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The Extended Analog Computer and Functions

Computable in a Digital Sense

Monika Piekarz
∗

Abstract

In this paper we compare the computational power of the Extended Analog
Computer (EAC) with partial recursive functions. We first give a survey of
some part of computational theory in discrete and in real space. In the last
section we show that the EAC can generate any partial recursive function
defined over N. Moreover we conclude that the classical halting problem for
partial recursive functions is an equivalent of testing by EAC if sets are empty
or not.

Keywords: analog computation, Extended Analog Computer, recursion the-
ory, recursive functions

1 Introduction

People have always sought some models which could help us to explain and model
various aspects of Nature. Hence, the need for machines which could simulate
some aspects of the physical world in order to understand and model it appeared
in a natural way. Several computational models seemed to perform this task, but
nowadays discrete models play the main role. Nevertheless, computers need not to
be digital. In fact, the first computers were analog computers where the internal
states are continuous rather than discrete which is the case in digital computers.
Studies of these machines began long ago with the machines of V. Bush (see [2])
which suited well to solve ordinary differential equations and were effectively used
to solve many military problems during World War II (see [10]) and work of C.
Shannon (see [21]). Later, in the 60s and 70s, this subject lost its importance, but
from the 80s onwards a renewed interest of the study on analog computation can be
observed. This stems partly from the search for new models which could provide an
adequate notion of computation and from the complexity of the dynamical systems
that are currently used to model the physical world.

Notwithstanding, the present knowledge about analog computation still leaves
many unsolved questions. Although the study of analog computation began long
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ago many fundamental questions have been analyzed relatively recently and many
of them still remain unsolved.

Two different families of models of analog computation, that come from dif-
ferent behavior of computation processes in time, appear in the theory of analog
computation. The first family contains models of computation on real numbers but
in discrete time. These are, for example, the machines of Blum-Shub-Smale (see
[1]) and Analog Recurrent Neural Network (see [22]). The second one are the mod-
els of computation on real numbers and in continuous time. One of the important
model seems to be General Purpose Analog Computer proposed by C. Shannon in
1941 (see [21]), and took over by M. B. Pour-El (see [15]), L. Lipshitz and L. A.
Rubel (see [11]). This model is able to generate all differentially algebraic functions,
and it is built from some analog units connected together. Recently, many authors
discussed the GPAC (see [3], [4], [7], [9]). There exists also an extension of this
model called Extended Analog Computer (EAC). This model was defined by L. A.
Rubel (see [20]) in 1993 and was proposed as a model of the human brain.

This work focuses on the comparison of a computational power of the EAC and
recursive functions over N. This subject is related to the Rubel’s question ([20])
whether the EAC can be simulated by a digital computer and whether the digital
computer can be simulated by an EAC. Solution of similar problems in the context
of GPAC can be found in [18] and [8].

2 Preliminaries

The fundamental notion of partial recursive functions plays a significant role in the
classical theory of computability (main notation taken from [14]). These are the
functions which map N into N and which can be thought of as an equivalent to
the class of functions computable in an intuitive sense. In fact, in the theory of
computability it is shown that the recursive functions are precisely the functions
that can be computed by Turing machines. First let us establish some notation.
Lower letters: k, n,m will denote natural numbers, x, y, z real numbers and k̄, n̄, m̄
sequences of natural numbers (x̄, ȳ, z̄ respectively sequences of real numbers).

The class PRF of partial recursive functions can be defined as follows.

