
Acta Cybernetica 18 (2008) 529–556.

Keys and Armstrong Databases in Trees with

Restructuring

Attila Sali∗ and Klaus-Dieter Schewe†

Abstract

The definition of keys, antikeys, Armstrong-instances are extended to com-

plex values in the presence of several constructors. These include tuple, list,

set and a union constructor. Nested data structures are built using the var-

ious constructors in a tree-like fashion. The union constructor complicates

all results and proofs significantly. The reason for this is that it comes along

with non-trivial restructuring rules. Also, so-called counter attributes need

to be introduced. It is shown that keys can be identified with closed sets of

subattributes under a certain closure operator. Minimal keys correspond to

closed sets minimal under set-wise containment. The existence of Armstrong

databases for given minimal key systems is investigated. A sufficient condition

is given and some necessary conditions are also exhibited. Weak keys can be

obtained if functional dependency is replaced by weak functional dependency

in the definition. It is shown, that this leads to the same concept. Strong keys

are defined as principal ideals in the subattribute lattice. Characterization

of antikeys for strong keys is given. Some numerical necessary conditions for

the existence of Armstrong databases in case of degenerate keys are shown.

This leads to the theory of bounded domain attributes. The complexity of

the problem is shown through several examples.

1 Introduction

The relational datamodel gave rise to theoretical research in several directions.
Dependency structures were investigated as first-order logical sentences that are
supposed to hold for all database instances [3]. On the other hand, their combina-
torial investigations were fruitful resulting in nice problems, concepts, even as far
topics as design and coding theory [8, 9, 12, 5].

The relational model has been extended or generalized to nested relational
model [19], object oriented models [23], and object-relational models. The impor-
tant structures of all these were captured by the higher-order Entity-Relationship

∗Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O.B.127,

H-1364 Hungary, E-mail: sali@renyi.hu
†Massey University, Information Science Research Centre & Department of Information Sys-

tems, Private Bag 11 222, Palmerston North, New Zealand, E-mail: k.d.schewe@massey.ac.nz

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147062318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

530 Attila Sali and Klaus-Dieter Schewe

model [24, 25]. The semi-structured data and XML treated in [1] can also be
considered as an object-oriented model.

The major new structure in all these models is the introduction of constructors
that allow us to form complex data values from simpler ones. The dependencies
of the relational model can be generalized to these higher-order models, and the
axiomatization of certain dependencies was carried out in [13, 15, 16, 18, 14]. On
the other hand, the induced combinatorial structures have not been investigated
thoroughly yet. It is important from the point of view of schema design, to identify
what kind of attributes can form key systems. The aim of the present paper is to
continue the investigations started in [20, 21], thus generalizing the work of [6, 7, 8].

In Section 2 the necessary definitions are recalled. In Section 3 keys and an-
tikeys are defined and it is shown that they correspond to closed subsets of the
subattribute lattice under a certain closure operator. This is in sharp contrast with
the Relational Datamodel (RDM), where any subset of the attributes could be a
key for an appropriate system of functional dependencies. Section 4 deals with
question of existence of Armstrong-instances. This question was first investigated
by Armstrong [4] and Demetrovics [6] for functional dependencies in the RDM.
Later Fagin [10] gave a necessary and sufficient condition for general dependencies
in the relational context. Fagin’s results are quite general, if types of dependen-
cies are considered, however, they are only valid for relational databases, as the
conditions he gave depend on direct products of relations.

In the present paper we treat functional dependencies in the higher order data-
model and a sufficient condition is given for the existence of Armstrong instance.
In addition, we illustrate the complexity of the problem through several examples.
Section 5 is devoted to strong keys, that are the closest analogs of keys in the RDM.
Finally, Section 6 contains some inequalities of parameters that give necessary con-
ditions for the existence of Armstrong-instances.

2 Preliminaries

In this section we define our model of nested attributes, which covers the gist of
higher-order datamodels including XML. In particular, we investigate the structure
of the set S(X) of subattributes of a given nested attribute X. We show that
we obtain a non-distributive Brouwer algebra, i.e. a non-distributive lattice with
relative pseudo-complements.

2.1 Nested Attributes

We start with a definition of simple attributes and values for them.

Definition 1. A universe is a finite set U together with domains (i.e. sets of
values) dom(A) for all A ∈ U. The elements of U are called simple attributes.

For the relational model a universe was enough, as a relation schema could be
defined by a subset R ⊆ U. For higher-order datamodels, however, we need nested

Keys and Armstrong Databases in Trees with Restructuring 531

attributes. In the following definition we use a set L of labels, and tacitly assume
that the symbol λ is neither a simple attribute nor a label, i.e. λ /∈ U∪L, and that
simple attributes and labels are pairwise different, i.e. U ∩ L = ∅.

Definition 2. Let U be a universe and L a set of labels. The set N of nested
attributes (over U and L) is the smallest set with λ ∈ N, U ⊆ N, and satisfying the
following properties:

• for X ∈ L and X ′
1, . . . ,X

′
n ∈ N we have X(X ′

1, . . . ,X
′
n) ∈ N;

• for X ∈ L and X ′ ∈ N we have X{X ′} ∈ N, X[X ′] ∈ N, and X〈X ′〉 ∈ N;

• for X1, . . . ,Xn ∈ L and X ′
1, . . . ,X

′
n ∈ N we have X1(X

′
1)⊕· · ·⊕Xn(X ′

n) ∈ N.

We call λ a null attribute, X(X ′
1, . . . ,X

′
n) a record attribute, X{X ′} a set at-

tribute, X[X ′] a list attribute, X〈X ′〉 a multiset attribute and X1(X
′
1)⊕· · ·⊕Xn(X ′

n)
a union attribute. As record and set attributes have a unique leading label, say X,
we often write simply X to denote the attribute.

We can now extend the association dom from simple to nested attributes, i.e.
for each X ∈ N we will define a set of values dom(X).

Definition 3. For each nested attribute X ∈ N we get a domain dom(X) as
follows:

• dom(λ) = {⊤};

• dom(X(X ′
1, . . . ,X

′
n)) = {(v1, . . . , vn) | vi ∈ dom(X ′

i) for i = 1, . . . , n};

• dom(X{X ′}) = {{v1, . . . , vk} | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k}, i.e.
each element in dom(X{X ′}) is a finite set with (pairwise different) elements
in dom(X ′);

• dom(X[X ′]) = {[v1, . . . , vk] | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k}, i.e.
each element in dom(X[X ′]) is a finite (ordered) list with (not necessarily
different) elements in dom(X ′);

• dom(X〈X ′〉) = {〈v1, . . . , vk〉 | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k}, i.e.
each element in dom(X〈X ′〉) is a finite multiset with elements in dom(X ′),
or in other words each v ∈ dom(X ′) has a multiplicity m(v) ∈ N in a value in
dom(X〈X ′〉);

• dom(X1(X
′
1)⊕ · · · ⊕Xn(X ′

n)) = {(Xi : vi) | vi ∈ dom(X ′
i) for i = 1, . . . , n}.

Note that the relational model is covered, if only the tuple constructor is used.
Thus, instead of a relation schema R we will now consider a nested attribute X,
assuming that the universe U and the set of labels L are fixed. Instead of an R-
relation r we will consider a finite set r ⊆ dom(X). An element of r is called a
tuple or complex value. The following example includes several constructors.

532 Attila Sali and Klaus-Dieter Schewe

Example 4. The nested attribute Concert allows to define an instance that con-
tains data of a (rock-)concert.

Concert(Band(Bname(BandName),Members{Musician(
Name(MusicianName),Role(Instrument(InstrumentName)⊕Vocal(Voice)))}),
Played(Songs[SongTitle]),Evaluation(Grade)).

Here BandName, MusicianName, InstrumentName, Voice, SongTitle and Grade are
simple attributes, while Concert, Band, Bname,Members, Musician, Name, Role,
Instrument, Vocal, Played and Evaluation are labels. An element of the domain of
nested attribute Concert could be the following tuple:

(∅,{ (Greg Howe,(Instrument:Guitar)),
(Victor Wooten,(Instrument:Bassguitar)),
(Dennis Chambers,(Instrument:Drums)),}
[Tease, Contigo, Proto Cosmos], 10).

Note that this trio of jazz musicians plays under no specific band name.

In the following, we will need a bit more caution regarding syntax in order
to avoid ambiguity. For this we mark the set label in an attribute of the form
X{X1(X

′
1) ⊕ · · · ⊕ Xn(X ′

n)} to indicate the inner union attribute, i.e. we should
use X{1,...,n} (or even X{X1,...,Xn}) instead of X. As long as we are not dealing
with subattributes of the form X{1,...,k}{λ}, the additional index does not add any
information and thus can be omitted to increase readability. The same applies to
the multiset- and the list-constructor. The reason for introducing these indices will
become apparent after Definition 6.

2.2 Subattributes

In the dependency theory for the relational model we considered the powerset P(R)
for a relation schema R. P(R) is a Boolean algebra with order ⊆, intersection ∩,
union ∪ and the difference −.

We will generalize these operations for nested attributes starting with a par-
tial order ≥. However, this partial order will be defined on equivalence classes of
attributes. We will identify nested attributes, if we can identify their domains.

In the relational model a functional dependency X → Y for X,Y ⊆ R ⊆ U

is satisfied by an R-relation r iff any two tuples t1, t2 ∈ r that coincide on all the
attributes in X also coincide on the attributes in Y . Crucial to this definition is
that we can project R-tuples to subsets of attributes.

Therefore, in order to define FDs on a nested attribute X ∈ N we need a notion
of subattribute. For this we define a partial order ≥ on nested attributes in such a
way that whenever X ≥ Y holds, we obtain a canonical projection πX

Y : dom(X)→
dom(Y). However, this partial order has to be defined on equivalence classes of
attributes, as some domains may be identified.

