
Acta Cybernetica 18 (2008) 403–425.

Programming Language Elements for Correctness

Proofs∗

Gergely Dévai†

Abstract

Formal methods are not used widely in industrial software development,

because the overhead of formally proving program properties is generally not

acceptable. In this paper we present an ongoing research project to make

the construction of such proofs easier by embedding the proof system into a

compiler.

Using the introduced new programming language, the programmer writes

formal specification first. The specification is to be refined using stepwise

refinement which results in a proof. The compiler checks this proof and

generates the corresponding program in a traditional programming language.

The resulting code automatically fulfills the requirements of the specification.

In this paper we present language elements to build specification state-

ments and proofs. We give a short overview on the metaprogramming tech-

niques of the language that support the programmer’s work. Using a formal

model we give the semantics of specification statements and refinements. We

also prove the soundness of the basic algorithms of the compiler.

1 Introduction

1.1 Motivation

The study of formal methods to reason about program properties is getting a more
and more important research area, as a considerable part of a software product’s life-
cycle is testing and bug-fixing. The theoretical basis — such as formal programming
models and reasoning rules [16, 15, 20, 7, 17] — has been developed so far, but these
are rarely used in industry [6]. The main reason for this fact is that formally proving
a program property usually takes much more time than writing the program itself.

The goal of this research is to use programming language elements to make
the construction of these proofs easier. The basic idea is to develop a new pro-
gramming language where the source code contains the formal specification and

∗This work is supported by ”Stiftung Aktion Österreich-Ungarn (OMAA-ÖAU 66öu2)” and
”ELTE IKKK (GVOP-3.2.2-2004-07-0005/3.0)”.

†Department of Programming Languages and Compilers, Faculty of Informatics, Eötvös Loránd
University, Budapest, E-mail: deva@elte.hu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147062312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

404 Gergely Dévai

the correctness proof of the implementation. The proofs are built up using stepwise
refinement [23, 22], as this technique provides correctness by construction, and also
helps the programmers to make the right decisions during software development.
The compiler of the language has to check the soundness of the proof steps and to
generate the program code in a target language using the information of the proof.

Similarly to programs, proofs also contain schematic fragments. These can be
managed efficiently using proof templates that have the same role in proof con-
struction as procedures have in traditional program development. This leads to a
special kind of metaprogramming [9]: by the instantiation of the templates a proof
is constructed (and checked) in compile time and from the proof a target language
program is generated which automatically fulfills all the requirements stated in the
specification.

1.2 Related work

We summarize existing solutions for formally verified software development and
point out how the system presented in this paper differs from these approaches.

The most obvious solution is to embed the programming model in the frame-
work of a theorem prover. Once the program is written, one can (automatically)
generate its representation in the prover, formulate the desired properties (speci-
fication) and discharge them using the tools of the prover. Theorem provers like
Coq [5] or Isabelle/HOL [24] can be used for this purpose. The problem is, that the
program often does not fulfill the specification. In that case one has to start the
whole procedure from the beginning by fixing the error in the program code and
reconstructing parts of the proof. In contrast, our approach uses the correctness by
construction principle: the programmer writes the specification first and refines it
towards the implementation. Using this method one can discover design errors in
an early stage of the development.

Another approach is to extend a programming language by annotations (JML
and ESC/Java2 [8], SPARK [4], FPP [25]) which express the specification and
possibly the key elements of the proof. If the source code is extended by the speci-
fication statements only, we need additional tools to discharge the proof-obligations:
the previously mentioned problems arise again. If the elements of the proof appear-
ing in the code are detailed enough to enable automatic check of soundness, the
source code becomes redundant: a complete proof of correctness usually contains
all the necessary information needed to reconstruct the algorithm. This is exactly
what is done in the system presented in this paper: the programmer writes speci-
fication and proof only, the instructions of the algorithm are ”extracted” from the
proof by the compiler automatically.