Definition 2.1. The class of partial recursive functions (PRF) defined over N is
the smallest class of functions:

– contains O(n) = 0, S(n) = n+ 1, Ii
k(n1, . . . , nk) = ni (1 ≤ i ≤ k)

– closed under composition, i. e. the schema that for given g1, . . . , gl : N
k → N, f :

N
l → N, (k, l > 0) produces

h(n̄) = f(g1(n̄), . . . , gl(n̄)), h : Nk → N,

where n̄ = n1, . . . , nk, and the left side is undefined when at least one of the
values of g1, . . . , gl, f for the given arguments is undefined,
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– closed under primitive recursion, i. e. the schema that for given f : Nn+2 →
N, g : Nn → N produces h : Nn+1 → N, (n > 0)

h(n̄, 0) = g(n̄),

h(n̄,m+ 1) = f(n̄,m, h(n̄,m)),

– closed under unrestricted µ-recursion, i. e. the schema that for given f : Nn+1 →
N produces h : Nn → N, (n > 0)

h(n̄) = min
m

((∀j < m)(f(n̄, j) ↓ ∧f(n̄, j) 6= 0) ∧ f(n̄,m) = 0),

i. e. h(n̄) is the smallest m such that f(n̄,m) = 0 and h(n̄) is undefined if
there is no such m.

The operation of unrestricted µ-recursion is undefined when (∀m)f(n̄,m) 6= 0 or
(∃m)f(n̄,m) = 0 but for certain j < m, f(n̄, j) is undefined. If h(n̄) is defined by
unrestricted µ - recursion we will simply write h(n̄) = µmf(n̄,m). To receive only
total functions, the above definition should be modified. Within the operation of
µ-recursion it is required for the function f to be regular which means f is total
and (∀n̄)(∃m)f(n̄,m) = 0. Such definition gives the class of total recursive func-
tions. For simplicity, we will write “recursive function” instead of “total recursive
function”.

In the rest of the paper the notions of recursive sets and recursively enumerable
sets will be used. It is said that a set S of natural numbers is recursive if its
characteristic function is recursive. The characteristic function is understood as
the function defined by:

cS(n̄) =

{
0 n̄ ∈ S
1 n̄ ∈ ¬S

where ¬S denotes the complement of S.

It is said that a set S of natural numbers is recursively enumerable if S is the
range of a partial recursive function.

Let us recall that the graph Gf of f is a set (a relation) defined in the following
way: Gf (n̄,m) ⇔ f(n̄) = m.

Let us take a few useful results from [14].

Proposition 2.1. Let f and g be, respectively, a partial and a total function. Then:

– f is partial recursive if and only if its graph is recursively enumerable,

– g is recursive if and only if its graph is recursive.

Proposition 2.2. A set S is recursive iff it is a recursively enumerable set and its
complement is a recursively enumerable set too.
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Let P [n̄, m̄,Z] be the ring of polynomials in the (infinite denumerable) set of
unknowns with coefficients in the set Z of integers1.

Let us present here some facts about recursive enumerable sets (taken from
[14]).

Theorem 2.1. Let p(n̄, m̄) ∈ P be a polynomial with the (k+l) unknowns, k, l ∈ N,
where n ∈ N

k,m ∈ N
l. The set D (called a Diophantine set) defined in the following

way 2

〈n̄〉 ∈ D ⇔ (∃(m̄))p(n̄, m̄) = 0

is recursively enumerable and conversely every recursively enumerable set S is a
Diophantine set.

More information about the above result can be found in [12] or [6]. It is worth
mentioning here that Theorem 2.1 negatively solves Hilbert’s Tenth Problem to
decide effectively whether a given Diophantine equation: p(n̄, m̄) = 0 has a solution
or not.

3 The General Purpose Analog Computer
(GPAC)

In the two following sections some part of the theory of analog computation will
be recalled. We start with the basic continuous-time model of analog computation
known as General Purpose Analog Computer (GPAC). The GPAC was introduced
in 1941 by C. Shannon (see [21]) as a mathematical model of an analog device called
the Differential Analyzer (see [2]). Many variants of the Differential Analyzer was
used from the 1930s to the early 60s to solve numerical problems. The Differential
Analyzer may be seen as a circuit build of interconnected analog units. The units
used by GPAC can be listed as follows:

– Integrator: a unit with a setting for initial condition: two constants a and t0;
two inputs: unary functions f , g; one output: the Riemann-Stieltjes integral
∫ t

t0
f(x)dg(x) + a.