Definition 5. ≡ is the smallest equivalence relation on N satisfying the following
properties:

Keys and Armstrong Databases in Trees with Restructuring 533

• λ ≡ X();

• X(X ′
1, . . . ,X

′
n) ≡ X(X ′

1, . . . ,X
′
n, λ);

• X(X ′
1, . . . ,X

′
n) ≡ X(X ′

σ(1), . . . ,X
′
σ(n)) for any permutation σ ∈ Sn;

• X1(X
′
1)⊕ · · · ⊕Xn(X ′

n) ≡ Xσ(1)(X
′
σ(1))⊕ · · · ⊕Xσ(n)(X

′
σ(n)) for any permu-

tation σ ∈ Sn;

• X(X ′
1, . . . ,X

′
n) ≡ X(Y1, . . . , Yn) if X ′

i ≡ Yi for all i = 1, . . . , n;

• X1(X
′
1)⊕· · ·⊕Xn(X ′

n) ≡ X1(Y1)⊕· · ·⊕Xn(Yn) if X ′
i ≡ Yi for all i = 1, . . . , n;

• X{X ′} ≡ X{Y } iff X ′ ≡ Y ;

• X[X ′] ≡ X[Y] iff X ′ ≡ Y ;

• X〈X ′〉 ≡ X〈Y 〉 iff X ′ ≡ Y ;

• X(X ′
1, . . . , Y1(Y

′
1)⊕ · · · ⊕ Ym(Y ′

m), . . . ,X ′
n) ≡ Y1(X

′
1, . . . , Y

′
1 , . . . ,X ′

n)⊕ · · · ⊕
Ym(X ′

1, . . . , Y
′
m, . . . ,X ′

n);

• X{X1(X
′
1)⊕ · · · ⊕Xn(X ′

n)} ≡ X(X1{X
′
1}, . . . ,Xn{X

′
n});

• X〈X1(X
′
1)⊕ · · · ⊕Xn(X ′

n)〉 ≡ X(X1〈X
′
1〉, . . . ,Xn〈X

′
n〉).

Basically, the first four cases in this equivalence definition state that λ in record
attributes can be added or removed, and that order in record and union attributes
does not matter. The last three cases in Definition 5 cover restructuring rules,
two of which were already introduced in [2]. Obviously, if we have a set of labeled
elements with up to n different labels, we can split this set into n subsets, each
of which contains just the elements with a particular label, and the union of these
sets is the original set. The same holds for multisets. Of course, we can also split
a list of labeled elements into lists containing only elements with the same label,
thereby preserving the order, but in this case we cannot invert the splitting and
thus cannot claim an equivalence.

In the following we identify N with the set N/≡ of equivalence classes. In
particular, we will write = instead of ≡, and in the following definition we should
say that Y is a subattribute of X iff X̃ ≥ Ỹ holds for some X̃ ≡ X and Ỹ ≡ Y .

Definition 6. For X,Y ∈ N we say that Y is a subattribute of X, iff X ≥ Y holds,
where ≥ is the smallest partial order on N/≡ satisfying the following properties:

• X ≥ λ for all X ∈ N;

• X(Y1, . . . , Yn) ≥ X(X ′
σ(1), . . . ,X

′
σ(m)) for some injective σ : {1, . . . ,m} →

{1, . . . , n} and Yσ(i) ≥ X ′
σ(i) for all i = 1, . . . ,m;

• X1(Y1)⊕ · · · ⊕Xn(Yn) ≥ Xσ(1)(X
′
σ(1))⊕ · · · ⊕Xσ(n)(X

′
σ(n)) for some permu-

tation σ ∈ Sn and Yi ≥ X ′
i for all i = 1, . . . , n;

534 Attila Sali and Klaus-Dieter Schewe

• X{Y } ≥ X{X ′} iff Y ≥ X ′;

• X[Y] ≥ X[X ′] iff Y ≥ X ′;

• X〈Y 〉 ≥ X〈X ′〉 iff Y ≥ X ′;

• X{1,...,n}[X1(X
′
1)⊕ · · · ⊕Xn(X ′

n)] ≥ X(X1[X
′
1], . . . ,Xn[X ′

n]);

• X{1,...,k}[X1(X
′
1)⊕· · ·⊕Xk(X ′

k)] ≥ X{1,...,ℓ}[X1(X
′
1)⊕· · ·⊕Xℓ(X

′
ℓ)] for k ≥ ℓ;

• X(Xi1{λ}, . . . ,Xik
{λ}) ≥ X{i1,...,ik}{λ};

• X(Xi1〈λ〉, . . . ,Xik
〈λ〉) ≥ X{i1,...,ik}〈λ〉;

• X(Xi1 [λ], . . . ,Xik
[λ]) ≥ X{i1,...,ik}[λ].

Attributes of types X{i1,...,ik}{λ}, X{i1,...,ik}〈λ〉 and X{i1,...,ik}[λ] are called
counter attributes.

Note that the last four cases in Definition 6 cover further restructuring rules
due to the union constructor. Obviously, if we are given a list of elements labeled
with X1, . . . ,Xn, we can take the individual sublists – preserving the order – that
contain only those elements labeled by Xi and build the tuple of these lists. In this
case we can turn the label into a label for the whole sublist. This explains the first
of the last four subattribute relationships.

For the other restructuring rules we have to add a little remark on nota-
tion here explaining why we use additional indices. As we identify X{X1(X

′
1) ⊕

· · ·⊕Xn(X ′
n)} with X(X1{X

′
1}, . . . ,Xn{X

′
n}), we obtain subattributes of the form

X(Xi1{X
′
i1
}, . . . ,Xik

{X ′
ik
}) for each subset I = {i1, . . . , ik} ⊆ {1, . . . , n}. How-

ever, restructuring requires some care with labels. If we simply reused the label X
in the third last property in Definition 6, we would obtain

X{X1(X
′
1)⊕X2(X

′
2)} ≡X(X1{X

′
1},X2{X

′
2}) ≥

X(X1{X
′
1}) ≥ X(X1{λ}) ≥ X{λ}.

However, the last step here is wrong, as the left hand side is an indicator for
the subset containing the elements with label X1 being empty or not, whereas the
right hand side is the corresponding indicator for the whole set, i.e. elements with
labels X1 or X2. No such mapping can be claimed. However, if we mark the set
label in an attribute of the form X{X1(X

′
1)⊕ · · · ⊕Xn(X ′

n)} to indicate the inner
union attribute, the ambiguity problem disappears.

Further note that due to the restructuring rules in Definitions 5 and 6 we may
have the case that a record attribute is a subattribute of a set attribute and vice
versa. This cannot be the case, if the union-constructor is absent. However, the
presence of the restructuring rules allows us to assume that the union-constructor
only appears inside a set-constructor or as the outermost constructor. This will be
frequently exploited in our proofs.

Obviously, X ≥ Y induces a projection map πX
Y : dom(X) → dom(Y). For

X ≡ Y we have X ≥ Y and Y ≥ X and the projection maps πX
Y and πY

X are
inverse to each other.

Keys and Armstrong Databases in Trees with Restructuring 535

Example 7. Let X = Balls{red(Number) ⊕ blue(Number) ⊕ green(Number)}.
A complex value in dom(X) represents a set of coloured balls carrying numbers,
with the colours red, green and blue being available. Examples of such values are
v1 = {(red : 11), (red : 12), (green : 11), (blue : 6), (blue : 1)}, v2 = {(red : 5), (red :
7), (blue : 3)}, and v3 = {(green : 8)}.

Counter subattributes of X are X1 = Ballsred,green{λ}, X2 = Ballsgreen{λ},
and X3 = Ballsblue{λ}. Projecting a value v ∈ dom(X) to X1 would give a non-
empty set {⊤} iff v contains red or green balls. Analogously, the projection to X2

or X3 results in {⊤} iff v contains green or blue balls, respectively. For instance,
we obtain

πX
X1

(v1) = {⊤} πX
X2

(v1) = {⊤} πX
X3

(v1) = {⊤}

πX
X1

(v2) = {⊤} πX
X2

(v2) = ∅ πX
X3

(v2) = {⊤}

πX
X1

(v3) = {⊤} πX
X2

(v3) = {⊤} πX
X3

(v3) = ∅

We use the notation S(X) = {Z ∈ N | X ≥ Z} to denote the set of subattributes
of a nested attribute X. Figure 2 shows the subattributes of X{X1(A)⊕X2(B)⊕
X3(C)} = X(X1{A},X2{B},X3{C}) together with the relation ≥ on them.

Note that the subattribute X{λ} would not occur, if we only considered the
record-structure, whereas other subattributes such as X(X1{λ}) would not occur,
if we only considered the set-structure. This is a direct consequence of the restruc-
turing rules.

Example 8. Consider the following subattributes of the nested attribute Concert
of Example 4. Subattribute

Concert(Band(Members{Musician(Name(MusicianName))}))

represents the set of names of musicians performing at the concert. The projec-
tion of the tuple shown in Example 4 to this subattribute is the following complex
value:

(({(Greg Howe),(Victor Wooten),(Dennis Chambers)})).

The subattribute Concert(Played(Songs[λ])) shows the number of songs played dur-
ing the concert. The projection of the tuple of Example 4 to this subattribute is
the tuple (([⊤,⊤,⊤])) showing that three songs were played. Finally, subattribute
Concert(Band(Members{Musician(Role{Vocal}(λ))})) shows whether a singer per-
formed at the concert. Projecting the tuple of Example 4 to this subattribute the
tuple (({(∅)})) is obtained that shows that only instrumental music was played.

Let us now investigate the structure of S(X). We obtain a non-distributive
lattice with relative pseudo-complements.

Definition 9. Let L be a lattice with zero and one, partial order ≤, join ⊔
and meet ⊓. L has relative pseudo-complements iff for all Y,Z ∈ L the infimum
Y ← Z = ⊓{U | U ⊔ Y ≥ Z} exists. Then Y ← 1 (1 being the one in L) is called
the relative complement of Y .

