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Computer-Based Intelligent Educational Program

for Teaching Chemistry

Róbert Pántya∗ and László Zsakó†

Abstract

Improving problem-solving skills is a basic requirement in present educa-
tion. Logic programming languages, often used in the area of artificial intel-
ligence and expert systems, are very much suitable for developing problem-
solving skills.

This paper presents a computer-based tool for solving different chemical
problems (calculation of quantum numbers, description of electron configu-
rations of atoms, determination of oxidation numbers and electronegativity),
which uses the logic programming language Prolog. The authors argue that
this intelligent educational material does not only improve chemistry educa-
tion but it also inspires students to create rule-based systems when they face
various problems of everyday life.

Keywords: expert systems, rule-based systems, intelligent educational pro-
grams, artificial intelligence

1 Introduction

Computer-assisted problem solving is an important field of informatics education.
There are countless occasions in everyday life in which people are confronted with
complicated tasks. Students have to decide if such problems can be solved using
the tools of informatics, or not. If solving a problem requires the use of a computer,
they either have to select an existing tool adequate for the task, or have to build a
new one [15].

Computers and programs are frequently used in education. However, such ed-
ucational programs cannot work without intelligent educational modules. Beyond
its basics functions, educational software has to provide advice to students. In the
centre of an intelligent tutoring system there is an expert system which encapsulates
a brief summary of the knowledge of a given topic [3].

Expert systems are used to solve problems that require natural intelligence.
Knowledge is stored in expert systems in a way that makes it possible for the system
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to provide a solution for a problem, making decisions when necessary, and justifying
its choices using an appropriate argumentation. Besides transforming knowledge
into the most appropriate form, the building of an expert systems also involves
further elements, such as strategies for knowledge representation and consistency
checking, and the use of heuristic search. Such tasks can be implemented efficiently
by using artificial intelligence techniques [12].

There are a lot of existing expert systems (Dendral, MetabolExpert, Mycin, In-
ternist, Guidon, MProlog Shell, Hearsey etc. [12]). Expert systems have attracted
considerable attention in the field of chemistry over the past three to four decades.
Dendral (Dendritic Algorithm), the first successful expert system in chemistry,
was constructed in the 1970’s. Its primary aim was to identify unknown organic
molecules by analyzing their mass spectra and using the knowledge of chemistry.
Originally it was developed for being deployed in a satellite in NASA’s Mars pro-
gram [6].

Further famous chemical expert systems include the Metabol Expert (used in
chemical, medical and biological predictions), SELEX (which can be used for the
evaluation and quantitative rating of data published on selenium content of foods),
and others, such as expert systems for structure elucidation, relying on spectroscopy
knowledge bases, data property expert systems, etc. [8].

Another interesting expert system, which can be used in teaching chemistry, is
PIRExS (Predicting Inorganic Reactivity Expert System) [2], which predicts the
products of inorganic reactions.

Rule-based expert systems seem to be most appropriate for solving chemical
problems. In relation to this, it may be of interest to study the origins of the
periodic table. In the 19th century, D. I. Mendeleyev arranged the chemical elements
in a table according to their atomic mass. At that time the atomic structure was
unknown, and thus the most important feature of the atoms was their atomic mass.
Mendeleyev realised that every eighth element is similar, and therefore he placed
such similar elements in the same column.

There were blank places in his table but he trusted that appropriate new ele-
ments, which were not yet discovered, would be found later. He could not explain
this similarity of chemical properties, as he did not know the atomic structure.
But his conclusions were correct. He discovered a wonderful natural law. The way
Mendeleyev reasoned is characteristic of rule-based expert systems. 60 years later,
after the discovery of protons and electrons, his system could be explained: the
order of the elements is determined by the number of protons, while the chemical
properties depend on the characteristics of the electron cloud [5].

In a general chemistry course the studies of electron configurations, quantum
numbers and the periodic table are basic topics. There are several papers describ-
ing techniques for improving the process of learning chemistry. Iza and Gil [10]
provide a mnemonic method for assigning the electron configurations to atoms.
According to Mabrouk [11] the periodic table can be used as a mnemonic device
for remembering electron configurations.

