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InfoMax Bayesian Learning of the Furuta Pendulum

László A. Jeni∗, György Flórea†, and András Lőrincz†‡

Abstract

We have studied the InfoMax (D-optimality) learning for the two-link
Furuta pendulum. We compared InfoMax and random learning methods.
The InfoMax learning method won by a large margin, it visited a larger
domain and provided better approximation during the same time interval.
The advantages and the limitations of the InfoMax solution are treated.

Keywords: Online Bayesian learning, D-optimality, infomax control, Furuta
pendulum

1 Introduction

In recent years, machine learning methods became more and more accurate and
popular, so that the task of learning the dynamics of plants and the learning of
reactive behaviours to environmental changes seem to be within reach. Such tasks
call for online (i.e., real time) learning methods. For fast learning, one would like
to provide stimuli that facilitate the fastest information gain about the changes of
the plant and its environment [3, 2].

As an example, consider an industrial robot. Programming of industrial robots
is traditionally an off-line task. In typical situations, the trajectory of the robot
is generated from a CAD model of the environment and the robot [12]. However,
this model holds no information about the unavoidable modelling errors especially
if the environment changes. We assume that the environment and the robot have
a parametrised representation and that the goal is to estimate these parameters as
quickly as possible and possibly on-the-flight.

An attractive route replaces trajectory planning and trajectory tracking with
speed-field planning and speed-field tracking. This latter is less strict about the
actual path. The difference between the two methods can be described by the
example when one is walking on a crowded street. Here, the trajectory should be
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replanned at each time instant and at full length when anybody moves. Speed-
field, however, undergoes slight changes even if the walker is pushed by the crowd.
Further, speed-field tracking requires a crude model of the inverse dynamics and
still has attractive global stability properties [13, 14].

This underlines our approach, where we try to approximate the dynamics fast.
We use the InfoMax (also called D-optimality) approach. InfoMax learning means
that the next control action is chosen according to Bayesian estimation given what
we have learnt until now, given the actual state that we have at this moment. The
task is the estimation of the best control signal now to gain the most information
about the unknown parameters of the model from the next observation. Note,
however, that the state of the unknown plant is also an issue, we may not know
the order of the dynamics, or the temporal convolution corrupting instantaneous
control actions. We treat the problem of the order of the dynamics here.

It has been shown recently by Póczos and Lőrincz [11] that InfoMax control
can be computed analytically without approximations and leads to simple learning
rules by slightly modifying the generalised linear model in [8].

Our particular example that we study is the so called two-link Furuta pendulum

[4]. This pendulum as well as the related InfoMax task are sketched in Fig. 1.

Figure 1: Furuta pendulum and InfoMax learning.
The pendulum stimulator receives the control input from the InfoMax algorithm,
the only output of this exploratory algorithm. The learning system also receives this
control signal. The learning system estimates, the pendulum stimulator computes
the next state. All information, i.e., state, state estimation, control signal are used
to update the parameters of the learning system and to compute the next control
signal by the InfoMax algorithm.

The paper is organised as follows. In Section 2, we review the InfoMax approach.
Section 3 is about the dynamics and the parametrisation of the Furuta pendulum
problem. Section 4 describes the results. We summarise our findings and draw
conclusions in Section 5.
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2 Infomax Learning

We introduce the model used in [11]. Let us assume that we have d simple compu-
tational units called ‘neurons’ in a recurrent neural network:

rt+1 = g





I
∑

i=0

Firt−i +

J
∑

j=0

Bjut+1−j + et+1



 , (1)

where {et}, the driving noise of the RNN, denotes temporally independent and
identically distributed (i.i.d.) stochastic variables and P (et) = Net

(0, V ), rt ∈ Rd

represents the observed activities of the neurons at time t. Let ut ∈ R
c denote

the control signal at time t. The neural network is formed by the weighted delays
represented by matrices Fi (i = 0, . . . , I) and Bj (j = 0, . . . , J), which connect
neurons to each other and also the control components to the neurons, respectively.
Control can also be seen as the means of interrogation, or the stimulus to the
network [8]. We assume that function g : R

d → R
d in (1) is known and invertible.