536 Attila Sali and Klaus-Dieter Schewe

If we have distributivity in addition, we call L a Brouwer algebra. In this case
the relative pseudo-complements satisfy U ≥ (Y ← Z) iff (U ⊔ Y ≥ Z), but if we
do not have distributivity this property may be violated though relative pseudo-
complements exist.

Proposition 10. The set S(X) of subattributes carries the structure of a lattice
with zero and one and relative pseudo-complements, where the order ≥ is as defined
in Definition 6, and λ and X are the zero and one, respectively.

It is easy to determine explicit inductive definitions of the operations ⊓ (meet),
⊔ (join) and← (relative pseudo-complement). This can be done by boring technical
verification of the properties of meets, joins and relative pseudo-complements and
is therefore omitted here.

Example 11. Let X = X{X1(A) ⊕ X2(B)} with S(X), as shown in Figure 1.
Furthermore let Y1 = X{1,2}{λ}, Y2 = X(X2{B}), and Z = X(X1{A}). Note that
⊔ is the least common upper bound, while ⊓ is the largest common lower bound in
the subattribute poset. Then we have

Z ⊓ (Y1 ⊔ Y2) = X(X1{A}) ⊓ (X{1,2}{λ} ⊔X(X2{B})) =

X(X1{A}) ⊓X(X1{λ},X2{B}) = X(X1{λ}) 6= λ = λ ⊔ λ =

(X(X1{A}) ⊓X{λ}) ⊔ (X(X1{A}) ⊓X(X2{B})) = (Z ⊓ Y1) ⊔ (Z ⊓ Y2) .

This shows that S(X) in general is not a distributive lattice. Furthermore, Y ′⊔Z ≥
Y1 holds for all Y ′ except λ, X(X1{λ}) and X(X1{A}). So Z ← Y1 = λ, but not
all Y ′ ≥ λ satisfy Y ′ ⊔ Z ≥ Y1.

2.3 Functional Dependencies

Let us now define functional and weak functional dependencies on S(X) and de-
rive some sound derivation rules. The first thought would be to consider single
nested attributes, as in the RDM ⊔ corresponds to the union ∪, and ⊓ to the in-
tersection ∩. However, if we treat functional dependencies in this way, we cannot
obtain a generalization of the extension rule. Therefore, we have to consider sets
of subattributes.

Definition 12. Let X ∈ N. A functional dependency (FD) on S(X) is an expres-
sion Y→ Z with Y,Z ⊆ S(X). A weak functional dependency (wFD) on S(X) is an
expression |{Yi → Zi | i ∈ I|} with an index set I and Yi,Zi ⊆ S(X).

In the following we consider finite sets r ⊆ dom(X), which we will call simply
instances of X.

Definition 13. Let r be an instance of X. We say that r satisfies the FD Y→ Z

on S(X) (notation: r |= Y → Z) iff for all t1, t2 ∈ r with πX
Y (t1) = πX

Y (t2) for all
Y ∈ Y we also have πX

Z (t1) = πX
Z (t2) for all Z ∈ Z.

r satisfies the wFD |{Yi → Zi | i ∈ I|} on S(X) (notation: r |= |{Yi → Zi | i ∈ I|})
iff for all t1, t2 ∈ r there is some i ∈ I with {t1, t2} |= Yi → Zi.

Keys and Armstrong Databases in Trees with Restructuring 537

X(X {A},X {B})1 2

X(X { },X {B})1 2λX(X {A},X { })1 2 λ

X(X {B})=Y2 2X(X {A})=Z1 X(X { },X { })1 2λ λ

X(X { })2 λX(X { })1 λ λX(X { })=Y{1,2} 1

λ

Figure 1: The lattice S(X{X1(A)⊕X2(B)})

According to this definition we identify a wfD |{Y → Z|}, i.e. the index set
contains exactly one element, with the “ordinary” FD Y→ Z.

2.4 Coincidence Ideals

The study of FDs and wFDs depends heavily on the notion of “coincidence ideal”,
i.e. sets of subattributes, on which two complex values coincide. For our purposes
in this paper it is sufficient to take this as the definition.

In the following we investigate sets of subattributes, on which two complex
values coincide. It is rather easy to see that these turn out to be ideals in the
lattice S(X), i.e. they are non-empty and downward-closed. Therefore, we will call
them coincidence ideals. However, there are many other properties that hold for
coincidence ideals.

Definition 14. Two subattributes Y,Z ∈ S(X) are called reconcilable iff one of
the following holds:

1. Y ≥ Z or Z ≥ Y ;

2. X = X[X ′], Y = X[Y ′], Z = X[Z ′] and Y ′, Z ′ ∈ S(X ′) are reconcilable;

3. X = X(X1, . . . ,Xn), Y = X(Y1, . . . , Yn), Z = X(Z1, . . . , Zn) and Yi, Zi ∈
S(Xi) are reconcilable for all i = 1, . . . , n;

538
A

ttila
S
a
li

a
n
d

K
la

u
s-D

ieter
S
ch

ew
e

1X(X {A},X {B},X {C})2 3

X(X { },X {B},X {C})321 λ21 3X(X {A},X {B},X { })λ λX(X {A},X { },X {C})21 3

X(X {A},X {B})1 2 X(X {A},X { },X { })321 λλ X(X { },X {B},X { })321 λλ X(X {A},X {C})1 3 X(X { },X { },X {C})21 3λλ X(X {B},X {C})2 3

X(X { },X { },X { })1 32λ λ λ X(X { },X {C})1 3λ X(X {B},X { })2 3 λ X(X { },X {C})2 3λX(X {A},X { })1 3 λX(X { },X {B})1 2λX(X {A},X { })1 2 λ

X(X { },X { })1 2λ λ X(X {B})2 X(X { },X { })1 3λ λ X(X {C})3 X(X { },X { })2 3λ λX(X {A})1

X(X { })1 λ X(X { }){1,2} λ X(X { })2 λ X(X { }){1,2,3} λ X(X { }){1,3} λ X(X { })3 λ X(X { }){2,3} λ

λ

F
igu

re
2:

T
h
e

lattice
S
(X
{X

1 (A
)
⊕

X
2 (B

)
⊕

X
3 (C

)})

Keys and Armstrong Databases in Trees with Restructuring 539

4. X = X1(X
′
1) ⊕ · · · ⊕ Xn(X ′

n), Y = X1(Y
′
1) ⊕ · · · ⊕ Xn(Y ′

n), Z = X1(Z
′
1) ⊕

· · · ⊕Xn(Z ′
n) and Y ′

i , Z ′
i ∈ S(X ′

i) are reconcilable for all i = 1, . . . , n;

5. X = X[X1(X
′
1) ⊕ · · · ⊕ Xn(X ′

n)], Y = X(Y1, . . . , Yn) with Yi = Xi[Y
′
i] or

Yi = λ = Y ′
i , Z = X[X1(Z

′
1)⊕ · · · ⊕Xn(Z ′

n)], and Y ′
i , Z ′

i are reconcilable for
all i = 1, . . . , n.

Note that for the set- and multiset-constructor we can only obtain reconcilability
for subattributes in a ≥-relation.

Example 15. Consider S(X{X1(A)⊕X2(B)⊕X3(C)}) shown on Figure 2. Here
the subattributes X(X1{A},X2{B}) and X(X1{λ},X2{λ},X3{C} are reconcil-
able. Indeed, X(X1{A},X2{B}) ≡ X(X1{A},X2{B}, λ) and X1{A} ≥ X1{λ},
X2{B} ≥ X2{λ}, λ ≤ X3{C}, thus the components of the two subattributes are
pairwise comparable in the subattribute lattice S(X), thus they are reconcilable
by 1. of Definition 14. Applying 3. of the same definition the reconciliabiliy of
X(X1{A},X2{B}) and X(X1{λ},X2{λ},X3{C} is obtained.

On the other hand, X(X1{A},X2{B}) and X(X{1,3}{λ}) are not reconcilable.

The following definition of coincidence ideals looks formally self-referential.
However, it is not hard to see that a rank of a nested attribute can be defined via
the recursive construction as follows. The rank of a simple attribute is 0. When a
nested attribute is constructed using some constructor, like record, set, list, multi-
set or disjoint union, then the rank of the new attribute is one plus the maximum
rank of the parts it is constructed from. In this setting, whenever a coincidence
ideal or defect coincidence ideal is referred to in the definition of coincidence ideal,
then it is of subattributes of a nested attribute of strictly lower rank, hence there
is no circularity in the definition.