Many students have difficulties in learning the oxidation number model. Holder
et al. [9] have developed an intelligent computer tutoring tool for assigning oxidation
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numbers. Solving quantum number problems has been examined by Ardac [1]. Birk
[4] has also developed a computer program (OXRULES) to test the effect of various
rules on the assignment of oxidation numbers.

In our study we present an intelligent educational material, which can be used
in teaching chemistry. The program was built using the Prolog programming lan-
guage, in Win-Prolog version 4.600 [13]. We assume that the reader is familiar with
the Prolog language.

Our educational material uses a rule-based system for systematic presentation
of the characteristics of chemical elements, such as the electron configuration, the
oxidation numbers, and the electronegativity. Currently, it consists of 50 rules
and 150 facts only. However, the development of the program is still in progress.
We believe that our innovative method of using a logic programming language not
only improves the process of teaching chemistry, but it can also inspire students to
construct other rule-based systems, when they are confronted with a new problem.
Thus we can reach our primary objective, namely the improvement of student
problem-solving skills.

Figure 1 shows the main window of the intelligent educational material. When
the Periodic table button is pressed in the main window, a new window appears,
containing the periodic table with 111 elements. This is shown in Figure 2. The
other buttons lead to various tutorials, as explained later.

Figure 1: The main window of the intelligent educational material

The rest of the paper is structured as follows. In Section 2 we give a short
overview of the basics in chemistry, required for understanding the paper. Next, in
Section 3, we discuss the three tutorials developed. The paper is concluded with a
brief summary in Section 4.

2 A short overview of chemical basics

An atom is composed of a positively charged nucleus and negatively charged elec-
trons. The nucleus consists of positively charged protons and electrically neutral
neutrons. An atom is electrically neutral when the number of protons matches the
number of electrons. The number of protons determines the atomic number in the
periodic table. The electron cloud consists of electron shells and subshells.

An electron orbital is associated with a region in the space where an electron
is likely to be found. The electron configuration of atoms can be described using
quantum numbers [7]. There are four kinds of quantum numbers:
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Figure 2: The periodic table, as displayed by the program

• the principal quantum number (n),

• the azimuthal quantum number (l),

• the magnetic quantum number (ml),

• the spin quantum number (ms).

The principal quantum number can take the values 1, 2, 3, 4, 5, 6, or 7. The different
principal quantum numbers correspond to different shells (n = 1 corresponds to the
shell K, n = 2 to the shell L, etc.; the remaining shells are named M , N , O, P , and
Q). The azimuthal quantum number specifies the shape of an atomic orbital. The
values of the azimuthal quantum number are 0, 1, . . . , n−1, where n is the principal
quantum number. Azimuthal quantum numbers are also denoted by letters: l = 0
by s, l = 1 by p, l = 2 by d, l = 3 by f , etc. This quantum number also has an
orbital meaning, namely it specifies the subshell of the shell [14]. The values of
the principal quantum number and the azimuthal quantum number determine the
energy level of the electron. Accordingly, the shells and subshells are often referred
to as energy levels and sublevels.

The values of the magnetic quantum number can be −l, ..., 0, ..., +l. The
magnetic quantum number determines the energy shift of an atomic orbital due
to an external magnetic field. It indicates spatial orientation. The number of the
orbitals at a given azimuthal quantum number l is 2 · l + 1. The maximum number
of the orbitals in a shell is n2, where n is the principal quantum number [5]. Finally,
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the spin quantum number is the intrinsic angular momentum of the electron. The
values of the spin quantum number are −

1

2
and +1

2
.

To determine the electron configuration of an atom we have to use certain rules
and principles. According to the Aufbau Principle, electrons fill orbitals starting at
the lowest available energy states before filling higher states. Orbitals are generally
filled according to the (n + l) rule. This rule states that orbitals with a lower
(n + l) value are filled before those with higher (n + l) values. In case of equal
(n + l) values, the orbital with a lower n value is filled first.

The Pauli Exclusion Principle states that no two electrons can have the same
four quantum numbers. If n, l and ml are the same ms must be different, so that
the electrons have opposite spins. Therefore a subshell can contain up to 4 · l + 2
electrons and a shell can contain up to 2 · n2 electrons. If multiple orbitals of
the same energy are available, Hund’s rule says that unoccupied orbitals are filled
before occupied orbitals are reused, by electrons having different spins.

