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3-level Confidence Voting Strategy for Dynamic

Fusion-Selection of Classifier Ensembles

Csaba Főző and Csaba Gáspár-Papanek∗

Abstract

There are two different stages to consider when constructing multiple clas-

sifier systems: The Meta-Classifier Stage that is responsible for the combi-
nation logic and basically treats the ensemble members as black boxes, and
the Classifier Stage where the functionality of members is in focus. Further-
more, on the upper stage - also called voting strategy stage - the method of
combining members can be done by fusion and selection of classifiers. In this
paper, we propose a novel procedure for building the meta-classifier stage of
MCSs, using an oracle of three-level voting strategy. This is a dynamic, half
fusion-half selection type method for ensemble member combination, which is
midway between the extremes of fusion and selection. The MCS members are
weighted and combined with the help of the oracle, which is founded on a vot-
ing strategy of three levels: (1) The Local Implicit Confidence (LIC), (2) The
Global Explicit Confidence (GEC), and (3) The Local Explicit Confidence
(LEC). The first confidence segment is dependent of classifier construction,
via the implicit knowledge gathered simultaneously with training. Since this
strongly depends on the internal operation of the classifier, it can not always
be obtained, for example, when using some particularly complex classifica-
tion methods. We used several, known classifier algorithms (Decision Trees,
Neural Networks, Logistic Regression, SVM) where it is possible to extract
this information. The second goodness index is calculated on the validation
partition of the labeled train data. It is used to obtain the general accuracy
of a single classifier using a data set independent of the training partition.
And finally, the third part of the confidence triplet depends also on the un-
labeled objects yet to be classified. Due to this, it can only be calculated in
classification time.
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1 Introduction

One of the most promising ways of fighting the challenge of supervised learning in
artificial intelligence, or classification as it is mostly known in the lingo of data
mining, is using classifier ensembles. Classification is the most significant type of
analysis in data mining [18], and thus an active area of research as well. More
than 10 years ago a new performance increasing technique emerged by combining
classifiers. Many studies have been published about the advantages of the paradigm
over the individual classifier models [5, 14]. This seems to be a quite easy and
widespread way of further increasing classification accuracy, although, beyond the
basic idea there are also several new challenges of key importance, like preserving
ensemble members’ accuracy while increasing their diversity [11].

The aim of this paper is to present a new combination method for Multiple
Classifier Systems (MCS) [16, 17, 13] to further increase accuracy of classifier en-
sembles. Thus, this novel method is applicable to any MCS, that uses a separated
algorithm to handle the MCS members’ individual results as inputs, and provides a
single, final result as an output. Our method treats the underlying single classifiers
as black boxes. The only requirement for the individual classifiers is to be able to
provide an implicit confidence value measuring the sureness of their decision. By
dividing ensembles to a classifier and a meta-classifier stage, it’s possible to build a
pure meta-classifier stage algorithm, such as the 3 level confidence voting method,
that has the advantages of transportability.

Our method has three levels of confidence, GEC, LIC and LEC. In under-
standing the importance of each level, a parallel can be drawn between this voting
technique and a group of specialists at a meeting. The process of classification
would be paired with a discussion in the example. In case of a single classifier,
the group would consist of only one specialist, who makes a decision. With more
than one members, a chairman has the final word. The chairman would be the
voting algorithm. The more information it has about the members, the easier to
make the best final decision. In the three-level voting method, this information
is materialized in the three levels. The global explicit level refers to a statistical
information about the given specialist’s general accuracy when making decisions,
based on past situations observed by the chairman. The local implicit level is a
self-confidence-like value, describing how sure he really is about his answer, which
can have a significant influence on how persuasive he is at convincing the chairman.
It’s not enough to know the correct decision, but we have to know, how sure he
is about it, e.g. when two, usually very accurate specialists decide differently, the
chairman has to size up the situation taking into account which one of them is more
confident. And finally the local explicit level weighs the specialists by separating
the question space into fields and determine how accurate the specialist generally
is on the field of the given matter statistically. This way it helps identifying the
level of diversity between MCS members, and assigning greater weights to the ones
that are having more expertise on the field.