Functional and logic programming have a tight relation to formal methods as
programs in these languages can be considered as executable specifications. For
example in a functional language a program that sums the elements of a list reflects
the ”natural” definition of the problem very well. In contrast, it is not the case if we
consider for example the problem of sorting a list. The ”natural” way of specifying
it, is to state that we seek a sorted permutation of the original sequence, while

Programming Language Elements for Correctness Proofs 405

(effective) implementations1 in functional and logic programming languages are
closer to the different sorting algorithms used also in imperative programming.
This problem motivates several projects developing theorem provers especially for
functional programming languages, like the Lisp-based ACL2 [19], and Sparkle
[10] for the Clean language. Theorems proved in these systems express relations
between the functions implemented in the functional languages. This means that
the construction of the proof takes place after the implementation of the functions.
This has the same drawback mentioned before. Furthermore there are essentially
”imperative” programming problems (consider for example the IO processes) that
are hard to deal with in a purely functional environment. The proof of the soundness
of these program fragments require further sophisticated methods [18]. In the
language presented in this paper it is possible to specify the problem on an abstract
level without any constraints to be ”executable”, while it also gives the possibility to
fully control the effectiveness of the implementation. If we consider the example of
sorting, the specification just states that a sorted permutation is needed, and this
can be refined towards any of the effective sorting algorithms. It is even possible
to choose assembly as the target language and to apply robust optimizations still
keeping the program proved correct.

The most similar projects to the one presented in this paper are the B-method
[3] and Specware [21], as both of them uses refinement. The B-method uses abstract
machines specified by pre- and postconditions of its operations and invariants. The
abstract machines are refined towards the implementation, and proof-obligations
are generated to each refinement. Additional tools help to construct the proofs.
Specware uses essentially the same schema, but it uses category theory as its basis.
The goal of the project presented here is to keep the essence of these successful
approaches while keeping the specification language and the refinement rules as
simple and straightforward as possible, eliminating proof assistants and unifying
the different levels of refinement.

The main characteristics and contribution of our approach can be summarized
as follows:

• It is a refinement-based method to ensure correctness by construction.

• The resulting target language program is generated automatically, the pro-
grammer has to develop the specification and its refinements only.

• The compiler and the language is independent of the target language, because
code generation is done by a separate module. The compiler’s output is a set
of state transitions. Any language which is able to implement these transitions
can be a target language.

• The proofs are completed using the features of the new language only, no
external tools are needed.

1It may be also possible to implement the sorting algorithm directly as a search for a sorted
permutation (for example in Prolog), but the resulting algorithm is extremely ineffective.

406 Gergely Dévai

• Reasoning in temporal and classical logic is unified.

• Proof strategies are not hard-wired in the compiler, but can be developed
using the metaprogramming techniques provided by the new language.

1.3 Current state of the presented project

The programming language and the underlying system described in this paper is
implemented in C++. The compiler currently consists of more than 6000 lines of
source code. There are also hundreds of source files written in the new language to
test the compiler, and several example programs implementing simple but useful
algorithms [1, 13] are constructed for demonstration reasons. A small utility library
is developed that contains templates to ease reasoning about loops, conditionals
and can automatically construct proofs for expression evaluation. The currently
supported target language is C++, but in a previous version the NASM assembly
was supported.

As a relatively young project, the system’s automated reasoning capabilities
are not comparable yet with the power of the leading interactive theorem provers.
However the advanced metaprogramming capabilities of the language are quite
promising: it makes possible to reuse often used proof parts and to develop own
proof strategies.

2 Examples

In this section we informally present the main features of the language using sev-
eral small examples. The specification language and the refinement possibilities
will be presented in more detail (2.1, 2.2), to help the reader to understand their
formalization described in sections 3 and 4. On the metaprogramming features of
this language and code generation issues we give a brief overview (2.3, 2.4).

2.1 Temporal properties

Expressions of the language are formulas of typed first order logic used to describe
states of the program. The instruction pointer (ip) is considered as a normal
variable and it may also appear in the formulas. For example the expression

ip = B & s = "Hello!"

states that the program execution is at the label B and the string ”Hello!” is stored
in the variable s. Using the ≫ symbol one can connect two such statements to build
a temporal progress property :

ip = A > > ip = B & s = "Hello!";

Programming Language Elements for Correctness Proofs 407

This expresses that whenever the program execution is at label A, it has to reach
after some (finite but not certainly bounded) steps label B and then s = ”Hello!”
must hold.

We can express classical pre- and postconditions of Hoare logic [16] using the
reserved labels Start and Stop instead of A and B in the example. Moreover,
the explicit usage of the ip variable makes it possible to specify non-terminating
programs. Like in the following example

ip = A > > ip = A & s = "Hello!";

where the “postcondition” implies the “precondition”, stating that the program re-
peatedly returns to the same state or does not leave it.