The position of an atom in the periodic table is defined by the number of protons
of the atom. In the periodic table, rows are called periods and the columns are
called groups. There are two types of groups. The primary groups are indicated by
the letter ‘a’, and the secondary groups are indicated by the letter ‘b’. The periodic
table consists of 8 primary groups, 8 secondary groups and 7 periods. The row
number is related to the value of the principal quantum number [5].

The valence shell is the outermost shell of an atom. The electrons in the va-
lence shell are referred to as valence electrons. The number of valence electrons
determines the number of the primary group and the number of shells determines
the number of the period. Valence electrons are important in determining how an
element reacts chemically with other elements, i.e. what its chemical behaviour is.
In a group (primary or secondary) the number of valence electrons is the same,
therefore atoms belonging to the same group have similar chemical properties [5].

The oxidation number is a measure of the degree of oxidation of an atom in a
substance. The oxidation number is the real or hypothetical charge that an atom
would have if all bonds to atoms of different elements were completely ionic. There
are several oxidation number rules. The oxidation number of a free element is zero.
In a simple ion the oxidation number is equal to the net charge on the ion. The
algebraic sum of oxidation numbers of all atoms in a neutral molecule must be zero.

Electronegativity is a chemical property that describes the power of an atom
to attract electrons towards it. Electronegativity cannot be directly measured and
must be calculated from other atomic or molecular properties. The most commonly
used method of calculation is that originally proposed by Pauling. This gives a
dimensionless quantity on a relative scale running from 0.7 to 4.0. In our intelligent
program we use these values [5].

3 Tutorials

In this section we discuss three tutorials developed for teaching the principal char-
acteristics of elements.
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3.1 Tutorial 1 – Quantum numbers

In this subsection we discuss the features of the program related to answering the
following questions:

• What kind of shells are there?

• What kind of subshells has a given shell?

• How many electron orbitals has a given shell?

• How many electron orbitals has a given subshell?

• What is the maximum number of electrons in a given shell?

• What is the maximum number of electrons in a given subshell?

• What kind of magnetic quantum numbers and spin quantum numbers of a
given shell and subshell are there, according to the Pauli Exclusion Principle?

To answer the above questions we transform the basics of chemistry, as outlined
in Section 2, to the following Prolog facts and rules:

principal(1). principal(2). principal(3). principal(4).

principal(5). principal(6). principal(7).

azimuthal(0). azimuthal(1). azimuthal(2).

azimuthal(3). azimuthal(4). azimuthal(5). azimuthal(6).

magnetic(-6). magnetic(-5). magnetic(-4).

magnetic(-3). magnetic(-2). magnetic(-1).

magnetic(0). magnetic(1). magnetic(2).

magnetic(3). magnetic(4). magnetic(5). magnetic(6).

spin(0.5). spin(-0.5).

shell(N):- principal(N).

subshell(N, L):- principal(N), azimuthal(L), L<N.

shell_orbitals(N, C) :- principal(N), C is N*N.

shell_electrons(N, E) :- principal(N), E is 2*N*N.

subshell_orbitals(L, C) :- azimuthal(L), C is 2*L+1.

subshell_electrons(L, E) :- azimuthal(L), E is 4*L+2.

quantum(N, L, M, S):- principal(N), azimuthal(L), L<N,

magnetic(M),

M>=(-L), M<L+1, spin(S).

The first four blocks of Prolog facts list the possible values of the four kinds of
quantum numbers (principal, azimuthal, magnetic and spin). Next, the rules for
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shell(N) and subshell(N, L) define the possible shell numbers and the possible
pairs of shell and subshell numbers, respectively. Subsequently, given a shell N
or a subshell L, the rules for shell_orbitals(N, C), shell_electrons(N, E),
subshell_orbitals(L, C), and subshell_electrons(L, E) return the number
of corresponding orbitals and electrons. Finally, the rule for quantum(N, L, M, S)

is capable of listing all allowed combinations of the four kinds of quantum numbers.
The Prolog queries below, when typed in the console window following the

| ?- prompt, provide the answers to the questions listed at the beginning of the
present subsection. The Prolog built-in predicate fail is used to enumerate all
solutions of a query, while the predicates write and nl serve for displaying the
answer:

| ?- shell(J), write(J), nl, fail.