The procedure is similar to [8], with the difference that we are interested in pre-
cise confidence values to select and weight members’ decisions in the combination,
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instead of the best single classifier for an unlabeled data point. As we could see in
the example of the previous paragraph, neither of the three confidence levels can be
omitted. Even with perfectly specialized members and complementary expertise,
we have to take into consideration that the field of the question, the given subject
matter can not be identified perfectly. The classifiers wouldn’t make a good de-
cision, if the subject matter is, for example, near the boundary of two specialists
expertise. In this case, using only the local confidence can give a quite inaccurate
weighing. Solving the problem is even harder in real situations, when specialist’s
expertise is always overlapping, and nor the matters can be clearly assigned to
a specialist, neither the real expertise on the field can be derived. The error of
locating the given subject can distort the measured LEC value substantially. In
conclusion, the imperfection of finding the question’s local region results that, at
these hard cases, a good concept to follow is to complete local confidence with a
general decision accuracy, such as the global explicit confidence. In fact, if we only
wanted to select the best specialist to make the decision, like Giacinto et al. [8],
this wouldn’t be such an important matter, however, our approach can provide
significant improvement in classification accuracy.

The basic idea of combining these three levels of confidence is similar to that used
at building classifier ensembles instead of individual classifiers. We combine several
confidence values of each single classifier, to determine the best weighing amongst
them, resulting the best combination. It is like using an other ensemble system
to support the whole classifier ensemble. The three-level voting technique applied
to an ensemble of classifiers can be described as an MCS with two ensembles, one
traditional ensemble of the classifier stage, and a second one of the meta-classifier
(voting) stage. The first one summarizes the members’ decisions, and the second
one summarizes the members’ confidence indices to provide weights for the first
one.

The following section offers a brief oversight of classifier ensembles and a possible
categorization. Section 3 presents the three-level confidence voting technique. The
dataset used for experimental testing and the results are reviewed in Section 4.
And finally Section 5 concludes the paper by summarizing retrieved experiences,
furthermore outlining possible directions of future work.

2 Classifier Ensembles

One of the main reason of building classifier ensembles was that many classifiers
that were considered weak was found to keep a significant part of their capabilities
hidden if applied individually. Even the most simple algorithms, like decision trees’
performance can be boosted by using a properly collected ensemble [19, 13]. The
fundamental thought is that the precision of an individual classifier can be super-
seded by the diversity of a classifier ensemble. The key idea is similar to the theory
of division of labour. In some ways, diversity is identifiable with specialization
[15, 11].
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Definition 1 (Classifier Ensemble). Let x = [x1, ..., xN ] be a data point described

by N features and let X = [x1, ..., xn]
T

be the training dataset in a form of an

n×N matrix. Let y
X
= [y1, ..., yn]

T
be a vector of class labels for the training data,

where yi takes a value from C = {l1, ..., lc} class label set. Let L be the number of
classifiers in the ensemble denoted by D1, ..., DL. Di(X, y

X
, x) = di is the decision

of Di classifier ensemble member, taking a value from C. Then E is a Classifier
ensemble, if

E = {D1, ..., DL, V } , (1)

where
V = V (d1, ..., dL) (2)

is the voting logic upon the Di ensemble members.

2.1 Categorization

Many dimensions can be used to categorize classifier ensemble systems. Different
approaches are known on how classifiers should be collected (1.), what are the con-
struction terms (2.), in what manner should they work together (3.), and how the
final output of the ensemble should be created based upon the members’ decisions,
i.e. the voting strategy (4.).

The member collection can be separated mainly into two large groups. In
the first segment, the same kind of classifiers are used in the ensemble, and the
diversity factor depends totally on the different methods of training the model.
E = {D1, ..., DL, V } , where Di = D(Xi, Yi, x). On the other hand, the dissim-
ilarity of the ensemble can be largely enhanced by selecting members, based on
different core algorithms. In certain terminologies, only the firstly mentioned col-
lection is called a classifier ensemble, while the lingo of data mining is still unifying
in this area, thus, from a more general view-point, any multiple classifier system
(containing more than one classifier) can be called this way.

The terms of construction also consist of two possible directions. Considering
dependencies between ensemble members, the single classifiers can be independent,
hence the system can be built concurrently. While if there are dependencies, the
construction has to be sequential.

Working manner is typically partitioned into two complementary approaches
[10]: Selection and fusion. Selection follows the assumption that the members are
having complementary competence on the feature space, thus in the divided space,
they can be more specialized and accurate. While the underlying idea of classifier
fusion is that the members are experts of the whole feature space. Due to diversity,
the ensemble members may misclassify different input objects, thus a consensus
type voting will filter errors. A mixture of the two methods is also possible.