Definition 16. A coincidence ideal on S(X) is a subset F ⊆ S(X) with the
following properties:

1. λ ∈ F;

2. if Y ∈ F and Z ∈ S(X) with Y ≥ Z, then Z ∈ F;

3. if Y,Z ∈ F are reconcilable, then Y ⊔ Z ∈ F;

4. a) if XI{λ} ∈ F and XJ{λ} /∈ F for I (J , then
X(Xi1{X

′
i1
}, . . . ,Xik

{X ′
ik
}) ∈ F for I = {i1, . . . , ik};

b) if XI{λ} ∈ F and X(Xi{λ}) /∈ F for all i ∈ I, then there is a partition

I = I1

·
∪ I2 with XI1

{λ} /∈ F, XI2
{λ} /∈ F and XI′{λ} ∈ F for all I ′ ⊆ I

with I ′ ∩ I1 6= ∅ 6= I ′ ∩ I2;

c) if X{1,...,n}{λ} ∈ F and XI−{λ} /∈ F (for I− = {i ∈ {1, . . . , n} |
X(Xi{λ}) /∈ F}), then there exists some i ∈ I+ = {i ∈ {1, . . . , n} |
X(Xi{λ}) ∈ F} such that for all J ⊆ I− XJ∪{i}{λ} ∈ F holds;

540 Attila Sali and Klaus-Dieter Schewe

d) if XJ{λ} /∈ F and X{j}{λ} /∈ F for all j ∈ J and for all i ∈ I there
is some Ji ⊆ J with XJi∪{i}{λ} /∈ F, then XI∪J{λ} /∈ F, provided
I ∩ J = ∅;

e) if XI−{λ} ∈ F and I ′ ⊆ I+ such that for all i ∈ I ′ there is some
J ⊆ I− with XJ∪{i}{λ} /∈ F, then XI′∪J ′{λ} /∈ F for all J ′ ⊆ I− with
XJ ′{λ} /∈ F;

5. a) if XI{λ} ∈ F and XJ{λ} ∈ F with I ∩ J = ∅, then XI∪J{λ} ∈ F;

b) if XI [λ] ∈ F and XJ [λ] ∈ F with I ∩ J = ∅, then XI∪J [λ] ∈ F;

c) if XI〈λ〉 ∈ F and XJ〈λ〉 ∈ F with I ∩ J = ∅, then XI∪J〈λ〉 ∈ F;

d) if XI [λ] ∈ F and XJ [λ] ∈ F with J ⊆ I, then XI−J [λ] ∈ F;

e) if XI〈λ〉 ∈ F and XJ〈λ〉 ∈ F with J ⊆ I, then XI−J〈λ〉 ∈ F;

f) if XI [λ] ∈ F and XJ [λ] ∈ F, then XI∩J [λ] ∈ F iff X(I−J)∪(J−I)[λ] ∈ F;

g) if XI〈λ〉 ∈ F and XJ〈λ〉 ∈ F, then XI∩J〈λ〉 ∈ F iff X(I−J)∪(J−I)〈λ〉 ∈ F;

6. a) for X = X{X̄{X1(X
′
1)⊕· · ·⊕Xn(X ′

n)}}, whenever I ⊆ {1, . . . , n}, there
is a partition I = I− ∪ I+− ∪ I+ ∪ I− such that

i. X{X̄{i}{λ}} ∈ F iff i /∈ I−,

ii. X{X̄I′{λ}} ∈ F, whenever I ′ ∩ I+ 6= ∅,

iii. X{X̄I′{λ}} ∈ F iff X{X̄I′∩(I+−∪I−){λ}} ∈ F, whenever I ′ ⊆ I+− ∪
I− ∪ I−;

b) for X = X〈X̄{X1(X
′
1)⊕· · ·⊕Xn(X ′

n)}〉, whenever I ⊆ {1, . . . , n}, there
is a partition I = I− ∪ I+− ∪ I+ ∪ I− such that

i. X〈X̄{i}{λ}〉 ∈ F iff i /∈ I−,

ii. X〈X̄I′{λ}〉 ∈ F, whenever I ′ ∩ I+ 6= ∅,

iii. X〈X̄I′{λ}〉 ∈ F iff X〈X̄I′∩(I+−∪I−){λ}〉 ∈ F, whenever I ′ ⊆ I+− ∪
I− ∪ I−;

7. a) if X = X(X ′
1, . . . ,X

′
n), then Fi = {Yi ∈ S(X ′

i) | X(λ, . . . , Yi, . . . , λ) ∈ F}
is a coincidence ideal;

b) if X = X[X ′], such that X ′ is not a union attribute, and F 6= {λ}, then
G = {Y ∈ S(X ′) | X[Y] ∈ F} is a coincidence ideal;

c) If X = X1(X
′
1) ⊕ · · · ⊕Xn(X ′

n) and F 6= {λ}, then the set Fi = {Yi ∈
S(X ′

i) | X1(λ)⊕ · · · ⊕Xi(Yi)⊕ · · · ⊕Xn(λ) ∈ F} is a coincidence ideal;

d) if X = X{X ′}, such that X ′ is not a union attribute, and F 6= {λ}, then
G = {Y ∈ S(X ′) | X{Y } ∈ F} is a defect coincidence ideal;

e) if X = X〈X ′〉, such that X ′ is not a union attribute, and F 6= 〈λ〉, then
G = {Y ∈ S(X ′) | X〈Y 〉 ∈ F} is a defect coincidence ideal.

A defect coincidence ideal on S(X) is a subset F ⊆ S(X) satisfying properties
1, 2, 4(a)-(d), 6(a),(b), 7(d)-(e) and

Keys and Armstrong Databases in Trees with Restructuring 541

8. a) if X = X(X ′
1, . . . ,X

′
n), then Fi = {Yi ∈ S(X ′

i) | X(λ, . . . , Yi, . . . , λ) ∈ F}
is a defect coincidence ideal;

b) if X = X[X ′], such that X ′ is not a union attribute, and F 6= {λ}, then
G = {Y ∈ S(X ′) | X[Y] ∈ F} is a defect coincidence ideal;

c) If X = X1(X
′
1) ⊕ · · · ⊕Xn(X ′

n) and F 6= {λ}, then the set Fi = {Yi ∈
S(X ′

i) | X1(λ)⊕ · · · ⊕Xi(Yi)⊕ · · · ⊕Xn(λ) ∈ F} is a defect coincidence
ideal.

The name “coincidence ideal” was chosen, because these ideals characterize sets
of subattributes, on which two complex values coincide. This is formally shown in
the following theorem. In [16, 20] the term “SHL-ideal” was used instead; in [17]
in a restricted setting the term “HL-ideal” was used. Note that in all these cases
not all the conditions from Definition 16 were yet present.

For the purposes of the present paper the following three statements from [22]
are important and not the particular details of the definition above.

Theorem 17 (Theorem 3.1 in [22]). Let X ∈ N be a nested attribute. For complex
values t1, t2 ∈ dom(X) let F = {Y ∈ S(X) | πX

Y (t1) = πX
Y (t2)} ⊆ S(X) be the set of

subattributes, on which they coincide. Then F is a coincidence ideal.

Theorem 18 (Theorem 3.2 in [22]). Let G ⊆ S(X) be a defect coincidence ideal
for the nested attribute X ∈ N such that the union constructor appears in X only
directly inside a set-, list or multiset-constructor. Then the following holds:

1. There exist two finite sets S1, S2 ⊆ dom(X) such that {πX
Y (τ) | τ ∈ S1} =

{πX
Y (τ) | τ ∈ S2} holds iff Y ∈ G. For G 6= {λ} both sets are non-empty.

2. There exist two finite multisets M1,M2 ⊆ dom(X) such that 〈πX
Y (τ) | τ ∈

M1〉 = 〈πX
Y (τ) | τ ∈ M2〉 holds iff Y ∈ G. For G 6= {λ} both multisets are

non-empty.

Theorem 19 (Central Theorem,Theorem 3.3 in [22]). Let F ⊆ S(X) be a coinci-
dence ideal for the nested attribute X ∈ N such that the union constructor appears
in X only directly inside a set-, list or multiset-constructor. Then there exist two
complex values t1, t2 ∈ dom(X) such that πX

Y (t1) = πX
Y (t2) holds iff Y ∈ F.

The long and technical proofs of the above theorems are included in [22].

3 Keys and Antikeys

In this section we assume that a set Σ of functional dependencies is given over
S(X) and every statement is understood as “with respect to Σ”. Since functional
dependencies are defined between sets of subattributes, the following is a natural
generalization of the concept of keys to the higher-order datamodel.

542 Attila Sali and Klaus-Dieter Schewe

Definition 20. K ⊆ S(X) is a key (with respect to Σ) if Σ |= K → S(X) holds.
In other words, if r is an instance of S(X) satisfying Σ, then for any two distinct
complex valued tuples t1, t2 ∈ r there exists K ∈ K such that πX

K (t1) 6= πX
K (t2)

holds.

The following closure operation is important in the characterization of minimal
key systems.

Definition 21. The closure of a set Y ⊆ S(X) is defined as the intersection of all
coincidence-ideals containing Y:

cl(Y) =
⋂

Fis a coincidence-ideal
Y⊆F

F. (1)

The idea behind Definition 21 is simple. We are interested in the following:
assume that two tuples agree on a set of subattributes, where do they need to agree
besides those? Since it was proved in [22] that the set of subattributes where two
tuples coincide form a coincidence ideal, if πX

Y (t1) = πX
Y (t2) for all Y ∈ Y, then Y

is a subset of the set of subattributes where t1, t2 coincide, which is a coincidence
ideal. Because cl(Y) is a subset of that ideal, t1, t2 coincide on all Z ∈ cl(Y).

Proposition 22. The operator cl is a closure operator, that is

1. Y ⊆ cl(Y);

2. If Y ⊆ Z, then cl(Y) ⊆ cl(Z);

3. cl(cl(Y)) = cl(Y).

Clearly, if K is a key and K ⊂ H, then H is a key, as well. In particular, the
closure of a key is also a key. The interesting fact is that the converse also holds.

Theorem 23. K ⊆ S(X) is a key iff cl(K) is a key.

Proof. According to the previous note, only the implication “cl(K) is a key =⇒ K

is a key” needs to be proven. Suppose that K is not a key, that is Σ 6|= K→ S(X).
Thus, there exists an instance r of S(X) satisfying Σ and two complex-valued tuples
t1 6= t2 in r such that ∀K ∈ K : πX

K (t1) = πX
K (t2) holds. Let F = {Z | πX

Z (t1) =
πX

Z (t2)}. Since F is a coincidence-ideal that contains K, cl(K) ⊆ F holds. This
implies, that cl(K) is not a key either.

Antikeys are defined in the relational model as any subset of attributes that are
not keys. Here, the same works.

Definition 24. A subset A ⊂ S(X) is an antikey (with respect to Σ), if Σ 6|=
A→ S(X). In other words, there exists an instance r of S(X) satisfying Σ and two
complex-valued tuples t1 6= t2 in r such that ∀A ∈ A : πX

A (t1) = πX
A (t2) holds.

Keys and Armstrong Databases in Trees with Restructuring 543

It is clear, that if A is an antikey, and B ⊆ A, then B is an antikey, as well. In
particular, if cl(A) is an antikey, then so is A, as well. Again, the interesting fact
is that the converse is also true follows from Theorem 23.