| ?- subshell(3, L), write(3), write(’ ’), write(L), nl, fail.

| ?- shell_orbitals(3, C).

| ?- shell_orbitals(N, C), write(N), write(’ ’), write(C), nl, fail.

| ?- shell_electrons(4, E).

| ?- shell_electrons(N, C), write(N), write(’ ’), write(C),

nl, fail.

| ?- subshell_orbitals(3, C).

| ?- subshell_orbitals(N, C), write(N), write(’ ’), write(C),

nl, fail.

| ?- subshell_electrons(4, E).

| ?- subshell_electrons (N, C), write(N), write(’ ’), write(C),

nl, fail.

| ?- quantum(2, 1, M, S), write(M), write(’ ’), write(S), nl, fail.

| ?- quantum(2, L, M, S), write(L), write(’ ’),

write(M), write(’ ’), write(S), nl, fail.

| ?- quantum(N,L,M,S), write(N), write(’ ’), write(L), write(’ ’),

write(M), write(’ ’), write(S), nl, fail.

There are several of object-oriented extensions of Prolog, such as Visual Prolog,
Win-Prolog, etc. These implementations combine the advantages of logic program-
ming and object-oriented programming. As our software for chemistry education
was created using Win-Prolog 4.600, we could implement an appropriate graphical
interface, which is demonstrated by some examples below.

When the Quantum numbers button is pressed in the main window, the panel
shown in Figure 3 is displayed.

Next, using the Shells button in Figure 3, one obtains the window shown in
Figure 4. This window provides important information about the shells. If the
Shells and subshells button is pressed in Figure 3, then the panel in Figure 5 is
presented to the user. Here one can select a shell (e.g. set the principal quantum
number to 5). When the Display button is pressed in this window, all possible
subshell numbers are enumerated in the listbox in the bottom right corner. The
values listed are generated by the rule subshell(N, L).
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Figure 3: Quantum numbers

Figure 4: Shells
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Figure 5: Shells and subshells

Let us return to Figure 3. Using the Number of orbitals and electrons button
of this window, we get the panel shown in Figure 6. Here, when the user specifies
a shell (e.g. by stating that the principal quantum number is 6), and presses the
Display button, the program enumerates in the listboxes on the left hand side of
the panel all possible subshell numbers, and, for each of these, it lists the number of
orbitals and electrons. To calculate these possibilities, the program uses the rules
subshell(N, L), subshell_orbitals(L, C), and subshell_electrons(L, E).

3.2 Tutorial 2 – Electron configurations of the elements

This subsection deals with obtaining the correct electron configuration of a given
element. The program can show which electron orbital is filled, and how many
electrons there are in an orbital. The corresponding rules use the Aufbau Principle
and the (n + l) rule.

The facts used here are the very same as the ones presented in Section 3.1. The
rules are the following:
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Figure 6: The number of orbitals and electrons

electron_orbital(E, N, L):-

E>0, N<8,

electron(L, E, E_L, NewE),

write(N), write(’ ’), write(L),

write(’ ’), write(E_L), nl,

next_n_l(N, L, NewN, NewL),

electron_orbital(NewE, NewN, NewL).

electron_orbital(_, N, _):-

N=8.

electron_orbital(E, _, _):-

E=0.

electron(L, E, E_L, NewE):-

E0 is 4*L+2, E>=E0, E_L is E0, NewE is E-E0.

electron(L, E, E_L, NewE):-

E0 is 4*L+2, E<E0, E_L is E, NewE is 0.

next_n_l(N, L, NewN, NewL):-

L=0, S is N+1, NewL is N // 2, NewN is S-NewL.

next_n_l(N, L, NewN, NewL):-

L>0, NewN is N+1, NewL is L-1.

The predicate electron_orbital(E, N, L) has 3 arguments: E is the number
of electrons, N is the principal quantum number, and L is the azimuthal quantum
number. Its task is to display the correct electron configuration of E electrons,
starting from the principal quantum number N and azimuthal quantum number L.
To display the complete electron configuration of E electrons, the predicate should
thus be invoked in the form electron_orbital(E, 1, 0).