Voting strategies can be various and can be heavily dependent from the above
mentioned techniques also. Consensus type voting is generally used with fusion
working manner. The simplest way is balanced majority voting. The weights used
can be derived by model validation, when each member’s accuracy is measured
by detaching a validation segment from the training data and using it to score
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Table 1: References of ensemble systems

1 2 3 4

1.a 1.b 2.a 2.b 3.a 3.b 4.a 4.b 4.c 4.d

AdaBoost [7] X X X X
MultiBoost [20] X X X X
Bagging [4] X X X X
RndForest [6] X X X X
RndSubspace [9] X X X X
RotForest [19, 13] X X X X
RndLinOracle [12] X X X X X

3-LevelVoting - - - - X X X X X

aggregated performance of the particular classifier (e.g. Global explicit confidence).
On the other hand, it is possible to adjust the before mentioned weights based upon
the member itself, by attaching a confidence value to each of its decisions (e.g. Local
implicit confidence). And finally, some systems use a higher authority called oracle
to calculate members’ expertise based upon the object to be classified, making
uneven merging of member outputs, or even totally excluding some members (e.g.
Local explicit confidence).

The uprising dimensions for characterizing ensemble systems are summarized in
a list below and well-known algorithms with references are assigned to the classes in
Table 1. Later, we will refer back to this enumeration to differentiate the analyzed
methods to ease recognition of trends and possibly enticing fields of future work.

1. Member selection

a) Same kind of classifiers (one learning method)

b) Different classifiers (several learning methods)

2. Construction

a) Concurrent

b) Sequential

3. Working manner

a) Selection based

b) Fusion based

4. Voting strategy

a) Balanced majority voting
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b) Validation based average confidence

c) Self based confidence

d) Oracle type

In the following section, we apply the upper mentioned categorization on the
three-level confidence voting as it’s summarized in the last row of Table 1, and we
give a detailed description of the algorithm and the three levels’ logic.

3 The Three-Level Confidence Voting

As it was stated above, the three level voting technique is a meta-classifier stage
algorithm. Thus, it is separable from the classifier stage, resulting categories 1 and
2 independent of our algorithm. On the 3. dimension of the system, our method
falls within both 3.a and 3.b categories, since either of them can be applied. And
finally, our voting strategy is a novel mixture of 4.b, 4.c, and 4.d types.

The general voting logic upon the Di ensemble members in (2) is partly modified
here, due to more than one confidence metric is used. Hence,

V = V3−level(VLIC(D1, ...DL), VGEC(D1, ...DL), VLEC(D1, ...DL)), (3)

where LIC stands for Local Implicit Confidence, GEC for Global Explicit Confi-
dence, and LEC for Local Explicit Confidence. First we demonstrate the details of
the three levels, and then the V3−level , that combines them.

3.1 Local Implicit Confidence (LIC)

The ’local’ keyword means that this is a data point specific measure, that describes
the data yet to be classified, instead of describing the classifier as a whole. Thus,
it can be different for each test data point. Furthermore, it is measured implicitly,
inside the classifier, bearing the information of both the model, and the test data.
Most of the classifier algorithms are able to provide an index like this by the trained
model and the given test data. With others that are not, some modifications
have to be applied first. In this paper, we only consider classification algorithms
that are able to produce this measure (Decision Trees, Neural Networks, Logistic
Regression, SVM). While training the model, numerous attributes, weights are set
by the classifier algorithm inside the model. These influence the model’s accuracy as
well, but their primary objective is to predict classification’s expectable correctness,
solely based on training experiences. Thus, when a classifier gives a decision, e.g.
the label of data point x is Di(x) = lj , then it assigns a probability to this decision
as well, e.g. LICDi,x = confDi(x)=lj = 70% that discribes the classifier’s certainty
that it is the good decision.

3.2 Global Explicit Confidence (GEC)

The GEC is greatly different from the previous index. The global explicit level is
a statistical information about the given, individual classifier’s general accuracy.
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Global refers to the generality, which means that it is a feature of the classifier,
and it is identical for all incoming data to be classified. Explicit refers to the
measuring method’s independence from the classifier’s inner processes. Practically,
it’s the probability of making a correct decision, based on the average accuracy
reached on the validation segment of the labeled data. After training has finished,
the trained model is tested on validation data to determine the model’s accuracy
on an input different from the training data. This way, the model’s real accuracy
can be estimated much more precisely than by performance measured on the same
data that it was trained on. The specific algorithm for calculating the GEC always
depends on the dataset and the task to resolve. Otherwise, we would not be able
to compare the results of the MCS and the individual classifiers.

3.3 Local Explicit Confidence (LEC)

The local explicit confidence, considering it’s features, is somewhere between the
above presented two. Practically, it’s the accuracy measure describing the clas-
sifier, and the test data points as well. The latter part is somewhat similar to
LIC, although it’s statistically calculated, independently from the classifiers inner
processes, which means that it’s similar to GEC. The basic idea is to locate the
training data points that are similar to the data point to be classified, and calcu-
late the classifiers’ global explicit confidence upon this set of data points. Hence,
it provides an accuracy that describes the local region of the test data point. So it
depends on the test data point, because it’s needed to gather the local region.