– Constant multiplier: a unit associated with a real number c with one input:
function f ; one output: cf .

– Adder: a unit with two inputs: functions f , g; one output: f + g.

– Multiplier: a unit with two inputs: functions f , g; one output: fg.

– Constant function: a unit with no input; one output: always equals 1.

1Sometimes for brevity we will write P.
2Equation of the form p(n̄, m̄) = 0 is called Diophantine equation.
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The GPAC model proposed by Shannon in [21] has further been refined in [11],
[15], [7], [9]. Shannon, in his original paper, claimed that a unary function can be
generated by GPAC if and only if the function is differentially algebraic, i. e. if it
satisfies the condition the following definition:

Definition 3.1. A unary function f(x) is differentially algebraic (DA) on the
interval I if there exist some natural number n (where n > 0) and some (n+2)-ary
nonzero polynomial P with real coefficients such that

P (x, f(x), f ′(x), . . . , f (n)(x)) = 0,

for every x ∈ I.

Shannon’s definition of the GPAC was refined by M. B. Pour-El (see [15]) and L.
Lipshitz, L. A. Rubel (see [11]). It is worth to notice that there are some functions
such as the Euler Γ-function, Γ(x) =

∫∞

0 tx−1e−tdt, that cannot be generated by
the GPAC because they are not differentially algebraic functions (compare [21]).
However, it is a classical result in computable analysis that Γ is computable. So,
it might seem that the GPAC is a less powerful model than computable analysis
when “real time” computation is used for the GPAC. But in [9] D. S. Graça and
J. F. Costa introduce some useful notion of the GPAC called a FF-GPAC. They
refine the GPAC in terms of circuits to avoid problematic cases, showing that their
model is equivalent to solutions of polynomial ODE’s.

Definition 3.2. Consider a GPAC U with n integrators U1, . . . , Un. Suppose that
to each integrator U i, i = 1, . . . , n, we can associate two linear circuits 3, Ai and
Bi, with the property that the integrand and the variable of integration inputs of U i

are connected to the outputs of Ai and Bi respectively. Suppose also that each input
of the linear circuits Ai and Bi is connected to one of the following: the output of
an integrator or to an input unit. U is said to be a feedforward GPAC (FF-GPAC)
iff there exists an enumeration of the integrators of U , U1, . . . , Un, such that the
variable of integration of k-th integrator can be expressed as

ck +

m∑

i=1

ckixi +

k−1∑

i=1

ckiyi, for all k = 1, . . . , n,

where yi is the output of Ui, for i = 1, . . . , n, xj is the input associated to the j-th
input unit, and ck, ckj , cki are suitable constants, for all k = 1, . . . , n, j = 1, . . . ,m
and i = 1, . . . , k − 1, where m is a number of input units used in U .

This definition describes the GPAC with some restrictions of the feedforward. So
we get a model which is “well-behaved” when compared with the GPAC proposed
by Pour-El.

3A limear circuit is an acyclic GPAC build only with adders, constant multipliers, and constant
function units. If x1, . . . , xn are the inputs of a linear circuit, then the output of the circuit will
be y = c0 + c1x1 + · · ·+ cnxn, where c0, c1, . . . , cn are appropriate constants.
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Other refinements of the notion of the GPAC and the GPAC-computability
were made by D. S. Graça in [7]. He showed that if we do not compute in “real
time” (which is usual way of computing for the GPAC) but in “limit time”, then
both the Euler Γ-function and Riemann ζ-function become computable. This result
was generalized in [3] where it is shown that, on compact intervals, any function
computable in the computable analysis sense can be computed by a GPAC using
“limit time”. In [7] Graça stated that, if f is generated by such GPAC, then f is
computable by Rubel’s Extended Analog Computer [20].

4 The Extended Analog Computer (EAC)

The topic of the section will be the mathematical model of analog computation
proposed by L. A. Rubel in 1993 and called the Extended Analog Computer (EAC)
(see [20]), which does not correspond to any existing device. Now, as a result of over
a decade’s of research we have some kind of implementation of Rubel’s Extended
Analog Computer model (see [13]) given by J. Mills. But this implementation is
neither identical to the EAC model, nor is a complete implementation of the EAC
model.