This temporal property is close to the leads to property of Unity [7] and its
relational version [17], but without supposing any kind of fairness of the scheduling.
(As this language is currently designed for sequential languages, fairness is not a
point.)

In many formal specification systems connections between pre- and postcon-
ditions are expressed using auxiliary variables (also called parameter variables).
We also use this technique. For example the parameter variable j is used in the
following property

ip = Start & i = j > > ip = Stop & i = j+1;

to state that this program increments the value of the variable i. Program variables
and parameter variables are not distinguished syntactically but their declarations
are different. As usually, parameter variables are not allowed to appear in the
program, only in specification and proof.

It is also possible to express safety properties of the program: these are formulas
enclosed between the ’[’ and ’]’ symbols. A safety property concerns one or more
progress properties (the ones that are in the scope of it, for exact definition see
section 3.4).

[i > 0];

ip = A > > ip = B;

This example means that while the program proceeds from the label A to B, if
i > 0 becomes true, it remains true at least until ip = B is reached.

If a formula holds throughout a program fragment, in Hoare logic style proofs
one has to repeat it in all intermediate steps. In our system one can use a safety
property instead.

The always operator of temporal logic [20] and invariant notion of [17] are too
strong, stating that a property must hold during the overall program. Our safety
property is closer to the (weak) unless operator and the unless property of Unity
and [17]. The difference is that our property must hold “between” a pre- and a
postcondition.

408 Gergely Dévai

2.2 Refining the specification

Progress properties of specifications can be refined by two constructs: sequence
and case analysis. Safety properties are not to be refined, they are checked by the
compiler automatically.

A sequence breaks a progress property into consecutive steps. In the following
example the first line is the property to be refined and the two refining statements
are enclosed by the braces.

ip = Start > > ip = Stop & s = "Hello!"

{

ip = Start > > ip = A & s = "Hello!" { ... }

ip = A & s = "Hello!" > > ip = Stop & s = "Hello!" { ... }

}

This refinement states that the original progress property is fulfilled by the program
such that it first sets the desired value of the variable s while it steps to the label
A, and then it terminates.

Note, that this example contains lots of unnecessary details. The algorithm
actually used by the the compiler to check its soundness (see section 4.1) enables
us to omit most of this redundancy. Furthermore such a simple refinement can be
automatically constructed by proof tactics implemented in the language, so that
the only line of the specification would be enough.

A case analysis can be used to implement conditionals. In the following example
we want to compute the factorial of i. The program first computes the condition
i = 0 and commits a conditional jump. The precondition of the following example
describes the state of the program after this jump: it is at label A if i = 0, while
it is at the label B if i 6= 0. The result is computed differently in each of the two
cases, that is why we use case analysis. This is denoted by the select keyword.

(ip = A & i = 0) | (ip = B & !(i = 0))

> > ip = C & f = fact(i)

select

{

ip = A & i = 0 > > ip = C & f = fact(i) { ... }

ip = B & !(i = 0) > > ip = C & f = fact(i) { ... }

}

The soundness of such a refinement is checked by the algorithm presented in section
4.2.

These two refinement constructs are very close to the Hoare logic rules [16]
for program sequences and if statements. Similar rules are the transitivity and
disjunctivity of the leads to operator of Unity [7, 17].

2.3 Template features

The basic idea of this language is that the programmer builds specification and
proof using the previously presented properties and refinement constructs, then

Programming Language Elements for Correctness Proofs 409

the compiler checks their soundness and generates the corresponding program in
a target language. The programmer’s work is supported by a metaprogramming
layer of the language consisting of templates and compile-time conditions.

Templates are often used or valuable proof parts which are parametrized. These
templates can be called by the programmer with arguments to obtain a concrete
proof fragment.

Template arguments can be examined by compile-time conditions. Depending
on these conditions a template call may result in different proof fragments. For
example we have constructed a template to generate proof for expression evaluation.
The expression to be computed by the program is an argument of the template.
Compile time conditions examine whether this expression is a constant, a variable
or a function application etc. Depending on the kind of the expression, a proof of
an assignment instruction or a proof of a function call is produced by the template.