First, the algorithm locates the x1, ..., xk nearest neighbors (k-NN), also called
the local region of z unlabeled object in the feature space, with the help of an appro-
priate distance metric over data objects. Naturally, this metric is always strongly
dataset dependent. In case of a normalized dataset, where data points’ features are
numeric values without further information, using an Euclidean distance metric
proves to be a good choice. In other cases, the selection has to be considered more
thoroughly.

In the next step, we count the xMCB = [d1(x), ..., dL(x)] Multiple Classifier
Behaviour [21], where dj(x) = Dj(X, y

X
, x), containing the ensemble members’

decisions, for each xi nearest neighbor, and for the z object to be classified. The
local region is further narrowed by selecting the ones, having an MCB similar to
the one z has. Afterwards, the remaining m objects’ MCBs (m ≤ k) are used to
calculate the ratio of correct decisions for each single classifier, resulting the local
explicit confidence.

In this case, similarity has a greater importance than in the feature space,
because in the MCB space, the dimensions are far from being normalized. Even if
the confidences (LICs) in these dimensions are normalized, it is hard to compare
LIC values of different individual classifiers. This means that the same distance
would mean a different numeric threshold in the dimensions that those individual
classifiers are responsible for. For instance, in DT algorithms, the typical distance
between LICs are 10 or 100 times greater, than in NN based classifiers. The solution
is to normalize each dimension using the average distance of LICs. This average
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is calculated for each classifier Di, and then for all xj neighbors the di(z)− di(xj)
distance gets divided by it.

3.4 Combination of the Three Levels

The implicit level and the two explicit levels are representing classifier accuracy
from different aspects, due to the dissimilarity of the classifier’s inner process based
(implicit) and the statistically measured (explicit) approach. Meanwhile, the two
explicit levels are more similar. Beyond the usage of implicit measures, the appli-
cation of two explicit indices is one of the most important difference between our
3-level technique and dynamic classifier selection of Giacinto et al. [8]. Our aim is
to rank the classifier ensemble members as precisely as possible, weight them, and
combine those that have the potential to improve the whole ensemble’s decision.
We do not presume that the best decision at classifying a data point can be made
by only one classifier. In our approach, we assume that all members are responsible
for the whole feature space, instead of just partitions of it. A well-chosen selection
threshold is used to decide whether the given classifier should be involved in mak-
ing the decision for a given data point or not. Thus, it is a fusion-selection type
method, having the advantage of being more flexible.

Our task is to assign weights to all ensemble members, so that their weighted
and summed decisions result a more accurate final decision. Any of the three
confidences can be used as weights. Although, using all three confidence levels, and
also in a selection-fusion manner is advisable. This enables the method to adapt
at the same time to data points (1) that are very different from the training set,
(2) that fall within more than one of the ensemble members’ expertise, thus all
these members can classify them with good accuracy, and (3) that don’t clearly fall
within any of the classifiers expertise, based on the locality computations.

For instance, a simple classifier selection chooses the best member of the en-
semble to make the decision. Practically it is the member, that classified most
data points correctly in the local region. The assumption of (1) results that the
data points forming the local region will be highly different from the data point
to be classified. Thus, the best member will not be able to classify the data point
correctly. This means that the problem of encountering dissimilarities between the
data point and its local region escalates also to the classifier selection. All in all, in
this case it is highly probable, that a different ensemble member is selected, instead
of the best one for the data point to be classified. With the help of our multi
level technique, it’s possible to detect these situations. If the local region becomes
practically empty or highly unreliable because of these dissimilarities, our method
uses the GEC instead of the LEC.

The second type of problematic data points are less critical, since in these cases
even only one member is able to make the good decision with relatively high con-
fidence. In (2), again the challenge is that the local region can not be determined
perfectly. Hence, weights calculated for members of the ensemble, based on this
neighborhood does not really guarantee a clear ranking among the several classi-
fiers that are all have good expertise in that local region. Picking one that seems



3-level Voting for Dynamic Fusion-Selection of Classifier Ensembles 49

to be the best can be a defective choice. This is the typical case of classifier fusion
overshadowing selection. Considering a subset of generally accurate individual clas-
sifiers with divers errors, our tsel selection threshold enables each of these members,
due to their high performance, and fusion will filter out errors.