Corollary 25. A ⊂ S(X) is an antikey, iff cl(A) is an antikey.

Theorem 23 and Corollary 25 allow considering only closed sets as keys or
antikeys. H is closed if H = cl(H). Indeed, if we have a key K, then its closure
cl(K) is also a key and every K′ with cl(K′) = cl(K) is a key. as well. This means
that the system of closed sets that are keys uniquely determines the system of all
keys. Thus, we concentrate on only closed sets in the following.

We are interested in minimal keys and maximal antikeys, where minimal
and maximal is with respect (set-wise) containment. Given Σ, the system K =
{K1, . . . ,Kk} of all minimal keys forms a Sperner system or antichain of sets of
subattributes, that is for every pair of indices i and j Ki & Kj holds. Analogously,
maximal antikeys form a Sperner system A = {A1, . . . ,Aa} of sets of subattributes.

Proposition 26. The system of minimal keys and the system of maximal antikeys
mutually determine each other.

Proof. Consider the poset P of closed subsets of S(X) ordered by (set-wise) inclu-
sion. Keys form an up-set, or filter, that is a subset K ⊆ P such that if K ∈ K and
K ⊂ H, then H ∈ K. Similarly, antikeys form a down-set, or ideal, that is a subset
A ⊆ P such that if A ∈ A and B ⊂ A, then B ∈ A. Most importantly, K ∪ A = P

and K ∩ A = ∅. The system of minimal keys is the set of minimal elements of K,
while the system of maximal antikeys is the set of maximal elements of A.

Proposition 26 allows the following notation. If K is the system of minimal keys,
then the corresponding system of maximal antikeys A is denoted by K−1, as well.
Observe, that this notation can be extended to any Sperner-system S of closed
sets by S−1 being the collection of the maximal elements of the ideal that is the
complement in P of the filter S generated by S.

4 Armstrong Instances

The principal interest of the present paper is to investigate which Sperner systems
of closed subsets of S(X) can occur as systems of minimal keys for some suitable
family of functional dependencies Σ. The idea of Armstrong instance is that given
a family of constraints (e.g. functional dependencies) and a subset Σ of that family,
one looks for a model (database) that satisfies only those constraints in Σ and no
others. The practical use of this concept is that during conceptual schema design,
the designer is able to check whether some constraints are logical consequences
of the constraints of the design by obtaining an Armstrong instance and checking
what dependencies are satisfied besides the ones designed. For the relational model,
there are even software packages constructing Armstrong instances.

544 Attila Sali and Klaus-Dieter Schewe

In the relational model Armstrong [4] and Demetrovics [6] proved that every
Sperner system arises as set of minimal keys, i.e., has an Armstrong instance.
Later Fagin [10] gave necessary and sufficient conditions for constraints that can
be described by Horn clauses, to have Armstrong instance in the framework of
the relational datamodel. However, in [21] it was shown that in the higher-order
datamodel, although in the restricted “counter-free” case, the same statement does
not hold.

Definition 27. Let r be an instance of a nested attribute X, with subattribute
lattice S(X). A subset K ⊆ S(X) is key with respect to r, if r |= K → S(X),
i.e., there exist no two distinct complex-valued tuples t1, t2 ∈ r such that ∀K ∈
K : πX

K (t1) = πX
K (t2) holds. r is an Armstrong-instance for a Sperner system K of

closed subsets of S(X), if the system of minimal keys with respect to r is exactly
K.

A simple characterization can be given for Armstrong instances.

Proposition 28. Let K be a Sperner system of closed subsets of S(X). An instance
r is Armstrong-instance for minimal key system K iff

[Key] For all K ∈ K and any two complex-valued tuples t1, t2 ∈ r there exists
K ∈ K such that πX

K (t1) 6= πX
K (t2) holds.

[Antikey] For all A ∈ K−1 there exists two complex-valued tuples t1 6= t2 in r
such that ∀A ∈ A : πX

A (t1) = πX
A (t2) holds.

The [Antikey] property of Proposition 28 gives an immediate necessary condi-
tion for existence of an Armstrong-instance. Indeed, every maximal antikey must
be a coincidence ideal. This is a real restriction, since not all closed sets are coin-
cidence ideals. For example, consider S(X{X1(A)⊕X2(B)⊕X3(C)}) of Figure 2.
For the sake of convenience the principal ideal {Y ∈ S(X) | Y ≤ Z} of S(X) gen-
erated by Z ∈ S(X) is denoted by Z↓. The principal ideal I = X(X1{λ},X2{λ})↓
is closed see Proposition 37, but not a coincidence ideal, since it violates prop-
erty 4(a) of Definition 16. Taking K ⊂ P be the set of closed subsets of S(X) that
do not contain I, we obtain that the unique maximal antikey corresponding to the
key system K is I. However, since I is not a coincidence ideal, K cannot have an
Armstrong-instance.

On the other hand, minimal keys can indeed be closed sets that are not coin-
cidence ideals. Consider again S(X{X1(A) ⊕ X2(B) ⊕ X3(C)}) of Figure 2. Let
A = X(X1{A})↓. It is not hard to see that A is a coincidence ideal. Indeed, proper-
ties 1-3 of Definition 16 are trivially satisfied by any principal ideal. Property 4(a)
is satisfied, because the only possible choice of I that satisfies the conditions is
I = {1}. Conditions in points (b), (c), and (e) of property 4 do not apply to A,
while 4(d) is satisfied trivially. Finally, the conditions in properties 5-7 do not
apply to A, hence by the Central Theorem (Theorem 19) there exists two tuples

Keys and Armstrong Databases in Trees with Restructuring 545

t1, t2 ∈ dom(X) with πX
A (t1) = πX

A (t2) iff A ∈ A. In fact the proof of the Central
Lemma constructs the tuples t1 = ∅ and t2 = {(X1 : a1)}. K = X(X1{λ},X2{λ})↓
is a minimal key with respect to the instance r = {t1, t2}.

The trouble with Armstrong-instances are caused by degenerate keys.

Definition 29. A key K is called degenerate, if every K ∈ K is constructed using
only λ, set-constructor, record-constructor and union-constructor. That is, K does
not contain simple attributes, multiset- or list-constructors.

Similar question was considered by Fagin and Vardi for the relational model in
[11], where functional dependencies with non-empty left hand side were called stan-
dard, and the problems of working with non-standard functional dependencies were
investigated. The following theorem gives a sufficient condition for the existence of
Armstrong-instance.

Theorem 30. Let K = {Ki | i = 1, 2, . . . , k} be a Sperner system of closed subsets
of S(X). There exists an Armstrong-instance r for K as system of minimal keys
provided the following two conditions hold:

1. K does not contain degenerate keys;

2. Each element of A = K−1 is a coincidence ideal.

Proof. Let K−1 = {A1, . . . ,Ak}. The restructuring rules allow us to assume that
the union-constructor only appears inside a set-constructor or as the outermost
constructor, hence Theorem 19 provides complex values ti0, t

i
1 i = 1, 2, . . . , k such

that
πX

Y (ti0) = πX
Y (ti1) ⇐⇒ Y ∈ Ai. (2)

This ensures that Ai is an antikey for all i. On the other hand, we have to show
that each Ki ∈ K is a key. In order to do so, the complex valued tuples will be
modified preserving (2) so that if πX

Z (tia) = πX
Z (tjb) for some Z ∈ S(X), a, b ∈ {0, 1},

and 1 ≤ i < j ≤ k, then Z cannot contain simple attributes or list or multiset
subattributes. Hence no two complex values can agree on every subattribute in Ks

for all s, which implies that each Ks is a key. Note, that the number of complex
values in this Armstrong instance is exactly 2|K−1|.

The modification of the tuples is as follows. For simple attributes we have to
take care of that during the inductive construction of the tuples the constants from
the domains of simple attributes used for Ai must be distinct from those used for
Aj if i 6= j. This ensures that values constructed for Ai and those constructed for
Aj for i 6= j cannot agree on subattributes containing a simple attribute.

For the list attribute case if one of Ai’s is {λ}, then we have only one coincidence
ideal by the Sperner property, so there is nothing to prove. Otherwise, consider the
inductive construction of the tuples ti0, t

i
1 for Ai. We modify that in a sequential

order for i = 2, 3, . . . , k. When we encounter a list subattribute X[X ′], (X ′ could
be a union) the proof of Theorem 19 constructs two tuples ti′0 , ti′1 that are of the
form ti′a = [ti′′a], a = 0, 1. Let m be the largest multiplicity of any element in any

546 Attila Sali and Klaus-Dieter Schewe

list in tj0 and tj1, j = 1, 2, . . . , i− 1. Now, we replace ti′0 , ti′1 with ti∗a = [(m + 1) · ti′′a],
i.e. ti∗a is a list with m + 1 occurrences of the same element ti′′a . This modification
ensures that multiplicities inside lists cannot agree in tuples constructed for distinct
Ai’s while preserving the property (2). The multiset attribute case is similar.

4.1 The Case S (X{X1(A1)⊕X2(A2)⊕ · · · ⊕Xn(An)})

In the present section we study a special case, which is archetypical. This nested
attribute exhibits most of the problems with respect to Armstrong-instances,
thus showing the complexity of the problem. We believe that effective treat-
ment of this case would lead to general insight of the nature of Armstrong-
instances of nested attributes. As a beginning in that direction, a character-
ization is given for the existence of such instances. Let r be an instance of
S (X{X1(A1)⊕X2(A2)⊕ · · · ⊕Xn(An)}). According to Definition 5, complex
value t ∈ r can be considered as a tuple t = (X1 : a1, . . . ,Xn : an), where ai

is a finite subset of the domain of Ai for i = 1, 2, . . . , n. The pattern of t is an
n-tuple pt of +’s and −’s, such that the ith coordinate of pt is +, if ai 6= ∅, and −,
if ai = ∅.