The computational units, the neurons, sum up weighted previous neural activities
as well as weighted control inputs. These sums are then passed through identical
non-linearities according to (1). The goal is to estimate the parameters Fi ∈ R

d×d

(i = 0, . . . , I), Bj ∈ R
d×c (j = 0, . . . , J) and the covariance matrix V , as well as

the driving noise et by means of the control signals.
We introduce the following notations:

xt+1 = [rt−I ; . . . ; rt;ut−J+1; . . . ;ut+1], (2)

yt+1 = g−1(rt+1), (3)

A = [FI , . . . , F0, BJ , . . . , B0] ∈ R
d×m. (4)

Using these notations, the original model (1) reduces to a linear equation:

yt = Axt + et. (5)

The InfoMax learning relies on Bayes’ method in the online estimation of the
unknown quantities (parameter matrix A, noise et and its covariance matrix V ).
It assumes that prior knowledge is available and it updates the posteriori knowl-
edge on the basis of the observations. Control will be chosen at each instant to
provide maximal expected information concerning the quantities we have to esti-
mate. Starting from an arbitrary prior distribution of the parameters the posterior
distribution needs to be computed. This estimation can be highly complex, so
approximations are common in the literature. For example, assumed density filter-
ing, when the computed posterior is projected to simpler distributions, has been
suggested [1, 10, 9]. Póczos and Lőrincz [11] used the method of conjugated pri-
ors [6], instead. For matrix A we assume a matrix valued normal (i.e., Gaussian)
distribution prior. For covariance matrix V inverted Wishart (IW) [7] distribution
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will be our prior. There are three advantages of this choice: (i) they are somewhat
more general than the typical Gaussian assumption, (ii) the functional form of the
posteriori distributions is not affected, and (iii) the model (2-4) admits analytical
– i.e., approximation-free – solution for this case as shown in [11]. Below, we review
the main concepts and the crucial steps of this analytical solution.

Let us define the normally distributed matrix valued stochastic variable A ∈
R

d×m by using the following quantities: M ∈ R
d×m is the expected value of A.

V ∈ R
d×d is the covariance matrix of the rows, and K ∈ R

m×m is the so-called
precision parameter matrix that we shall modify in accordance with the Bayesian
update. They are both positive semi-definite matrices.

Now, one can rewrite model (5) as follows:

P (A|V ) = NA(M,V,K), (6)

P (V ) = IWV (Q,n), (7)

P (et|V ) = Net
(0, V ), (8)

P (yt|A, xt, V ) = Nyt
(Axt, V ). (9)

We introduce the following quantities:

γt+1 = 1 − xT
t+1(xt+1x

T
t+1 + Kt)

−1xt+1,

nt+1 = nt + 1,

Mt+1 = (MtKt + yt+1x
T
t+1)(xt+1x

T
t+1 + Kt)

−1,

Qt+1 = Qt + (yt+1 − Mtxt+1) γt+1 (yt+1 − Mtxt+1)
T

, (10)

for the posterior probabilities. Then – one can show [11] that –

P (A|V, {x}t+1
1 , {y}t+1

1 ) = NA(Mt+1, V, xt+1x
T
t+1 + Kt), (11)

P (V |{x}t+1
1 , {y}t+1

1 ) = IWV (Qt+1, nt+1) , (12)

P (yt+1|{x}
t+1
1 , {y}t

1) = Tyt+1
(Qt, nt,Mtxt+1, γt+1) .

The derivations give rise to a strikingly simple optimal control value expression:

ut+1opt = arg max
u∈U

xT
t+1K

−1
t xt+1, (13)

The steps of the InfoMax update are summarised in Algorithm 1. We shall
follow these steps in our computer studies on the Furuta pendulum that we detail
in the next section.

3 The Furuta pendulum

3.1 Furuta Pendulum

The Furuta pendulum is shown in Figure 2. The pendulum has two links [4, 5].
Configuration of the pendulum is determined by the length of the links and by two
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Algorithm 1 Pseudocode of the InfoMax algorithm.