The whole predicate can be expressed using three rules. The first rule checks if
there are any remaining electrons (E>0), and that the principal quantum number
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is valid (N<8). Next, it calls an auxiliary predicate electron, which, given the
azimuthal quantum number L, splits the number of electrons E in two parts: E_L is
the number of electrons to be placed in the subshell L, and NewE is the number of
remaining electrons (here, E = E_L+NewE always holds). Having displayed the triple
(N,L,E_L), a second auxiliary predicate is invoked: next_n_l(N, L, NewN, NewL)

receives the pair (N,L) and returns the next such pair in (NewN,NewL), according to
the (n + l) rule. Finally, the predicate is invoked recursively, with the remaining
number of electrons, the new shell number, and the new subshell number.

The second and third rule of the predicate electron_orbital serve for stopping
the recursion, when we run out of shells (N=8), or when there are no more electrons
to place (E=0).

The predicate electron(L, E, E_L, NewE) first calculates how many electrons
(E0) can be in the given subshell L. The first rule deals with the case when we have
at least E0 electrons, while in the second rule we have a situation where all the
electrons can be placed in the given subshell.

The predicate next_n_l(N, L, NewN, NewL) determines the new n and l values
using the (n + l) rule. It generates NewN from N, and NewL from L. In the first case,
when L=0, the n + l value increases by 1. In this case NewL becomes N//2 (where
// is the integer division operator). In the second case, the n + l value does not
change: NewN is N+1 and NewL is L-1.

Figure 7: The N+L rule, as displayed by the educational tool

Figure 7 displays the order of subshells, i.e. how the n and l values change in
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subsequent invocations of the predicate next_n_l.
Figure 8 shows a window for determining the electron configuration. In this

particular case the number 80 has been entered, denoting the atomic number,
i.e. the number of electrons. When the Display button of the window is pressed,
the program lists the possible subshells, together with the number of electrons
in that subshell, in the bottom left listboxes. It uses the predicate invocation
electron_orbital(E, 1, 0) to obtain the numbers shown.

Figure 8: The electron configuration of a given element

There are 20 elements, out of the 111, for which the exact electron configura-
tion cannot be predicted by these rules. The deviation from the regular electron
configuration is not significant (only 1 or 2 electrons are in another atomic orbital).

These elements are in the d or f blocks. Some of the irregular electron configu-
rations are predicted on the basis of the stability of half- or wholly filled subshells
(for example: Cr, Cu, Mo, Ag or Au). The corresponding configurations are s1d5

or s1d10.
There are some irregular configurations in the f blocks. When atomic orbitals

6s and 7s are filled, the next electron occupies an orbital d, rather than a 4f or a
5f . But appropriate electrons occupy orbitals f , and orbital d is filled completely
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later [16].
To deal with these irregularities, the button labelled Irregular electron config-

urations is provided in the window. When this button is pressed, the program
displays a new panel shown in Figure 9. This window shows the elements having
an irregular electron configuration.

Figure 9: Irregular electron configurations

We believe that it is important that our rule-based system, in addition to de-
termining regular electron configurations, is also able to draw attention to irregular
electron configurations. These observations can motivate students to examine such
exceptions in more detail.

3.3 Tutorial 3 – Oxidation numbers and electronegativity

In this subsection we show how the program determines the typical oxidation num-
bers of a given element. Furthermore we discuss questions of the following type:

• Which are the typical oxidation numbers of the elements in a group?

• How much electronegativity has an element?

• If there is a bond between elements, which of the two elements has higher
electronegativity?
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• How much electronegativity is there in a group?

• How do the electronegativity values change in a period and a group?

To store information on chemical elements, we use the predicate element, which
has the following 6 arguments:

• the atomic number of the element,

• the name of the element,

• the period number of the element,

• the group number of the element,

• the type of the group: primary (letter ‘a’) or secondary (letter ‘b’),

• the value of the electronegativity.