Proposition 31. Let r be an instance of X{X1(A1)⊕X2(A2)⊕ · · · ⊕Xn(An)},
and let K = {K1, . . . ,Kk} be the system of minimal keys with respect to r. If there
exists an i such that Ki is degenerate, then r contains at most one complex valued
tuple of each possible pattern. Consequently, |r| ≤ 2n.

Proof. Attributes in a degenerate key can only have the form XI{λ} for some
I ⊆ {1, 2, . . . , n} or X(Xi1{λ},Xi2{λ}, . . . Xis

{λ}). The projection of a complex-
valued tuple t to such an attribute is determined by which coordinates of t are
non-empty, hence depend only on the patter pt.

Any two subattributes that are not of type XI{λ} for some |I| > 1 are recon-
cilable since the possible ith components of a tuple are λ,Xi{λ} and Xi{Ai} that
are pairwise comparable, that is reconcilable. Thus, a coincidence ideal A contains
the ⊔ of any pair of non-counter attributes belonging to A. It follows then that A

consists of a principal ideal of non-counter attributes extended with some counter
attributes of type XI{λ}. Recall, that a principal ideal generated by an element κ
in a lattice consists of all elements µ of that lattice with µ ≤ κ.

Take a Sperner system of closed sets K = {K1, . . . ,Kk} and the Sperner system
K−1 = A = {A1, . . . ,Am} as candidates for minimal keys and maximal antikeys,
respectively. Assuming that each Ai is a coincidence ideal, a pair of tuple patterns is
obtained via Theorem 19 for each Ai, together with a constraint ϕi1∧. . .∧ϕib

, where
ϕij

requires = or 6= on common +-component ij . Indeed, let X(Y1, Y2, . . . , Yn) be
the largest (generator) element of the principal ideal part of Ai. If both tuple
patterns contain + in component ij , then either Yij

= Xij
{λ} or Yij

= Xij
{Aij
}.

In the first case the tuples that agree on exactly Ai must contain different nonempty

Keys and Armstrong Databases in Trees with Restructuring 547

sets in the ijth component giving ϕij
being 6=. Note that the tuples cannot agree

on Xij
{Aij
} in this case. On the other hand, if Yij

= Xij
{Aij
}, then the ijth

component of the tuples must contain the same non-empty set, thus ϕij
is =.

Proposition 32. The pair of patterns and the constraints are uniquely determined
by the counter attributes contained in A ∈ A, provided the pair consists of distinct
patterns.

Proof. Assume that A = X(Y1, Y2, . . . , Yn)↓∪{XI | I ∈ I} where Yi is either λ,
Xi{λ} or Xi{Ai}. Furthermore, assume that two complex valued tuples t1 = (X1 :
a1, . . . ,Xn : an) and t2 = (X1 : b1, . . . ,Xn : bn) agree exactly on subattributes of A.
It means that if Yi = λ, then one of ai and bi is empty and the other is nonempty,
if Yi = Xi{λ}, then ai 6= bi and both are nonempty, while if Yi = Xi{Ai}, then
either ai = bi and both are nonempty, or both are empty. Thus, patterns of t1 and
t2 have the same symbol in coordinate j where Yj = Xi{Aj} or Yj = Xj{λ}, and
opposite symbols for Yj = λ. XI{λ} ∈ A for |I| > 1 means that both t1 and t2
have a nonempty coordinate whose index is in I, where the nonempty coordinates
of t1 and t2 showing XI{λ} ∈ A need not have the same index. Let us assume that
Yi0 = λ and t1 has empty i0

th coordinate. If X{i0,j}{λ} ∈ A, then the jth coordinate

of t1 is nonempty. On the other hand, if X{i0,j}{λ} 6∈ A, then jth coordinate of t1
is empty. In both cases the jth coordinate of pattern of t2 is uniquely determined,
as well.

The remaining case is when none of Yi’s is λ. In this case, using the same
argument as before, the patterns of t1 and t2 are the same.

For example, if Ai = X(X1{A1},X2{λ}) ↓∪{XI | I ∩ {1, 2} 6= ∅}, then the
values {(X1 : v1), (X2 : v2)} and {(X1 : v1), (X2 : v′

2), (X3 : v3), . . . , (Xn : vn)}
coincide exactly on Ai.

The corresponding pair of tuple patterns is {(+,+,− . . . ,−), (+,+, . . . ,+)},
and the constraints are ϕ1 : =1, ϕ2 : 6=2.

Construct a graph on 2n vertices with vertex set V being all possible patterns.
Add a green edge between the two patterns given by Ai labeled with the appropriate
constraint, for each candidate antikey Ai. For each pair of patterns K defines (a
more complicated) constraint on the patterns. That is, each Kj need to have an
element K where the two tuples corresponding to the pair of patterns have distinct
projections. For each K, a disjunction of conjuncts can be formulated, and the
disjunction Φj of these formulae expresses that Kj is a key. Finally, the constraint
on the pair of patterns defined by K is Φ1 ∧ . . . ∧ Φk. Add red edge between two
patterns labeled by the appropriate constraint.

Theorem 33. Let K = {K1, . . . ,Kk} be a Sperner system of closed sets that con-
tains a degenerate key and assume that K−1 = A = {A1, . . . ,Am} consists of coin-
cidence ideals. Let G be the graph on the patterns with green and red labeled edges
as constructed above. K has an Armstrong-instance iff the subgraph G′ spanned
by the green edges has edge labels (both green and red), that can be simultaneously
satisfied by a set r of tuples that contain tuples of each pattern of G′.

548 Attila Sali and Klaus-Dieter Schewe

Red edge with label FALSE

−−−−

−−++ −+−+ −++−

−+++

+−−+ ++−−

+++−++−++−++

++++

+−−−

+−+−

−+−−−−+−−−−+

Green edge with label = and = on + coordinates

Figure 3: Pattern graph

Proof. If K = {K1, . . . ,Kk} has an Armstrong-instance r, then the patterns of
tuples in r satisfy each edge constraint. On the other hand, assume that the edge
labels of the subgraph G′ spanned by the green edges are simultaneously satisfiable,
let r be a set of tuples that satisfy all constraints in G′. Since there is a degenerate
candidate key in K, X(X1{λ},X2{λ}, . . . ,Xn{λ}) cannot be contained in any of
the candidate antikeys, hence by Proposition 32 there is a unique green edge with
label for each Ai. The pair of tuples corresponding to the endpoints of the edge
agree exactly on subattributes of Ai, showing that it is an antikey. The red edge
labels make sure that each Ki is a key. Since K−1 = A, we have that K is the
system of minimal keys, A is the system of maximal antikeys with respect to r.

Example 34. Let n = 4. For all four choices of 1 ≤ i < j < k ≤ 4 let K

consist of the principal ideals X(Xi{λ},Xj{λ},Xk{λ})↓. Then K−1 = A consist of
Ai,j = X(Xi{Ai},Xj{λ})↓∪{XI | I∩{i, j} 6= ∅} for all six choices of 1 ≤ i < j ≤ 4.
The pattern graph for K and A is shown on Figure 3.

For instance, between + + ++ and − − ++ we have a green edge with label
ϕ3 ∧ ϕ4 given by ϕ3 :=3 and ϕ4 :6=4. This edge originates from A3,4. Between
− + ++ and − − ++ we get a red edge with label FALSE, because the key K =

Keys and Armstrong Databases in Trees with Restructuring 549

X(X1{λ},X2{λ},X3{λ})↓ with K = X(X1{λ},X2{λ},X3{λ}) will always yield
inequality for the second component. Similarly, between −−−+ and −−+− we get
a red edge with label TRUE, because each key Kijk = X(Xi{λ},Xj{λ},Xk{λ})↓
contains K = X(X3{λ}) or K = X(X4{λ}), so we know the required inequality
will be satisfied.

The red (dotted) edges with constraint label TRUE are not drawn. They are
between pairs of vertices that have at least two coordinates where one of them is
+ and the other is -, that is exactly the complement of the drawn dotted graph.
It is easy to see that the labels on the subgraph induced by the green (continuous
line) edges are satisfiable, r = {(X1 : a,X2 : b,X3 : c,X4 : d), (X1 : a,X2 : b′), (X1 :
a,X3 : c′), (X1 : a,X4 : d′), (X2 : b,X3 : c′), (X2 : b,X4 : d′), (X3 : c,X4 : d′)} is an
Armstrong-instance.

Note that the Armstrong instance constructed in Example 34 contains a value
for each of the edges in the subgraph of the pattern graph spanned by the green
edges. This is the construction used in the proof of Theorem 33.

4.1.1 Some Negative Results.

In [21] some examples were shown that did not have Armstrong-instance in the
counter-free case. The proofs there were sometimes quite involved, which was
caused by not considering the counter attributes. If those are taken into account,
the proofs can be shortened, since the counter attributes contained in the maximal
antikeys sort of determine the patterns of possible complex values in an Armstrong-
instance.

Example 35. This example is from [21], but the proof is much shorter. Let
X = X{X1(A1)⊕X2(A2)⊕X3(A3)⊕X4(A4)} and consider S(X). Let the Sperner
system S of closed sets consist of the principal ideals generated by

X(Xi{Ai},Xj{Aj}) for 1 ≤ i < j ≤ 4,

X(Xi{Ai},Xj{λ},Xk{λ}),

X(Xi{λ},Xj{Aj},Xk{λ}),

X(Xi{λ},Xj{λ},Xk{Ak}) for 1 ≤ i < j < k ≤ 4 and

X(X1{λ},X2{λ},X3{λ},X4{λ}).

The system of maximal antikeys is the set of coincidence-ideals

X(Xi{Ai},Xj{λ})↓∪{XI | |I| > 1} for i 6= j, i, j ∈ {1, 2, 3, 4} and

X(Xi{λ},Xj{λ},Xk{λ})↓∪{XI | |I| > 1} for 1 ≤ i < j < k ≤ 4.