Control Calculation

1: ut+1 = arg maxu∈U x̂T
t+1K

−1
t x̂t+1

2: where x̂t+1 = [rt−I ; . . . ; rt;ut−J+1; . . . ;ut;u]
3: set xt+1 = [rt−I ; . . . ; rt;ut−J+1; . . . ;ut;ut+1]

Observation

1: observe rt+1, and let yt+1 = g−1(rt+1)

Bayesian update

1: Mt+1 = (MtKt + yt+1x
T
t+1)(xt+1x

T
t+1 + Kt)

−1

2: Kt+1 = xt+1x
T
t+1 + Kt

3: nt+1 = nt + 1
4: γt+1 = 1 − xT

t+1(xt+1x
T
t+1 + Kt)

−1xt+1

5: Qt+1 = Qt + (yt+1 − Mtxt+1) γt+1 (yt+1 − Mtxt+1)
T

angles. Dynamics of the pendulum are also determined by the different masses,
i.e. the masses of the links and the mass of the end effector as well as by the two
actuators, which are able to rotate the horizontal link and the swinging link in both
directions, respectively. The angle of the horizontal link is denoted by φ, whereas
the symbol for the angle of the horizontal link is θ (Fig. 2). Parameters of our
computer studies are provided in Table 1. The state of the pendulum is given by
φ, θ, φ̇ and θ̇. The magnitude of the angular speeds φ̇ and θ̇ was restricted to 2
rotations/s, i.e. to the interval [−2 rot

s , 2 rot
s ].

Figure 2: Furuta pendulum and notations of the different parameters.

Let τφ and τθ denote the external torques applied to the vertical arm and to
the horizontal arm, respectively. Introducing
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Name of parameter Value Unit Notation
Angle of swinging link rad θ

Angle of horizontal link rad φ

Mass of horizontal link 0.072 kg ma

Mass of vertical link 0.00775 kg mp

Mass of the weight 0.02025 kg M

Length of horizontal link 0.25 m la
Length of vertical link 0.4125 m lp
Coulomb friction 0.015 Nm τS

Coulomb stiction 0.01 Nm τC

Maximal rotation speed for both links 2 rotation
s

Approx. zero angular speed for swinging link 0.02 rad
s

φ̇ǫ

Time intervals between interrogations 100 ms
Maximum control value 0.05 Nm δ

Table 1: Parameters of the Physical Model

α = J + (M +
1

3
ma + mp)l

2
a, (14)

β = (M +
1

3
mp)l

2
p, (15)

γ = (M +
1

2
mp)lalp, (16)

δ = (M +
1

2
mp)glp (17)

and using the external torques, we can write the equations of the dynamics of the
pendulum as follows [5]:

(α + βsin2θ)φ̈ + γcosθ θ̈ + 2βcosθ sinθ φ̇ θ̇ − γsinθ θ̇2 = τφ (18)

γcosθ φ̈ + βθ̈ − βcosθ sinθ φ̇2 − δsinθ = τθ (19)

The real pendulum exhibits significant friction in the φ−joint. The friction can be
modelled in several ways. We used Coulomb friction with stiction [5]:

τF =











τC sgnφ̇ if φ̇ 6= 0,

τu if φ̇ = 0 and ‖τu‖ ≤ τS ,

τS sgnτ̇u otherwise

(20)

In our simulations the zero condition on the velocity is replaced by ‖φ̇‖ ≤ φ̇ǫ, with
φ̇ǫ chosen according to [5].
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Figure 3: Scheme of D-optimal interrogation. (1) Control ut+1 is computed from D-
optimal principle, (2) control acts upon the pendulum, (3) signals predicted before
control step, (4) sensory information after control step. Difference between (3) and
(4) is used for the computation of the cumulated prediction error. (5) Parameters
were updated according to Algorithm 1. For more details, see text.

3.2 Simulation and learning

The pendulum is a continuous dynamical system that we observe in discrete time
steps. Furthermore, we assume that our observations are limited; we have only 144
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crude sensors for observing angles φ and θ. In each time step these sensors form
our rt ∈ R

144 observations, which were simulated as follows: Space of angles φ and
θ is [0, 2π) × [0, 2π). We divided this space into 12 × 12 = 144 squared domains of
equal sizes. We ‘put’ a Gaussian sensor at the centre of each domain. Each sensor
gives maximal response 1 when angles θ and φ of the pendulum are in the centre
of the respective sensor, whereas the response decreased according to the Gaussian

function. For all sensors, response ri scaled as ri = 1
2πσ2 exp(− (θ−θi)

2+(φ−φi)
2

2σ2 )
(1 ≤ i ≤ 144), where angles θi, φi correspond to the middle point of our 12 × 12
grid, and σ was set to 1.58 in radians. Sensors were crude but noise-free; no noise
was added to the sensory outputs. The inset at label 4 of Figure 3 shows the outputs
of the sensors in a typical case. Sensors satisfied periodic boundary conditions; if
sensor S was centred around zero degree in any of the directions, then it sensed
both small (around 0 radian) and large (around 2π radian) angles. We note that
the outputs of the 144 domains are arranged for purposes of visualisation; the
underlying topography of the sensors is hidden for the learning algorithm.