And finally, solving the third problematic case is the hardest using only selection
methods. When non of the individual members could make the right decision on
their own. Choosing amongst almost equally bad classifiers clearly would not be
a good idea. Instead, by identifying those that have a recognizable confidence
and combining their weighted decisions, the result can be much more satisfiable.
Moreover, the weighting can be further improved by combining the LEC and the
GEC, assuming that some accuracy differences between members were masked by
local region computation error.

LEC and GEC are utilizing the LIC values, as it was described in Sections 3.2
and 3.3. However, the LIC index can be used also to complete the above described
weightings. Practically, we can regard it as the basic probability of the decision’s
correctness. It is a much more sophisticated measure to use, instead of weighting
only the decisions.

Now we demonstrate the three-level voting method by and example. Assuming
the ensemble has two members (L = 2), a binary classification task (C = 2), 10
training data points (n = 5), and 1 unlabelled test data point (z). The members
are trained (black-boxes), their LIC values and decisions are given in Table 2 by a
combined LIC metric often used at binary classification tasks (LICcomb ∈ [0, 1]).
This index describes the decision and its confidence as well. The closer this value
is to 0 or 1, the higher the confidence is. Thus a value of 0.5 would mean a
random decision with zero confidence. From now on, we use LIC in the example
as a shorter name that stands for LICcomb. Then we calculate the GEC for both
classifiers (i = 1, 2). Let the evaluation method be the number of correct decisions.

GECDi
=

∑n

j=1

sgn(0.5−|LICDi,xj
−yj|)

2 + 0.5

n
,

assuming that sgn(0) = 0.

GECD1
=

3

5
= 0.6, (4)

GECD2
=

2

5
= 0.4, (5)

To calculate the LEC, that also uses LIC, first, we have to gather the neighbor-
hood Xnb(z) of the test point. First, k-NN is calculated from the N features of x5

and z, where k is a parameter of the algorithm (now k = 3). The resulting training
dataset is given in Table 3. The second step is the MCB filtering of Xnb(z).

XMCB
nb (z) =

{

xi ∈ Xk−NN
nb (z)|distMCB(xi) ≤ tMCB

}

,

where the tMCB threshold is a parameter of the algorithm. The MCB distance is
calculated with the above mentioned MCB normalization method, by the densDi
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average LIC density of classifiers (Section 3.3).

distMCB(xj) =

√

√

√

√

L
∑

i=1

(

LICDi,xj
− LICDi,z

densDi

)2

densDi
=

∑n−1
j=1

∣

∣LICsorted
Di,j

− LICsorted
Di,j+1

∣

∣

∑n−1
j=1 sgn

∣

∣

∣
LICsorted

Di,j
− LICsorted

Di,j+1

∣

∣

∣

,

assuming that sgn(0) = 0.

densD1
=

0.01 + 0.02 + 0.03

3
= 0.02 (6)

densD2
=

0.1 + 0.1 + 0.1 + 0.3

4
= 0.15 (7)

distMCB(x2) =

√

(

0.07− 0.01

0.02

)2

+

(

0.5− 0.45

0.15

)2

= 3.02 (8)

Results of MCB distance calculations for the whole k-NN local region (Xk−NN
nb ) is

shown in Table 3. In the example, we choose our second parameter tMCB = 2.5,
hence XMCB

nb = {x4, x5}.

Table 2: Combined LIC values of the example

X LICD1
LICD2

y

x1 0.01 0.2 0
x2 0.07 0.5 1
x3 0.01 0.3 0
x4 0.04 0.8 0
x5 0.02 0.4 1
z 0.02 0.4 ?

Table 3: k-NN filtered data point’s combined LIC values of the example

Xk−NN
nb (z) LICD1

LICD2
y distMCB

x2 0.07 0.5 1 3.02
x4 0.04 0.8 0 2.32
x5 0.02 0.4 1 2.03
z 0.01 0.45 ? 0
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The next step in deriving LEC is to calculate the average error rate of the
ensemble members in this local region. The average distance of this error rate and
the LIC = 1 value yields the confidence index we are looking for (higher confidence
at lower error rate).

LECDi,z =

∑

∀j,xj∈XMCB
nb

(

1−
∣

∣LICDi,xj
− yj

∣

∣

)

∣

∣XMCB
nb

∣

∣

,

if
∣

∣XMCB
nb

∣

∣ 6= 0. Generally, we produce a small neighborhood, and thus derive the
LEC values quite strictly. Due to this, XMCB

nb is a fairly small set, the numerosity
is zero quite often. In this case, ensemble members’ weight is determined by the
GEC as we stated previously.