The patterns belonging to X(X1{A1},X2{λ})↓∪{XI | |I| > 1} are (+,+,+,−) and
(+,+,−,+), the edge constraints are ϕ1 : =1, ϕ2 : 6=2. The same pair of patterns
belong to X(X2{A2},X1{λ})↓∪{XI | |I| > 1}, however the edge constraints are
ϕ1 : 6=1, ϕ2 : =2. These two sets of constraints are clearly contradictory, hence by
Theorem 33 there exists no Armstrong-instance for S.

550 Attila Sali and Klaus-Dieter Schewe

The next example shows that there is a significant difference between the
counter-free case and the general case.

Example 36. Consider again X = X{X1(A1)⊕X2(A2)⊕X3(A3)⊕X4(A4)} and
S(X). Let K be the Sperner system of the following closed sets of subattributes. K =
{X(X1{λ},X2{λ})↓,X(X1{λ},X3{λ})↓,X(X2{λ},X4{λ})↓,X(X3{λ},X4{λ})↓}.

K−1 consists of (X(X2{A2},X3{A3}) ↓ and X(X1{A1},X4{A4}) ↓ in the
counter-free case. It is easy to see that the following three tuples (X1 : a,X2 :
b,X3 : c, x4 : d), (X2 : b,X3 : c), (X1 : a, x4 : d) form an Armstrong-instance.
However, in the general case the maximal antikeys are

A1 = X(X2{A2},X3{A3})↓∪{XI | |I| > 1}

and

A2 = X(X1{A1},X4{A4})↓∪{XI | |I| > 1}.

The pair of patterns determined by A2 is (+,−,+,+) and (+,+,−,+), while
A1 gives (−,+,+,+) and (+,+,+,−). However, tuples of patterns (+,+,−,+)
and (+,+,+,−), respectively, agree on the key X(X1{λ},X2{λ})↓. Thus, K does
not have an Armstrong-instance in the case of counter attributes being considered.

4.2 Structural induction?

Most of the proofs about higher-order datamodels exploit structural induction.
Some of the constructors allow lifting an Armstrong-instance. Consider the list con-
structor, for example. Let X[X ′] be a nested attribute, and let K = {K1, . . . ,Km}
be a candidate key system in S(X ′) that has an Armstrong-instance r = {t1, . . . , ts}.
Then it is easy to see that r = {[t1], . . . , [ts]} is an Armstrong instance for
the candidate key system K = {[K1], . . . , [Km]} of S(X). We use the notation
[Ki] = {[K] | K ∈ Ki} .

However, the reverse is obviously not true. Consider X = X[X ′{X1(A1) ⊕
X2(A2) ⊕ X3(A3) ⊕ X4(A4)}] and the candidate key system S consisting of
X[X ′(Xi{Ai},Xj{Aj})] ↓, 1 ≤ i < j ≤ 4, X[X ′(Xi{Ai},Xj{λ},Xk{λ})] ↓,
X[X ′(Xi{λ},Xj{Aj},Xk{λ})] ↓, X[X ′(Xi{λ},Xj{λ},Xk{Ak})] ↓ 1 ≤ i < j <
k ≤ 4, and X[X ′(X1{λ},X2{λ},X3{λ},X4{λ})]↓. This system consists of non-
degenerate keys, thus by Theorem 30 it has an Armstrong-instance. Indeed, A is a
maximal antikey for the candidate key system in Example 35 iff [A] is a maximal
antikey for S. Since A is a coincidence ideal, according to property 5(b) of Defini-
tion 16 [A] is a coincidence ideal as well, thus both conditions of Theorem 30 are
satisfied. If K denotes the candidate key system in Example 35, then S = [K]. S

has Armstrong-instance, but K does not.
This example shows that there is no hope for deciding about Armstrong-instance

using structural induction. Another example of the same flavor can be given us-
ing the record constructor. Consider X = X(X ′{X1(A1) ⊕ X2(A2) ⊕ X3(A3) ⊕
X4(A4)}, Y [B]) and the subattribute lattice S(X). As before, let K denote the
candidate key system in Example 35, and let GK = {X(K,Y [B]) | K ∈ K}. The

Keys and Armstrong Databases in Trees with Restructuring 551

Sperner system Q = {GK | K ∈ K} consists of non-degenerate candidate keys. Q−1

consists of X(X ′{X1(A1)⊕X2(A2)⊕X3(A3)⊕X4(A4)}, Y [λ])↓ and X(A, Y [B])↓,
where A ∈ K−1. These are coincidence ideals, thus by Theorem 30 Q has an
Armstrong-instance. However, the projection of Q to the first component is ex-
actly the system in Example 35.

5 Strong Keys

Keys correspond to ideals of the subattribute lattice with some additional prop-
erties. Principal ideals form an important subclass of ideals. Another reason for
considering principal ideals is that in the relational datamodel each candidate key
that is a closed set is a principal ideal.

Proposition 37. Let Y = Y ↓ be a principal ideal of the subattribute lattice S(X)
of a nested attribute X. Then Y is closed.

Proof. One has to show that

Y =
⋂

Fis a coincidence-ideal
Y⊆F

F, (3)

or in other words, if Y ⊂ F for a coincidence ideal F and Z ∈ F \ Y, then there
exists a coincidence ideal G with Y ⊂ G and Z 6∈ G. If Y is not a coincidence ideal
itself, then it violates some of the properties of Definition 16. However, a principal
ideal can only violate 2(a)-(e). These always give choice that either one or another
subattribute must be in a coincidence ideal. Thus to construct G one only has to
avoid adding Z, when there is a choice. Since S(X) is finite, after finitely many
extensions the coincidence ideal G is obtained.

Proposition 37 states that principal ideals are candidate keys. Thus, the next
definition is meaningful.

Definition 38. A Sperner system of closed sets of S(X) is called a strong candidate
key system if it consists of principal ideals.

Note that in case of record constructor only, that is in the relational datamodel,
all keys are strong.

5.1 Record attributes with only one set component

Consider the following restricted record constructor: attribute Y (Y1, . . . , Yn), where
Y1 = Y1{Y

′
1}, while Yi is not a set attribute for i > 1. Let X be obtained by repeated

applications of this constructor. If K is a degenerate strong candidate key, then it
is X(Y k{λ}, λ, . . . , λ)↓ for some k, where Y k{λ} stands for Y {Y ′{Y ′′{· · · {λ} · · · }
with k being the nesting depth of set constructors. Let S = {K1, . . . ,Km} be

552 Attila Sali and Klaus-Dieter Schewe

a strong candidate key system that contains a degenerate candidate key K1 =
X(Y k{λ}, λ, . . . , λ)↓. By the Sperner property, Ki = X(Y ji{λ}, Y i

2 , . . . , Y i
n)↓ with

ji < k for i > 1. Let k = i0 > i1 > . . . > ip be the set of distinct values of ji’s
i = 1, 2, . . . , n. Furthermore, let X ′ be the nested attribute X ′(Y2, Y3, . . . , Yn), that
is the “set-free” component of X. Let Kim

be the set of principal ideals in S(X ′)
defined by Kim

= {X ′(Y i
2 , . . . , Y i

n)↓| ji = im}. Since S is a Sperner system, Kim
is

a Sperner system, as well. Also, if if < ig, then for all K ∈ Kif
and K′ ∈ Kig

we
have that K 6⊇ K′ holds.

Let A ∈ S−1 be a maximal candidate antikey. Since X(Y k{λ}, λ, . . . , λ)↓ is a
candidate key, every subattribute in A must have first component of form Y h{λ}
for some h < k. Suppose that X(Y h{λ}, Y2, . . . , Yn) and X(Y h′

{λ}, Y ′
2 , . . . , Y ′

n) are
two elements of A. Using that A is an ideal we obtain that

X(Y h{λ}, λ, . . . , λ),X(Y h′

{λ}, λ, . . . , λ) ∈ A

holds. Clearly X(Y h{λ}, Y2, . . . , Yn) and X(Y h′

{λ}, λ, . . . , λ) are reconcilable,
and so are X(Y h′

{λ}, Y ′
2 , . . . , Y ′

n) and X(Y h{λ}, λ, . . . , λ). Thus by property 1 of
Definition 16

X(Y h{λ}, Y2, . . . , Yn) ⊔X(Y h′

{λ}, λ, . . . , λ) = X(Y max(h,h′){λ}, Y2, . . . , Yn) ∈ A

holds. X(Y max(h,h′){λ}, Y ′
2 , . . . , Y ′

n) ∈ A is obtained by the same argument.
Thus, the first components of the maximal elements of A are uniquely determined.

Proposition 39. Let Y h{λ} be this unique first component of maximal elements
of A. Then h = ij − 1 for some 0 ≤ j ≤ p.

Proof. Let us assume in contrary, that ij+1 ≤ h < ij − 1 for some j, and let
X(Y h{λ}, Y2, . . . , Yn) be a maximal element of A. Since Y h{λ} > Y im{λ} for all
m ≥ j+1, X ′(Y2, . . . , Yn) cannot be larger than any element of Kim

. Thus, denoting
the projection of A onto the last n − 1 components by A′, then it is a candidate
antikey (not necessarily maximal) for the (not necessarily Sperner) candidate key
system Kij+1

∪. . .∪Kip
. However, if A is enlarged by adding X(Y ij−1{λ}, Y2, . . . , Yn)

and elements that must also be added by the ideal property for all maximal element
X(Y h{λ}, Y2, . . . , Yn) of A, then by the observation above, the coincidence ideal
obtained remains a candidate antikey, in contradiction with the maximality of A.

Proposition 39 gives a list of candidate antikeys of S that contains all maximal
candidate antikeys. For 0 ≤ j ≤ p take a system of maximal candidate antikeys of
Kij+1

∪ . . . ∪ Kip
Aj

m1
, . . . ,Aj

mu
, then extend each with first coordinate Y ij−1{λ},

finally add all elements of S(X) that are under some of the obtained maximal
elements.