We observed these rt = (r1(t), . . . , ri(t), . . . , r144(t))
T quantities and then calcu-

lated the ut+1 ∈ R
2 D-optimal control using Algorithm 1, where we approximated

the pendulum with the model r̃t+1 = Frt + But+1, F ∈ R
144×144, B ∈ R

144×2.
Components of vector ut+1 controlled the two actuators of the angles separately.
Maximal magnitude of each control signal was set to 0.05 Nm. Clearly we do not
know the best parameters for F and B in this case, so in the performance mea-
sure we have to rely on prediction error and the number of visited domains. This
procedure is detailed below.

First, we note that the angle of the swinging link and the angular speeds are
important from the point of view of the prediction of the dynamics, whereas the
angle of the horizontal link can be neglected. Thus, for the investigation of perfor-
mance of the learning process, we used the 3D space determined by φ̇, θ and θ̇. As
was mentioned above, angular speeds were restricted to the [−2 rot

s , 2 rot
s ] domain.

We divided each angular speed domain into 12 equal regions. We also used the
12-fold division of angle θ. Counting the domains, we had 12 × 12 × 12 = 1, 728
rectangular block shaped domains. Our algorithm provides estimations for F̂t and
B̂t in each instant. We can use them to compute the predicted observation vector
r̂t+1 = F̂trt + B̂tut+1. An example is shown in the inset with label 4 in Figure 3.
We computed the absolute value of the prediction errors ei(t+1) = ‖ri,t+1− r̂i,t+1‖
for all i, and cumulated them over all domains (i = 1, . . . 1, 728) as follows. For
each domain, we set the initial error value at 30, a value somewhat larger than the
maximal error we found in the computer runs. Therefore the cumulated error at
start was 1, 728 × 30 = 51, 840 and we measured how the error decreases.

4 Results

The D-optimal algorithm does two things simultaneously: (i) it explores new do-
mains, and (ii) it decreases the errors in the domains already visited. Thus, we mea-
sured the cumulated prediction errors during learning and corrected the estimation
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at each step. So, if our cumulated error estimation at time t was e(t) =
∑1,728

k=1 ek(t)
and the pendulum entered the ith domain at time t+1, then we set ek(t+1) = ek(t)
for all k 6= i and ei(t+1) = ‖ri,t+1− r̂i,t+1‖. Then we computed the new cumulated

prediction error, i.e., e(t + 1) =
∑1,728

i=1 ei(t + 1) .

We compared the random and the D-optimality interrogation schemes. We
show two sets of figures, Figures 4a and 4b, as well as Figures 4c and 4d. The
upper set depicts the results for the full set of the 1,728 domains. It is hard for
the random control to enter the upper domain by chance, so we also investigated
how the D-optimal control performs here. We computed the performance for cases
when the swinging link was above vertical, that is for 864 domains (Figs. 4c and
4d).

0 2500 5000
0

250

500

750

1000
Visited Total Domains

Learning Steps

N
um

be
r 

of
 D

om
ai

ns

 

 

D−optimal
Random

(a)

0 2500 5000
25

40

55
Error in Total Domain

Learning Steps

E
st

im
at

ed
 E

rr
or

  (
in

 th
ou

sa
nd

s)

 

 

D−optimal
Random

(b)

0 2500 5000
0

20

40

60

80

100

120
Visited Upper Domains

Learning Steps

N
um

be
r 

of
 D

om
ai

ns

 

 

D−optimal
Random

(c)

0 2500 5000
22

24

26
Error in Upper Domain

Learning Steps

E
st

im
at

ed
 E

rr
or

  (
in

 th
ou

sa
nd

s)

 

 

D−optimal
Random

(d)

Figure 4: Furuta experiments driven by random and D-optimality controls. Solid
(dotted) line: D-optimal (random) case. (a-b): Number of domains is 1728. (a):
visited domains, (b): upper bound for cumulated estimation error in all domains,
(c-d): Upper half of the space, i.e., the swinging angle is above horizontal and the
number of domains is 864. (c): number of visited domains, (d): upper bound for
cumulated estimation error. For more details, see text.

