skeleton of spectrums (Fig. 15). The endpoints
of skeletons are positive peaks that we are interested in. We borrowed the skeleton
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Figure 15: Skeleton of a spectrum

method and program from Gábor Németh [8]. It produces skeleton which has
different nodes and different distribution of the branches. In the future we shall
use these parameters for characterizing the event.

5 Summary and Conclusions

The fact that sequential probability ratio test is one of the best methods for identify-
ing abnormal events had been proposed and demonstrated earlier cf. [1, 2, 3, 4, 5].
However, earlier only offline data evaluation programs have been used to select
events in high background noise. The presented LABVIEW program opens the
way for on-line application of the SPRT method for event selection. A bench-
mark measurement has been evaluated to show the capability of the event selection
method. Efficiency of the method was clearly demonstrated in our paper. Spectral
estimation of selected methods clearly pointed at differences of spectral compo-
nents, when different object impacted the wall. This opens the route for object
identification using autospectrum. However, it is not easy to automotive the spec-
trum patter recognition having several different peaks in the spectrum. We are
involving the skeleton method. For the other important task, for the localization
of the impact place we tried three methods: we used time delay of the fronts of the
events identified by SPRT; we used the cross correlation and the impulse response
estimation to retrieve the time delay. The front cannot be estimated very precisely;
the cross-correlation seems to be too wide for precise time delay estimation; the
impulse response has rather large uncertainty. We tried a new method based on
neural network, which seems to be very promising.
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