Rubel’s EAC was introduced to expand the scope of the General Purpose Analog
Computer (GPAC) (see [17]). The EAC works on a hierarchy of levels. It has no
inputs from the outside, but it has a finite number of “settings”, which are arbitrary
real numbers (we don’t put any restrictions of these real numbers, they have to be
neither rational nor digitally computable i. e. approximable by Turing machine).
At each level we have black boxes which produce real constants and independent
variables x1, x2, . . . . The outputs of the machine at level (n − 1) can be used as
inputs at level n or any higher level. The inputs and outputs of levels are functions
of a finite number of independent variables which are defined on some sets. Every
function f produced by the EAC is associated with some set Λ on which it is defined,
thus we have an ordered pair (f,Λ). At the lowest level 0, the EAC produces real
polynomials of a finite number of real variables. However, at level 1 it produces all
differentially algebraic functions of a finite number of real variables.

In general the EAC can generate a function on level n which is built of functions
generated on level (n−1) by the following operations: addition, multiplication, com-
position, inversion, differences, analytic continuation, solving a differential equation
with boundary value conditions and limit taking.

The EAC can produce on a half of levels certain sets Ω in Euclidean space
too. The sets can be obtained as non-negative or positive part of domain of some
function f produced on the previous level. Moreover on the same half of levels
unions, intersections or projections of such sets can be produced.

Before we give the definition of the EAC, let us recall some useful notation
concerning analytic function. We say that f is in a class Cω(Λ) and write f ∈ Cω(Λ)
if there is an extension f̃ of f to an open supersubset Λ̃ of Λ, and f̃ is real-analytic
on Λ̃. By real-analytic functions we mean that these functions are locally sums of
convergent power series.
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Definition 4.1. 4 The EAC machine can produce: function f ∈ Cω(Λ) defined on
Λ on the level n, (f,Λ) ∈ EACn where n ∈ N0 and Λ ∈ EACn− 1

2
; or set Ω ⊆ R

k

on the level n+ 1
2 ,Ω ∈ EACn+ 1

2
where n ∈ N0 if the following conditions hold:

1. For n = 0, (f,Rk) ∈ EAC0

f(x̄) =
∑

(α1,α2,...,αk)∈A

cα1α2...αk

k∏

i=1

xαi

i

where finite A ⊂ N
k
0 and cα1α2...αk

are fixed real constants.

2. For finite n > 0, (f,Λ) ∈ EACn is defined by one of the following methods:

– f(x̄) = g1(x̄) + g2(x̄), where (g1,Λ), (g2,Λ) ∈ EACn−1;

– f(x̄) = g1(x̄)g2(x̄), where (g1,Λ), (g2,Λ) ∈ EACn−1;

– f(x̄) = h(g1(x̄), . . . , gl(x̄)), where (h,Ω), (g1,Λ), . . . , (gl,Λ) ∈ EACn−1;

– f(x̄) = fi(x̄) for some i = 1, 2, . . . , l, where f1(x̄), f2(x̄), . . . , fl(x̄)
5 are the

Cω(Λ)-functions which are the solutions of







g1(x̄, f1, f2, . . . , fl) = 0
g2(x̄, f1, f2, . . . , fl) = 0
. . .
gl(x̄, f1, f2, . . . , fl) = 0

where (g1,Γ), (g2,Γ), . . . , (gl,Γ) ∈ EACn−1, Γ ∈ EACn− 3
2
;

– f(x̄) = Dg(x̄), where Dg = ∂α1+α2+···+α
k

∂x
α1
1

∂x
α2
2

...∂x
α
k

k

g(x̄) are the partial derivatives

and (g,Λ) ∈ EACn−1;

– f = f̃|Λ
6 where Λ ⊂ Λ̃ and (f̃ , Λ̃) ∈ EACn;