There are 111 known elements in the periodic table. We show only a subset of the
111 facts:

element(1, ’hydrogen’, 1, 1, ’a’, 2.1).

element(2, ’helium’, 1, 8, ’a’, 0).

element(3, ’lithium’, 2, 1, ’a’, 1.0).

element(4, ’beryllium’, 2, 2, ’a’, 1.5).

element(5, ’boron’, 2, 3, ’a’, 2.0).

element(6, ’carbon’, 2, 4, ’a’, 2.5).

element(7, ’nitrogen’, 2, 5, ’a’, 3.0).

element(8, ’oxygen’, 2, 6, ’a’, 3.5).

element(9, ’fluorine’, 2, 7, ’a’, 4.0).

element(10, ’neon’, 2, 8, ’a’, 0).

element(11, ’sodium’, 3, 1, ’a’, 0.9).

element(12, ’magnesium’, 3, 2, ’a’, 1.2).

element(13, ’aluminium’, 3, 3, ’a’, 1.5).

element(14, ’silicon’, 3, 4, ’a’, 1.8).

element(15, ’phosphorus’, 3, 5, ’a’, 2.1).

element(16, ’sulfur’, 3, 6, ’a’, 2.5).

element(17, ’chlorine’, 3, 7, ’a’, 3.0).

element(18, ’argon’, 3, 8, ’a’, 0).

element(19, ’potassium’, 4, 1, ’a’, 0.8).

element(20, ’calcium’, 4, 2, ’a’, 1.0).

element(21, ’scandium’, 4, 3, ’b’, 1.3).

element(22, ’titanium’, 4, 4, ’b’, 1.6).

element(23, ’vanadium’, 4, 5, ’b’, 1.6).

The predicate oxidation_number, shown below, has two arguments. The first
one is the name of the element and the second one is the possible oxidation number
of the element. An element can have several oxidation numbers.
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The first rule expresses that for every element, the oxidation number 0 is appro-
priate. This is because the oxidation number of a free element is zero. Subsequent
rules express the relation between the group of the element and the oxidation num-
ber.

oxidation_number(X, 0):- element(_, X, _, _, _, _).

oxidation_number(X, Y):- element(_, X, _, Y, _, _), Y<6.

oxidation_number(X, Y):- element(_, X, _, Y, ’b’, _), Y>5, Y<8.

oxidation_number(X, 3):- element(_, X, _, 5, ’a’, _).

oxidation_number(X,-3):- element(_, X, S, 5, ’a’, _), S<6.

oxidation_number(X,-2):- element(_, X, S, 6, ’a’, _), S<6.

oxidation_number(X, 4):- element(_, X, S, 6, ’a’, _), S>2, S<7.

oxidation_number(X,-1):- element(_, X, _, 7, ’a’, _).

oxidation_number(X, 1):- element(_, X, S, 7, ’a’, _), S>2, S<7.

oxidation_number(X, 5):- element(_, X, S, 7, ’a’, _), S>2, S<7.

oxidation_number(X, 3):- element(_, X, 4, O, ’b’, _), O>3.

oxidation_number(X, 2):- element(_, X, 4, O, ’b’, _), O>4.

oxidation_number(X, 2):- element(_, X, S, 8, ’b’, _), S>4, S<7.

oxidation_number(X, 4):- element(_, X, S, 8, ’b’, _), S>4, S<7.

However, experimental evidence shows that there exist several additional values.
These are handled using appropriate Prolog facts, such as the ones listed below.

oxidation_number(’thallium’, 1). oxidation_number(’carbon’, -4).

oxidation_number(’carbon’, 2). oxidation_number(’tin’, 2).

oxidation_number(’lead’, 2). oxidation_number(’nitrogen’, 4).

oxidation_number(’nitrogen’, 2). oxidation_number(’phosphorus’, 4).

oxidation_number(’oxigen’, -1). oxidation_number(’sulfur’, 2).

oxidation_number(’sulfur’, 6). oxidation_number(’selenium’, 6).

oxidation_number(’tellurium’, 6). oxidation_number(’polonium’, 2).

oxidation_number(’chlorine’, 3). oxidation_number(’chlorine’, 7).

oxidation_number(’iodine’, 7). oxidation_number(’copper’, 2).

oxidation_number(’zinc’, 1). oxidation_number(’gold’, 3).

oxidation_number(’mercury’, 1). oxidation_number(’vanadium’, 4).

Building on the predicates element and oxidation_number, we now define some
further predicates, related to the questions listed at the beginning of the present
subsection.