Since X(Y k{λ}, λ, . . . , λ)↓ is a candidate key, in an Armstrong-instance any two
complex values must have distinct projections onto X(Y k{λ}, λ, . . . , λ) that allows
2k tuples at most.

Keys and Armstrong Databases in Trees with Restructuring 553

6 Numerical Conditions

In the combinatorial investigation of Armstrong-instances of the relational model
the following fundamental inequality of comparing the minimal size of Armstrong-
instance for a minimal key system K and the size of the set of maximal antikeys
A = K−1 was proven by Demetrovics and Katona [7].

Lemma 40. Let R = (R1, . . . , Rn) be a relational schema, K be Sperner system
of subsets of R. The minimum number of tuples s(K) in an Armstrong-instance of
minimal key system K satisfies

|K−1| ≤

(

s(K)

2

)

and s(K) ≤ |K−1|+ 1. (4)

The analog for the higher-order datamodel was given in [21] for the counter-
free case. The same can be stated in the present general case, the similar proof is
omitted. Let S(X) be the subattribute lattice of a nested attribute X. Furthermore
let K be a Sperner system of closed subsets of S(X). If K has an Armstrong-instance
as minimal key system, then s(K) denotes the minimum number of complex values
in an Armstrong-instance of K. Otherwise, set s(K) =∞.

Lemma 41.

|K−1| ≤

(

s(K)

2

)

(5)

Using Theorem 30 an upper bound can be given in the case when K does not
contain degenerate keys.

Proposition 42. Let S(X) be the subattribute lattice of a nested attribute X, and
let K be a Sperner system of closed subsets of S(X). Furthermore, assume that the
conditions of Theorem 30 are satisfied. Then

s(K) ≤ 2|K−1|. (6)

Proof. The proof of Theorem 30 constructs two complex-valued tuples for each
maximal antikey in K−1.

6.1 Only degenerate keys

Having a degenerate key in the candidate key system gives a finite upper bound on
the possible number of complex-valued tuples. If the candidate key system consists
of only degenerate keys, then a lower bound for the number of maximal antikeys
can be established. These two give necessary conditions for the existence of an
Armstrong instance via Lemma 41.

Let us consider S (X{X1(A1)⊕X2(A2)⊕ · · · ⊕Xn(An)}) and let K be a Sperner
system of closed sets, with K = {X(Xv{λ} | v ∈ E)↓ | E ∈ E}, where E is a Sperner
system of subsets of {1, 2, . . . , }.

554 Attila Sali and Klaus-Dieter Schewe

Theorem 43. Let X = X{X1(A1)⊕X2(A2)⊕ · · · ⊕Xn(An) and let K be defined
as above. If K has an Armstrong-instance, then

∑

V maximal independent set of

hypergraph ({1,2,...,n},E)

max
(

2n−|V |−1 − 1, 1
)

≤

(

2min(|E| : E∈E)

2

)

. (7)

Proof. In the proof of Proposition 32 it was shown that maximal candidate antikeys
in S(X{X1(A1)⊕X2(A2)⊕· · ·⊕Xn(An)) consist of principal ideals extended with
some counter attributes. Thus, the system of candidate maximal antikeys K−1

consists of coincidence ideals of type AI

V = X(Xv{Av} | v ∈ V) ↓ ∪{XI | I ∈
I}. Here V is a maximal independent vertex set of the hypergraph (set system)
({1, 2, . . . , n},E) and I is a set of at least two-element subsets of {1, 2, . . . , n}.
Indeed, AI

V contains X(Xv{λ} | v ∈ E)↓ iff E ⊆ V . According to property 4(b) of
Definition 16 X(Xv{Av} | v ∈ V)↓ has a coincidence ideal extension AI

V for all non-
trivial partition of I− into two parts, provided |I−| > 1. Since |I−| = n− |V |, the
number of such partitions is 2n−|V |−1− 1. Thus, the left hand side of (7) is a lower
bound of the number of candidate maximal antikeys. A key X(Xv{λ} | v ∈ E)↓
allows at most 2|E| distinct tuples. Applying Lemma 41, (7) follows.

7 Conclusions

In the present paper we investigated keys and antikeys in the presence of various
constructors in the higher order datamodel. We proved that keys, as well as an-
tikeys, correspond to certain ideals with additional closure properties. These are
closed sets, that is intersections of coincidence ideals defined in [21], subsets of
the subattribute lattice. We showed that the system of minimal keys correspond
to Sperner system of closed sets and exhibited a sufficient condition when such a
Sperner system occurs as a system of minimal keys. The candidate key systems
not covered by the sufficient condition of Theorem 30 are the ones containing de-
generate keys. A characterization when Armstrong-instance exists for such key
systems is given in the (possibly) most important special case. Strong keys are also
introduced. Some interesting combinatorial problems arose and we are intended to
continue our investigations in that direction, as well. Another future direction of
research is to refine the existing necessary, or sufficient conditions for Armstrong-
instances, preferably to find characterizations in important special cases.

References

[1] Abiteboul, Serge, Buneman, Peter, and Suciu, Dan. Data on the Web: From
Relations to Semistructured Data and XML. Morgan Kaufmann Publishers,
2000.

Keys and Armstrong Databases in Trees with Restructuring 555

[2] Abiteboul, Serge and Hull, Rick. Restructuring hierarchical database objects.
Theoretical Computer Science, 62(1-2):3–38, 1988.

[3] Abiteboul, Serge, Hull, Rick, and Vianu, Victor. Foundations of Databases.
Addison-Wesley, 1995.

[4] Armstrong, W. W. Dependency structures of database relationships. Infor-
mation Processing, pages 580–583, 1974.

[5] Brightwell, G. and Katona, G.O.H. A new type of coding theorem. Studia
Scientiarum Mathematicarum Hungarica, 38:139–147, 2001.

[6] Demetrovics, J. On the equivalence of candidate keys with Sperner systems.
Acta Cybernetica, 4:247–252, 1979.

[7] Demetrovics, J. and Katona, G.O.H. Extremal combinatorial problems in
relational data base. In Fundamentals of Computing Theory (FCT 1981),
number 117 in LNCS, pages 110–119. Springer-Verlag, Berlin, 1981.

[8] Demetrovics, J., Katona, G.O.H., and Sali, A. The characterization of branch-
ing dependencies. Discrete Applied Mathematics, 40:139–153, 1992.

[9] Demetrovics, J., Katona, G.O.H., and Sali, A. Design type problems motivated
by database theory. Journal of Statistical Planning and Inference, 72:149–164,
1998.

[10] Fagin, Ronald. Horn clauses and database dependencies. Journal of the Asso-
ciation for Computing Machinery, 29(4):952–985, 1982.

[11] Fagin, Ronald and Vardi, M. Y. Armstrong databases for functional and
inclusion dependencies. Information Processing Letters, 16:13–19, 1983.

[12] Ganter, B., Gronau, H.-D. O. F., and Mullin, R. C. On orthogonal double
covers of kn. Ars Combinatoria, 37:209–221, 1994.

[13] Hartmann, S. and Link, S. Reasoning about functional dependencies in an
abstract data model. Electronic Notes in Theoretical Computer Science, 84,
2003.

[14] Hartmann, Sven, Hoffmann, Anne, Link, Sebastian, and Schewe, Klaus-Dieter.
Axiomatizing functional dependencies in the higher-order entity relationship
model. Information Processing Letters, 87(3):133–137, 2003.

[15] Hartmann, Sven, Link, Sebastian, and Schewe, Klaus-Dieter. Reasoning about
functional and multi-valued dependencies in the presence of lists. In Seipel, Di-
etmar and Turull Torres, José Maŕıa, editors, Foundations of Information and
Knowledge Systems, volume 2942 of Springer LNCS. Springer Verlag, 2004.

556 Attila Sali and Klaus-Dieter Schewe

[16] Hartmann, Sven, Link, Sebastian, and Schewe, Klaus-Dieter. Weak functional
dependencies in higher-order datamodels. In Seipel, Dietmar and Turull Tor-
res, José Maŕıa, editors, Foundations of Information and Knowledge Systems,
volume 2942 of Springer LNCS. Springer Verlag, 2004.

[17] Hartmann, Sven, Link, Sebastian, and Schewe, Klaus-Dieter. Functional de-
pendencies over XML documents with DTDs. Acta Cybernetica, 17(1):153–171,
2005.

[18] Hartmann, Sven, Link, Sebastian, and Schewe, Klaus-Dieter. Axiomatisation
of functional dependencies in the presence of records, lists, sets and multisets.
Theoretical Computer Science, 355:167–196, 2006.

[19] Paredaens, J., De Bra, P., Gyssens, M., and Van Gucht, D. The Structure of
the Relational Database Model. Springer-Verlag, 1989.

[20] Sali, Attila. Minimal keys in higher-order datamodels. In Seipel, Dietmar and
Turull Torres, José Maŕıa, editors, Foundations of Information and Knowledge
Systems, volume 2942 of Springer LNCS. Springer Verlag, 2004.

[21] Sali, Attila and Schewe, Klaus-Dieter. Counter-free keys and functional de-
pendencies in higher-order datamodels. Fundamenta Informaticae, 70:277–301,
2006.

[22] Sali, Attila and Schewe, Klaus-Dieter. Weak functional dependen-
cies on trees with restructuring. Technical Report 4/2006, Massey
University, Department of Information Systems, 2006. available from
http://infosys.massey.ac.nz/research/rs techreports.html.

[23] Schewe, Klaus-Dieter and Thalheim, Bernhard. Fundamental concepts of ob-
ject oriented databases. Acta Cybernetica, 11(4):49–85, 1993.

[24] Thalheim, Bernhard. Foundations of entity-relationship modeling. Annals of
Mathematics and Artificial Intelligence, 6:197–256, 1992.

[25] Thalheim, Bernhard. Entity-Relationship Modeling: Foundations of Database
Technology. Springer-Verlag, 2000.

Received 6th October 2006