– f(x̄) = h(x̄) if (h,Λ) ∈ EACn is an analytic continuation 7 of h̃ from Λ∩ Λ̃
to all of Λ, where (h̃, Λ̃) ∈ EACn is defined on Λ̃ and Λ ∩ Λ̃ 6= ∅;

4This definition is the formalized version of the definition of the EAC proposed by L. A. Rubel
in [20]

5It is required for these functions to be well-defined Cω-functions on Λ. For example the
equation xy − 1 = 0 has the solution y = 1

x
which is not well-defined on R (because it is not

defined for x = 0) but it is well-defined on the intervals (−∞, 0) and (0,∞). So y = 1

x
is not EAC

computable on R but is EAC computable on (−∞, 0) or on (0,∞).
6f : Λ → R and f(x̄) = f̃(x̄) for all x̄ ∈ Λ.
7We understand the analytic continuation as in [23].
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– f(x̄) is a solution of equations

Fi(x̄ : f, f (α1), f (α2), . . . , f (αl)) = 0,

for i = 1, . . . , k on a set Λ which are subject to certain boundary val-
ues requirement 8 where Fi ∈ EACn−1 and f (α1), f (α2), . . . , f (αl) denote
some partial derivatives of f ;

– for all x̄0 ∈ Λ,
f(x̄0) = lim

x̄ → x̄0

x̄ ∈ Γ

g(x̄)

and

∂α1+α2+···+αk

∂xα1

1 ∂xα2

2 . . . ∂xαk

k

f(x̄0) = lim
x̄ → x̄0

x̄ ∈ Γ

∂α1+α2+···+αk

∂xα1

1 ∂xα2

2 . . . ∂xαk

k

g(x̄)

where (g,Γ) ∈ EACn−1 and Λ is a subset of ∂Γ (is the edge of Γ);

3. For n+ 1
2 , n ∈ N0,Ω ∈ EACn+ 1

2

– Ω is the set {x̄ ∈ Λ : f(x̄) > 0} or the set {x̄ ∈ Λ : f(x̄) ≥ 0} where
(f,Λ) ∈ EACn;

– Ω = Ω1 ∩ Ω2 or Ω = Ω1 ∪ Ω2 where Ω1,Ω2 ∈ EACn+ 1
2
;

– Ω = {x̄ : (∃x ∈ R)(x, x̄) ∈ Ω1} where Ω1 ∈ EACn+ 1
2
.

Figure 1 presents an example of how we can get an EAC on the level n + 1
where functions g1, . . . , gl are not necessarily different from f1, . . . , fm. In this
Figure we obtain functions f1, . . . , fm on the level n, then from these functions we
can compute a set on EAC level n + 1/2 by some operations Os. Farther these
functions and the set can be used as inputs for the level n+1 and by the operation
Of we obtain some function as output of EAC level n + 1. Where Os denotes
operation on sets described in point 3 of Definition 4.1 and Of denotes operation
on functions described in point 2 of Definition 4.1.

Moreover, there is an additional requirement for the EAC. The machine is re-
quired to produce unique outputs that are close on a compact set to the original

8For example: f = f0 on a piece γ0 of the boundary of Λ, and only functions f0 ∈ EACn−1 is
used.
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m
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1

g l

Figure 1: Extended Analog Computer — model of levels

unique output, in the case when the inputs are slightly deviated from the initial
setting.

The Extend Analog Computer defined above has some interesting qualities.
Some of them will be presented now. The results are taken from [20]. These
machines can compute all the functions which can be computed by the GPAC. On
level 1 the EAC can compute all differentially algebraic functions from Cω. On the
higher levels of the EAC such functions as the Euler Γ-function or the Riemman
ζ-function can be obtained. We also know that a solution to Dirichlet problem for
the Laplace’s equation in the unit disc can be computed by the EAC.

Example 4.1 (Euler Γ-function). Let us consider the Euler Γ-function defined by:

Γ(x) =

∫ ∞

0

txe−t dt

t
.
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To show how the EAC can generate this function we introduce the following func-
tion:

Γ∗(x) =

∫ ∞

1

txe−t dt

t
.