For the full space, the number of visited domains is 456 (26%) and 818 (47%)
for the random control and the D-optimal control, respectively after 5,000 control
steps (Fig. 4a). The error drops by 13,390 (26%) and by 24,040 (46%), respectively
(Fig. 4b). While the D-optimal controlled pendulum visited more domains and
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Figure 5: The Akaike’s information criterion (AIC) and the Bayesian information
criterion (BIC) values for random and InfoMax controls and for models up to fourth
order (I = 0, . . . , 3) and for different control orders (J = 0, . . . , 3).

achieved smaller errors, the domain-wise estimation error is about the same for the
domains visited; both methods gained about 29.4 points per domains.

We can compute the same quantities for the upper domains as well. The number
of visited upper domains is 9 and 114 for the random control and for the D-optimal
control, respectively (Figure 4c). The decrease of error is 265 and 3,342, respectively
(Figure 4d). In other words, D-optimal control gained 29.3 points in each domain
on average, whereas random control, on average, gained 29.4 points, which are very
close to the previous values in both cases. That is, infomax control gains more
information concerning the system to be identified by visiting new domains.

This observation is further emphasised by the following data: The infomax algo-
rithm discovered 37 new domains in the last 500 steps of the 5,000 step experiment.
Out of these 37 domains, 20 (17) were discovered in the lower (upper) domain. By
contrast, the random algorithm discovered 9 domains, out which 5 (4) was in the
lower (upper) domain. That is, infomax has a similar (roughly fourfold) lead in
both the upper and lower domains, although the complexity of the task is different
and the relative number of available volumes is also different in these two domains.

We studied the learning process as a function of the Gaussian width. We found
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that learning is robust in this respect: the estimation error was a very weak function
of σ, the spread of the Gaussian, except for very small variance Gaussians. Learning
was spoiled for very broad Gaussians, too.

By construction, there is a second order dynamical system in the background,
so we studied if one can find this order as the result of the learning process. We
calculated Akaike’s information criterion (AIC) and the Bayesian information crite-
rion (BIC) values of the model for different control orders. Figure 5 shows the AIC
and BIC values of both random control and for InfoMax control. We measured the
values for models up to fourth order (I = 0, . . . , 3), for control orders J = 1, . . . , 3,
and for σ = 1.58 radian. There is a large gain if one increases I = 0 to I = 1,
i.e., if one assumes second order dynamics. Further increases of I give smaller im-
provements. The only exception is the case of J = 0. Here, the improvement is
not so sudden between I = 0 and I = 1 and considerable further drops can be seen
for I = 2. This is most prominent under the InfoMax conditions. Thus, there is a
memory effect in the control: control rendered by InfoMax at time t may depend
on the control rendered by InfoMax at time t−1. This dependency is learned and is
represented by matrix F2. From the point of view of the order of the control, there
is little dependence here, except for the case of I = 1: there is a large performance
difference – for InfoMax control – between J = 0 and J = 1. Again, this points
to the memory effect in InfoMax, which can be uncovered by matrix B1. Taken
together, the approach can provide an estimation about the order of the dynamical

system, but not in the InfoMax operation mode.

Finally, we note that the InfoMax procedure, which we demonstrated here on
the case of the Furuta pendulum, may gain from discovering the direct product
space behind the 144 sensors. Then explorations might concern the low-dimensional
direct product space, instead of the raw sensory observations.

5 Summary and conclusion

In this paper we have studied the InfoMax learning for the two-link Furuta pendu-
lum. We used a slightly modified version of the generalised linear model described
in [8]. The intriguing property of this slight modification is that it leads to strikingly
simple learning rules [11].

InfoMax intends to optimise the next control action given what has been learned
and what has been observed. We demonstrated that this online (i.e., real time)
learning method explores larger areas than random control without significant com-
promise in the precision of the estimation in the visited domains. The discovery
rate is in favour of the InfoMax algorithm, which had similar leads in the domains
which were easier to find and in the domains, which were harder to find.

The pendulum problem also shows the limitations of the InfoMax solution. This
is a low-dimensional problem and InfoMax cannot learn the hidden regularities.
Connections to reinforcement learning should be established for efficient learning.
Convergent methods that can connect InfoMax learning and reinforcement learning
seem important for machine learning.
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