Formally defining the semantics of templates is not in the scope of this paper.
We give a brief overview of template substitutions. If a template is called, the
arguments are type checked first, then every occurrence of the formal arguments in
the template definition is replaced by the corresponding actual ones. Compile-time
conditions are evaluated next. Proof parts with false conditions are left out, and
the template call is replaced by the remaining parts.

Templates and compile-time conditions are similar to the macro features of
macro assemblers like MASM [2]. However, our templates are type checked. Sim-
ilarly to macro assemblers, our metaprogramming constructs can also be used to
simulate higher level programming constructs like control structures, procedures,
exceptions etc. While macros of a macro assembler generate assembly instruc-
tions implementing the constructs, our templates generate their proofs. In order to
achieve this goal we developed several kinds of templates. In the following we give
a brief overview of them.

2.3.1 Temporal and classical axioms

Templates marked with the axiom or atom keywords contain classical or temporal
axioms respectively. The programmer is able to declare functions and predicates
to use in specifications and proofs and can state their mathematical properties in
axiom templates. Atom templates contain temporal properties of instructions of
the target language, like an assignment or procedure call.

2.3.2 Tactics

The tactic keyword introduces a template that can be called by the compiler au-
tomatically. These templates have to have exactly two boolean arguments. If the
compiler finds a non-refined progress property (which is not in an axiom or atom) it
calls the available tactics with the pre- and postcondition of the progress property
as arguments. If none of the tactics provide a valid refinement for the property, an
error-message is generated.

410 Gergely Dévai

2.3.3 Static templates

If the programmer marks a template by the static keyword, the compiler checks
the soundness of its refinements regardless of its arguments. The soundness of
these refinements and the set of program instructions generated from them are not
allowed to depend on the actual arguments of the template. If this is violated, the
compiler generates an error message.

As a result, when a static template is called, there is no need to check its contents
again. This makes it possible to implement induction with static templates. Proofs
of loops and procedures are usually placed inside static templates, as induction is
often needed to prove their soundness.

2.3.4 Passing proof fragments as arguments

Templates usually get expressions as arguments, but it turned out to be quite useful
to pass complete blocks of refinements too. Using this possibility we were able to
define templates that generate proofs for if-statements and for different kinds of
loops. The following example is a sketch of computing the absolute value of i.
We call the if template, which gets two “simple” arguments: the condition of the
branch, and the postcondition that is to be established. It also has two “special”
arguments: the proofs of the if- and else-branch.

if(i < 0, j = abs(i))

{

// proof of if-branch

}

{

// proof of else-branch

}

2.3.5 Templates declared in templates

It is possible to declare templates inside other templates. For example we were able
to write a template that can be used to declare procedures: when it is called, it
generates two other templates, one static template with the proof of the procedure
itself, and another template with the proof of the procedure call.

2.4 Code generation

When the compiler checks the refinements and finds a temporal progress property
axiom, it saves the corresponding atom template call to a set. This set of template
calls is the compiler’s output. A separate code generation module converts it to
the syntax of the target language.

Most template calls in the set contain the label of the corresponding instruction
and the label of the following instruction. Template calls coresponding to instruc-
tions like goto and return contain their own label only, because these instructions
do not pass the control flow to the instruction after them.

Programming Language Elements for Correctness Proofs 411

That is, these labels define a partial order on the set of template calls. The
code generator sorts the instructions according to this order and generates the
target language code.

3 Semantics of the specification language

In this section we present the model that is the semantic domain of the specifi-
cation statements of the language. We use this model to prove certain properties
of the temporal statements. In section 4 these properties will be used to prove
the correctness of the algorithms used by the compiler to check refinements of the
language.

3.1 Expressions and logic

Expressions in this language are typed first order logic formulas. The free variables
of the formulas are program variables and parameter variables. These variables
define a state space that the formulas are interpreted on. The programming model
introduced in section 3.2 uses this state space to describe the behavior of programs.

The detailed presentation of the syntax and semantics of the expressions of this
language can be found in [11].

3.2 Underlying programming model

The semantics of the safety and progress properties is given using a relational
programming model, that we present in this section. The rules that the stepwise
refinement is based on are also proved in this model.