The fact the EAC can compute Γ∗(x) will be presented below and the other

part
∫ 1

0 txe−t dt
t
of the integral Γ(x) can be handled similarly. Let

f(x, y) =

∫ t=y

t=1

txe−t dt

t
,

g(x, y) = f(x,
1

y
),

h(x) = lim
y→0

g(x, y),

where limits of partial derivatives of g are well-behaved. Now we have to show
that h(x) is EAC computable. Since tx−1e−t is differentially algebraic so it can
be generated by the EAC. Since g(x, y) is a solution of the following differential
equation with boundary values:

g(x, 1) = 0 for all x > 0, ∂yg(x, y) = yx−1e−y(− 1
y2 ),

it is an EAC computable function. Now we can put the limit to compute h(x) by
an EAC.

In a similar manner one can show the Riemman ζ-function can be computed by
an EAC.

5 Richardson’s results and the EAC

Let us start with selected Richardson’s results from [16] and some results due to
N. C. A. da Costa, F. A. Doria from [5]. We start with the definition and some
lemmas from [16]. Let A[x1, x2, . . . ,R] be an algebra of supplementary functions
in the variables x1, x2, . . . over the real numbers R which corresponds to the set of
expressions representing those functions. We construct algebra A[x1, x2, . . . ,R] as
follows:

1. All real numbers belong to A,

2. xi, sin(xi), exp(xi) ∈ A,

3. If f, g ∈ A then f + g ∈ A and fg ∈ A,

4. If f, g ∈ A then (f◦g) ∈ A, the symbol ◦ denotes the composition of functions,

5. A is the smallest algebra closed under the above conditions.

Let us present some useful results, see [16].
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Lemma 5.1. A is closed under partial derivatives.

Lemma 5.2. If f ∈ A, then there is g ∈ A so that:

(∀x̄ ∈ R
n)g(x̄) > 1 and

(∀x̄ ∈ R
n, ∆̄ ∈ R

n)(|∆i| ≤ 1) → (g(x̄) > |f(x̄+ ∆̄)|).

As the conclusion from Lemma 5.1 and Lemma 5.2 we can obtain the following
lemma.

Lemma 5.3. There is a constructive procedure such that for a given expression for
p ∈ P one can obtain the expressions for functions ki ∈ A satisfying the following
condition: if |∆i| ≤ 1, i = 1, . . . , n, then

ki(m̄, x̄) > |∂i(p
2(m̄, x̄+ ∆̄))|, (1)

where m̄ ∈ N
k and x̄ ∈ R

n, ∆̄ ∈ R
n, k, n ∈ N.

Now we can add some observation regarding the algebra A in the context of the
Extended Analog Computer. By using only the definition of the algebra A, we can
give our lemma which connects the EAC with A.

Lemma 5.4. The EAC can compute all functions from A.

Proof. Elementary functions like exp(x) and sin(x) are differentially algebraic and
therefore are EAC computable. By the definition, the EAC is closed under addition,
multiplication and composition. So the EAC can generate all functions from A.

Directly from Lemma 5.3 and Lemma 5.4 we obtain the following fact.

Remark 5.1. All functions ki from Lemma 5.3 are EAC computable functions.

Now let us recall another useful notion from [16].

Definition 5.1. For given polynomial p ∈ P, and ki as in Lemma 5.3 let us define:

f(m̄, x̄) = (n+ 1)4[p2(m̄, x̄) +
n∑

i=1

(sin2 πxi)k
4
i (m̄, x̄)],

where m̄ ∈ N
k and x̄ ∈ R

n, k, n ∈ N.

It can be easily observed that f(m̄, x̄), as the composition of EAC computable
functions, is the EAC computable, too. The following result is proved in [16].