LECDi,z = GECDi
,

if
∣

∣XMCB
nb

∣

∣ = 0. We can see in Equation (9) and (10), that neither of the individ-
ual classifier members of the ensemble has a convincing confidence based on the
neighborhood.

LECD1,z =
(1− 0.04) + (1− 0.98)

2
= 0.49 (9)

LECD2,z =
(1− 0.8) + (1 − 0.6)

2
= 0.3 (10)

The third parameter of our algorithm is the tsel−fus selection-fusion threshold.
It is used to determine the minimum LEC value of Di members that are selected
and considered for fusing. We chosen tsel−fus = 0.25 in our example. The resulting
TLV (z) probability that serves as the output of our method is calculated in Equa-
tion (11). Naturally, at least one member always has to be collected, otherwise no
weight could be assigned. The TLV index of our Three-Level Voting strategy then
derived using all three confidence measures (GEC is used implicitly in LEC).

TLV (z) =

∑

∀i,Di∈Dsel(z)
(LICDi,z · LECDi,z)

∑

∀i,Di∈Dsel(z)
LECDi,z

Dsel(z) = {Di|LECDi,z ≥ tsel−fus}

TLV (z) =
0.01 · 0.49 + 0.45 · 0.3

0.49 + 0.3
= 0.18 (11)

Since D1 is proved to be more accurate than D2 on neighboring data points, we
can see that LICD1,z is stressed in (11), compared to the LIC of D2.

4 Results

To measure the three-level confidence voting technique’s accuracy and performance,
we aimed to use a dataset widely available on the Internet. Furthermore, we wanted
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to prove the expected performance in a manner not only reproducible, but imme-
diately comparable as well. Hence, we decided to test the method on the dataset
of ACM SIGKDD’s KDD Cup 2008, the oldest and most famous among the data
mining competitions [1, 2]. Before going into details about the results, we present
this dataset [3], provided by Siemens Medical Solutions USA.

4.1 KDD Cup 2008

The competition’s main task was to detect breast cancer at an early stage from
X-ray images of the breast. This typically consists of 4 X-ray images, 2 images per
breast that are taken from different directions, called MLO and CC. The data is
preprocessed in 2 steps.

1. Candidate generation from suspicious regions of the X-ray images.

2. Feature extraction, that computes descriptive features for each candidate to
represent them in the form of numerical values.

Our task is to classify candidates to be able to differentiate between malignant
cancers from the rest of the candidates based on the given feature vector. The
rate of prevalence is extremely low, only 0.5-1% of the patients have breast cancer.
The entries are judged by the area under the FROC curve, in the clinically relevant
region 0.2-0.3 false positives per image. The participants had to return a confidence
score for every candidate that indicates the confidence of their classifier that the
candidate is malignant.

The training data consists of 102294 candidates from 118 malignant, and 1594
normal patients, each described with 117 features, and also an information seg-
ment about it’s source image, patient, candidate’s coordinates on the image, and
a class label indicating whether or not it is malignant. The features are computed
from several standard image processing algorithms, but there are no additional
proprietary features.

4.2 Comparison of Results

First of all, we’re going to introduce the individual classifier that are used to form
ensembles and demonstrate their individual performance in the above mentioned
classification challenge. 17 classifiers are tested including Neural Network (IDs
beginning with 4), Support Vector Machine (IDs beginning with 5), Logistic Re-
gression (IDs beginning with 1 or 3) and Decision Tree (IDs beginning with 2)
algorithms. The ID 1 was assigned to the classifier with the best individual perfor-
mance (later marked by GEC**), thus we can see that it was a logistic regression
model. The goodness of the individual classifiers is shown in Table 4.

These confidence values were provided by the KDD Cup’s evaluation method,
which is based on the area under FROC, that is calculated from the LIC values
of the validation partition of the dataset. The method’ details are introduced on
the web page of the competition [2]. So these individual classifier goodness indices



3-level Voting for Dynamic Fusion-Selection of Classifier Ensembles 53

Table 4: Accuracy (GEC) of individual classifiers in the ensemble

ID(↓) GEC ID GEC(↑)

1 76,79% 1 76,79%
21 55,91% 51 74,55%
22 55,90% 42 72,94%
31 71,98% 31 71,98%
32 63,91% 46 71,93%
33 62,06% 34 71,00%
34 71,00% 47 69,64%
35 69,06% 35 69,06%
41 59,17% 44 68,43%
42 72,94% 52 67,93%
43 56,81% 45 65,77%
44 68,43% 32 63,91%
45 65,77% 33 62,06%
46 71,93% 41 59,17%
47 69,64% 43 56,81%
51 74,55% 21 55,91%
52 67,93% 22 55,90%

are practically the GEC values. First, we are to demonstrate the performance
potential in using only the GEC measure for voting, and finally, all three levels
are combined and accuracy is tested as the two explicit indices (GEC, LEC) get
integrated (Subsection 3.4), still on local implicit basis, forming our Three-Level
Voting (TLV) strategy.