The rule for group_oxnumber(A, B, C), shown below, determines the values
of oxidation numbers of a given group. The rule for compare_en(A, B) can show
which element’s electronegativity is higher. The rule electronegativity(X, En)

retrieves the electronegativity of a given element. The two rules en_period(S, En)

and en_group(P, Q, En) produce the values of the electronegativity in a selected
group or in a selected period, respectively.
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group_oxnumber(A, B, C):-

element(_, X, _, A, B, _),

oxidation_number(X, C).

compare_en(A, B):-

element(_, A, _, _, _, X),

element(_, B, _, _, _, Y), X>Y,

write(A), nl.

compare_en(A, B):-

element(_, A, _, _, _, X),

element(_, B, _, _, _, Y), X=Y,

write(’They have equal electronegativity’), nl.

compare_en(A, B):-

element(_, A, _, _, _, X),

element(_, B, _, _, _, Y), X<Y,

write(B), nl.

electronegativity(X, En):-

element(_, X, _, _, _, En).

en_group(P, Q, En):-

element(_, _, _, P, Q, En).

en_period(S, En):-

element(_, _, S, _, _, En).

If one types the following queries into the console window, one can get the an-
swers to some questions of the type listed at the beginning of the present subsection.

| ?- group_oxnumber(4, ’a’, C), write(C), nl, fail.

| ?- group_oxnumber(1, ’a’, C), write(C), nl, fail.

| ?- compare_en(’carbon’, ’hydrogen’).

| ?- compare_en(’hydrogen’, ’hydrogen’).

| ?- compare_en(’bromine’, ’chlorine’).

| ?- oxidation_number(’carbon’, C), write(C), nl, fail.

| ?- electronegativity(’carbon’, En).

| ?- en_group(5, ’a’, En), write(En), nl, fail.

| ?- en_group(3, ’b’, En), write(En), nl, fail.

| ?- en_period(5, En), write(En), nl, fail.

Figure 10 shows two example questions submitted in the interactive environ-
ment: we ask the oxidation numbers of a given element (17 – chlorine) and of a
group (3.b).

When you press the Display button on the left hand side of the window, the
program lists the possible oxidation numbers of a given element in the listbox. For
this, it uses the set of element facts. When you press the Display button on the
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Figure 10: Possible oxidation numbers of a given element and a group

right hand side of the window, the program enumerates in the listbox the possible
oxidation numbers of the given group. It uses the group_oxnumber(A, B, C) rule
for this.

In Figure 11 we present a panel of the program showing the value of the elec-
tronegativity of a given element (80 - mercury), of a period (4), and of a group
(1.a).

Figure 11: The electronegativity of a given element, period and a group
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When you press the Display button on the left hand side of the window, the
program displays the value of the electronegativity of the given element. It uses
the element facts. When you press the Display button on the right hand side
of the window, the program lists the possible values of the electronegativity of a
given period and a given group in the listboxes. The en_period(S, En) and the
en_group(P, Q, En) rules are used in this task.

4 Summary

Improving problem-solving skills is a significant aim of education. Logic program-
ming languages are useful tools for computer-assisted problem-solving. Logic pro-
grams consist of facts and rules, therefore one can construct rule-based expert
systems easily. One can use these tools in chemistry education, too. There are a
lot of facts and rules in several subfields of chemistry, learning these is often very
difficult for the students. To improve the effectiveness of our educational activities
we have to develop new teaching methods. One of such methods is to create (with
the active co-operation of the students) a specific rule-based expert system, which
contains facts and rules of the given subject.

While constructing the system, the students understand and memorise impor-
tant facts and rules with much less effort than using traditional learning techniques.
If they are confronted with an exception, they are motivated to ask questions, and
try to answer these. Thus, we can reach our main objective, namely the improve-
ment of the problem-solving skills of the students.

The development of this educational material is in progress. Future work in-
cludes predicting possible chemical bonds and reactions, and determining reaction
equations. Our aim is not only to create educational materials, but to build a
proper chemical expert system, which also includes an electronic user guide.
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[15] Szlávi, P. and Zsakó, L. Informatics as a particular field of education. Teaching
Mathematics and Computer Science, 3(2):283–294, 2005.
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