Theorem 5.1. For p and f defined as above, the following conditions are equiva-
lent: for every m̄ ∈ N

k:

1. There are natural numbers x1, . . . , xn such that p(m̄, x1, . . . , xn) = 0.
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2. There are nonnegative real numbers x1, . . . , xn such that f(m̄, x1, . . . , xn) = 0.

3. There are nonnegative real numbers x1, . . . , xn such that f(m̄, x1, . . . , xn) ≤ 1.

The additional function f̂(m̄, x1, . . . , xn) = f(m̄, x2
1, . . . , x

2
n) will be introduced

and used. It is easy to obserwe f̂ is EAC computable too.
For the purpose of creating one-argument functions the following construc-

tion is used in [16]. Let r(y) = y sin(y), and s(y) = y sin(y3). Then for given

f̂(m̄, x1, . . . , xn), the following substitutions are made:

x1 = r(y),
x2 = (r ◦ s)(y),
x3 = (r ◦ s ◦ s)(y),
...
xn−1 = (r ◦ s ◦ · · · ◦ s

︸ ︷︷ ︸

n−2

)(y),

xn = (s ◦ s ◦ · · · ◦ s
︸ ︷︷ ︸

n

)(y).

(2)

Finally, we obtain

g(m̄, y) = f̂(m̄, r(y), r(s(y)), . . . , r(s(s(. . . s(y)) . . . )), s(s(s(. . . s(y)) . . . ))),

where g is defined on R and with values in R, m̄ ∈ N
k.

The above functions s and r are the EAC computable, so this construction can
be done by the EAC, as the composition of EAC computable functions.

Now as a consequence of Theorem 5.1 we can prove the most important corollary
for the main results.

Corollary 5.1. For every m̄ ∈ N
k the following conditions are equivalent:

1. There are natural numbers x1, . . . , xn such that p(m̄, x1, . . . , xn) = 0.

2. There is a real number y such that g(m̄, y) ≤ 1.

Moreover, p and g are EAC computable.

Proof. From the introduction to Theorem Two presented in [16] it is known that
for any real numbers y1, . . . , yn, and any δ > 0, there is a real number y such that:

|r(y)− y1| < δ
|r(s(y)) − y2| < δ
...
|r(s(s(· · · s(y)) · · · )

︸ ︷︷ ︸

n−2

)− yn−1| < δ

s(s(s(· · · s(y)) · · · ))
︸ ︷︷ ︸

n

= yn.

(3)
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We first consider the second condition of our corollary. So, by the equality

g(m̄, y) = f̂(m̄, r(y), r(s(y))), . . . , r(s(s(. . . s(y)) . . . ), s(s(s(. . . s(y)) . . . )),

and by the cited result (3) this condition holds iff there exist real numbers y1, . . . , yn
for which f̂(m̄, y1, . . . , yn) ≤ 1.

Now f̂(m̄, y1, . . . , yn) was defined as f(m̄, y21 , . . . , y
2
n), so there is the equivalent

condition: there exist nonnegative real numbers x1, . . . , xn for which
f(m̄, x1, . . . , xn) ≤ 1. Next, it follows from Theorem 5.1 that the fact that there ex-
ist nonnegative real numbers x1, . . . , xn for which f(m̄, x1, . . . , xn) ≤ 1 is equivalent
to the statement that there exist natural numbers x1, . . . , xn for which
p(m̄, x1, . . . , xn) = 0. So, we finally get:

(∃y ∈ R)g(m̄, y) ≤ 1 ≡ (∃(x1, . . . , xn) ∈ N
n)p(m̄, x1, . . . , xn) = 0.

It is easy to observe that p ang g are EAC computable. Indeed, p is the poly-
nomial and from the construction of g we see that g is EAC computable too.

6 Main results

In this section we present our main results of this paper. We prove that the EAC
can generate real functions which extend all partial recursive functions defined on
N.

The following theorem can be proved using facts quoted in the preliminaries
and the previous two sections.

Theorem 6.1. Every recursively enumerable set S can be generated by the EAC.