Given 17 individual classifiers, this would mean a tremendous amount of possible
combinations. Hence, we decided to narrow down the problem space by construct-
ing ensembles with only 2 members (classifier pairs). Evaluating only these pairs
resulted 136 possible combinations. Several voting methods were considered, to
give a wide range of possible comparison. The 136 ensembles are sorted by best
ensemble accuracy reached among tested voting methods. The 5 best performances
are listed in Table 5, referred also by ensemble members’ IDs.

MAJ (majority voting), AVG (average), HC (highest confidence), MAX (maxi-
mum), MIN (minimum), GEC-AVG, TLV-SEL, TLV-FUS rows represent the voting
methods. Majority voting is the only decision based method amongst the tested.
Both classifiers have a vote, equivalent with their decision. In the end, the votes
are averaged and the resulting ratio serves as the confidence value required in the
evaluation. In the next three methods the combined values can be calculated with
the AV G(x1, x2), MIN(x1, x2), and MAX(x1, x2) functions, where xi represents
the LIC values of the two ensemble members.
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Table 5: Performance of top 5 ensembles using different voting strategies

Ensemble #1 #2 #3 #4 #5

ID1 1 1 1 1 1
GEC1 76,79% 76,79% 76,79% 76,79% 76,79%
ID2 35 32 31 42 52
GEC2 69,06% 63,91% 71,98% 72,94% 67,93%
Majority 34,59% 31,79% 38,49% 27,59% 52,32%
Avg 77,53% 76,96% 75,48% 76,38% 72,53%
HC 77,41% 78,88% 78,5% 78,48% 75,35%
Max 76,79% 76,79% 76,79% 76,79% 76,79%
Min 69,06% 65,93% 71,98% 72,95% 71,73%
GEC-AVG 77,53% 77,48% 75,7% 76,38% 72,42%
TLV-FUS 76,17% 75,9% 74,67% 74,38% 73,49%
TLV-SEL 79,63% 76,94% 77,08% 77,3% 78,38%
MaxMeth 2LV-SEL HC HC HC 2LV-SEL
MaxGEC 79,63% 78,88% 78,5% 78,48% 78,38%
DiffMax 2,83% 2,09% 1,71% 1,69% 1,59%
OK 1 1 1 1 1

The highest confidence method selects the classifier, which was more confident
in it’s decision. So the output is the LIC value of the classifier with the highest
confidence (the most distant from 0.5, considering combined LIC ). GEC-AVG is
almost the same as AVG, but here, the members are weighted by their GEC in-
dex before calculating the average of LIC values. The SEL and FUS versions of
the TLV method stand for selection and fusion. Since we are combining classifier
pairs, there’s only 2 possible implementations of selection-fusion: pure selection
(TLV-SEL) and pure fusion (TLV-FUS). Hence, parameter tsel−fus can be omit-
ted. MaxMethod row contains the best method for the given ensemble (column)
and MaxGec contains the best method’s GEC value. DiffMax shows the precision
compared to the best member’s GEC value in the ensemble (GEC*). The OK flag
value is equal to 1, if MaxGec is equal or higher than the GEC*.

In Table 5, we can see, that the best method amongst all was our TLV-SEL, that
reached 79.63%, beating the GEC* by 2.83%. The GEC value of the best classifier
amongst our 17 tested is marked by GEC**. Since in this case, the ensemble
contained the best classifier of our 17 tested (thus GEC* = GEC**), our method
was successful in increasing the overall performance compared to all our individual
classifiers. The TLV-SEL algorithm is proved to be the best method also at #5 of
the 136 ensembles besides #1, and the second best method at #3 and #4. At #2 it
is only the forth, while GEC-AVG was second best, hence it is highly probable that
the TLV parameters are far from perfect, otherwise GEC-AVG, that uses GEC,
which is also a part of TLV could not be more accurate.