Proof. Let D be recursively enumerable set. So D is also a Diophantine set. Then
there exists a polynomial p for which the following condition holds:

x ∈ D ≡ (∃z ∈ N)p(x, z) = 0.

By Corollary 5.1, there exists an EAC computable function g(x, y) such that

x ∈ S ≡ (∃y ∈ R)g(x, y) ≤ 1,

where the set S ⊆ R has the following property of being identically with D on N

(∀n ∈ N)(n ∈ S ⇔ n ∈ D).

Let us present details of construction S by EAC. If

h(x, y) = 1− g(x, y)

then the EAC can generate by Definition 4.1 the following set

S′ = {(x, y) ∈ R : h(x, y) ≥ 0}
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and also on the same level the set

S = {x : (∃y ∈ R)(x, y) ∈ S′}.

Now we construct the set N of natural numbers as an intersection of N1 and N2,
where

N1 = {x ∈ R+ : sin(2xπ) ≥ 0},

N2 = {x ∈ R+ : − sin(2xπ) ≥ 0}

and R+ = {x ∈ R : x ≥ 0}. The function sin(2xπ) is the EAC computable. So by
Definition 4.1, the set N can be obtained by the EAC. Finally, the set D is simply
the intersection S ∩ N.

Because every recursive set is recursively enumerable we get the following corol-
lary.

Corollary 6.1. Every recursive set S can be generated by the EAC.

Theorem 6.2. Let f be a partial recursive function defined over N. Then there
exists a family (Mn)n∈N of EACs such that for each n ∈ N Mn generates a singleton
{f(n)} if f(n) ↓ or ∅ if f(n) ↑.

Proof. For every partial recursive function the set of pairs {(n, f(n)) : n ∈ N, f(n) ↓}
is recursively enumerable. It follows from the proof of Theorem 6.1 that the EAC
can construct set Gf of pairs of real numbers such that for all pairs of natural num-
bers if (a, b) ∈ Gf , then b = f(a) and moreover {(n, f(n)) : n ∈ N, f(n) ↓} ⊆ Gf .

Let n be a given natural number. We construct Mn which generates a singleton
{f(n)} in the following manner. First we build the functions (x − n) and (n − x)
and next the sets:

Ω1
n = {(x, y) ∈ R

2 : x− n ≥ 0}

and
Ω2

n = {(x, y) ∈ R
2 : n− x ≥ 0}.

Then on the same level we obtain the set

Ωn = {(x, y) ∈ R
2 : x− n = 0}

as an intersection Ω1
n∩Ω2

n. Finally, as the intersection of sets Gf and Ωn we obtain
the singleton {(n, f(n))} if f(n) ↓ or empty set if f(n) ↑ and on the same level by
projection of set Gf ∩Ωn we can obtain in Mn set {f(n)} if f(n) ↓ or empty set if
f(n) ↑.

The above theorem shows us that the halting problem for partial recursive
functions (i. e. “is the partial recursive function defined for given n or is not
defined”) can be reduced in the EAC version to the question: “is the set empty?”.
However, we must remember that we discuss not the unique EAC but the whole
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family of EAC machines in Theorem 6.2, so the exact connection between halting
problem and the emptiness of sets is a little more sophisticated.

Moreover we know now that for any partial recursive function f defined over
N and for each n ∈ N we can obtain by EAC a singleton Λ = {f(n)} if f(n) ↓ or
Λ = ∅ if f(n) ↑. Let i be the identity function defined over R. So we can compute
on EAC function i|Λ and obtain value f(n) if f(n) ↓.

7 Conclusions

The above result implies that for any recursively enumerable sets there exists the
EAC machine which generates it, and therefore the value of every partial recursive
function at a given point can be obtained by the EAC (i. e. using the identity
function on the singleton domain). It still remains unsolved whether for a partial
recursive function f defined on N the EAC can generate a function f̃ defined on
R such that (∀n ∈ N)f̃(n) ≈ f(n). Moreover we have seen that classical halting
problem is an equivalent to answer by EAC on the question: “is the set empty?”.
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