3-level Voting for Dynamic Fusion-Selection of Classifier Ensembles 55

Figure 1: Performance of method TLV-FUS on 136 ensembles

Figure 2: Performance of method TLV-SEL on 136 ensembles

The algorithm uses two main parameters, the k index of the k-NN method, and
the tMCB threshold. Our technique’s accuracy is highly dependent on these param-
eters. First, we tuned these two parameters using all 136 ensembles. This resulted
a local optimum of tMCB = 100, k = 50 that performed well on all ensembles. We
included the results gathered by parameter setting in Table 5 presented previously.
Considering computational expenses, we decided to run k-NN in a faster, approxi-
mative manner. This is done by searching k nearest neighbors only in a randomly
chosen 1% of the training data points (approximatly 1000 data points). Meanwhile
we kept all positive training samples in, to improve the rate of prevalence. The
results of this setting is presented in Figure 1 for TLV-FUS, and in Figure 2 for
TLV-SEL. The accuracy of the ensembles are demonstrated also by the fill color of
the cell. The top three ensembles are marked by red bordering. The best ensemble
for these settings was the pair of ID1 and ID35.



56 Csaba Főző and Csaba Gáspár-Papanek

Figure 3: Trends in accuracy of ensemble ID1+ID35, taken as function of parameter
settings

Figure 4: Numeric accuracy values of ensemble ID1+ID35, taken as function of
parameter settings

Afterwards, we searched the optimal parameter settings considering this pair of
classifiers (ensemble ID1+ID35). This time, we applied k-NN on 10% of the training
points plus positive samples to increase k-NN precision. Figure 3 demonstrates the
trends in accuracy of method TLV-FUS on a 3D surface, while Figure 4 is the same
result presented in 2D with numeric values of accuracy assigned to each parameter
setting. These are plotted also for method TLV-SEL in Figures 5 and 6. The floor
of the 3D figures represents the GEC*. On the 2D figures, red bordering is applied
where the accuracy of the ensemble at that parameter setting is greater then the
GEC* hence the combination successfully improved performance. Furthermore,
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Figure 5: Trends in accuracy of ensemble ID1+ID35, taken as function of parameter
settings

Figure 6: Numeric accuracy values of ensemble ID1+ID35, taken as function of
parameter settings

cells containing the highest accuracy are marked by red text. By method TLV-
FUS, this accuracy is 78.9% at parameters (k = 10; tMCB = 20), while by using
TLV-SEL, it is 83.21% at parameters (k = 10, 15; tMCB = 20). The performance
improvement compared to GEC* (76.79%) is 2.11% by TLV-FUS and 6.42% by
TLV-SEL. The method that reached second best ensemble accuracy considering all
136 ensembles was HC with 78.88% in Ensemble #2 (in Ensemble #1 HC only
reached 77.41%). TLV-FUS managed to surpass the best performance of HC by
0.02%, while TLV-SEL overshadows it by 4.33%.

We separated an independent, labeled data partition for final evaluation pur-
poses, to be able to test the real accuracy of the best, optimized ensemble, with
tuned parameters. For comparison, we also reevaluated the accuracy of our individ-
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Table 6: Accuracy of our technique evaluated on an independent dataset

tsel−fus k tMCB GECTLV GECDiff∗∗ GECDiffHC

fusion 10 20 78.91% 0.12% -1.66%
selection 10 20 84.04% 5.25% 3.47%
selection 15 20 84.36% 5.57% 3.79%

ual classifiers (GECTLV ). The best individual classifier reached a GEC of 78.79%
(still Classifier ID1: GEC∗∗). The second best ensemble accuracy reached 80.57%
(HC method, Ensemble #2: GECHC) on this independent partition. While the
three best ensembles that use our algorithm among ensembles built of Classifier ID1
and Classifier ID35 are presented in Table 6, detailed with parameter settings, where
GECDiff∗∗ = GECTLV −GEC∗∗ and GECDiffHC = GECTLV −GECHC .

5 Conclusion

In out paper, by using the confidence triplet of “general accuracy”, “self confidence”,
and “expertise on the particular field” at classifying data objects, we created a novel
meta-classifier stage classifier ensemble algorithm. This fusion-selection method is
able to outdo the best of the combined classifiers’ accuracy by more than 5% and
also overshadows the second best meta-classifier stage algorithm by more than
3%. Hence, we experimentally proved that our algorithm has the potential to
significantly increase classification performance compared to individual classifiers
and other voting techniques. Considering future work, there are still numerous
aspects that can be improved. Since in this paper only one ensemble was subjected
to parameter optimization, which was selected by local optimization, it is very
probable that a global optimization can reveal even more potential. There is the 3
dimensional space of (1) which individual classifier pairs to include in the ensemble,
(2) and (3) setting the two main parameters. Furthermore, considering not only
classifier pairs as ensembles, the third parameter of our technique is also present,
instead of just dividing the space into the two segments of selection and fusion.
Hence (4) setting the selection-fusion threshold. And finally, our algorithm will be
tested on other well-known datasets as well.
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