3.2.1 State space, program

Let A be an arbitrary set, the state space. A program over A is a set of state
transitions:

S ⊆ A × A

In case of (a, b) ∈ S, the program S can change its state form a to b.
In this model the instruction pointer of a program is a component of the state

space, just as all other variables. For example the program

K: b = true;

L: b = false;

M:

operates on a two-component state space, A = {K,L,M} × {true, false} and has
two variables, ip and b respectively. It has four state transitions:

S = {((K, false), (L, true)), ((K, true), (L, true)),

((L, false), (M,false)), ((L, true), (M,false))}.

412 Gergely Dévai

3.2.2 Operation of programs

The operation of a program can be described by the state sequences that the pro-
gram follows during its execution. We use the notation A∗∗ for the set of all (finite
or infinite) nonempty sequences over the set A. The operation of program S over
state space A is the following subset of A∗∗2:

rS = {α ∈ A∗∗ | ∀i ∈ [1..|α| − 1] : (αi, αi+1) ∈ S ∧ (|α| < +∞ → α|α| /∈ DS)}

This definition states that the program changes its state according to its transitions
and it stops iff there is no applicable state-transition. Note that each α′ postfix of
a sequence α ∈ rS is in rS too.

For example, the sequences

< (K, false), (L, true), (M,false) >

and
< (L, true), (M,false) >

are valid for the example program presented in 3.2.1, but the sequences

< (L, false), (M, true) >

and
< (K, false), (L, true) >

are not.
The notation F (Q,α) is used for the first occurrence of an element in the se-

quence α ∈ A∗∗ for which the statement Q holds.

F (Q,α) =

{

i ∈ Dα if Q(αi) ∧ ∀j ∈ [1..i − 1] : ¬Q(αj)
+∞ if ∀j ∈ Dα : ¬Q(αj)

This notation will be used to define the temporal properties of programs.

3.2.3 Temporal properties of programs

Let S be a program and P , Q and K be statements over the state space A. S leads
to Q from P (P ≫S Q), iff

∀α ∈ rS : (P (α1) → F (Q,α) < +∞).

That is, if the program is in a state for which the statement P holds it will reach
some state where Q holds after a finite (but not certainly bounded) number of state

transitions. The statement K is a safety property of S between P and Q ([K]P,Q
S)

iff

∀α ∈ rS : (P (α1) → ∀j ∈ [F (K,α)..F (Q,α)] ∩ Dα : K(αj)).

2DS = {a ∈ A | ∃b ∈ A : (a, b) ∈ S} is the domain of the relation S.

Programming Language Elements for Correctness Proofs 413

That is, if the program reaches some state where K holds while it proceeds form
P to Q, then K remains true at least until Q is reached.

For example the properties

ip = K ≫S ip = M

and

[b = true]
(ip=K),(ip=L)
S

hold for the example program in 3.2.1.

3.2.4 Temporal properties with parameters

Recall the example of section 2, where we used a parameter variable to express a
progress property for each integer j:

ip = Start & i = j >> ip = Stop & i = j+1;

In general, let S be a program over state space A, and B be an arbitrary set,
the parameter space, C = A×B, and P , Q and K be statements over C. If b ∈ B,
we use the notation P b for the statement over A for which

⌈P b⌉ = {a ∈ A | (a, b) ∈ ⌈P ⌉}

holds. We say, that

P ≫S Q and [K]P,Q
S

is true iff for every b ∈ B

P b ≫S Qb and [Kb]P
b,Qb

S

hold respectively.

3.2.5 Refinement rules

Using the relational model we introduce rules of the temporal properties. These
rules are the basis for the algorithm that the compiler uses to check the refinement
steps in the source code.

The proofs of these rules are not really difficult but rather technical. You can
find them in the technical report [12]. Here we give short informal proofs and
explanations.

In the following we suppose that S is an arbitrary program over the state space
A, the parameter space is B, and C = A×B. Furthermore we suppose that P,Q,R
and K are arbitrary statements over C.

414 Gergely Dévai

Rule of consequence

If P ⇒ Q then P ≫S Q and [K]P,Q
S .

To show this rule, we must take the sequences from rS starting with an element
satisfying P . But these elements also satisfy Q and using the definitions of the
temporal properties we get what the rule states.

The condition of the rule states that each time the precondition holds, the
postcondition also holds immediately. That is why any program can be used to
reach the postcondition from the precondition. The same rule is present in the
Unity based models [7, 17] for the leads to operator. In [16] Hoare had two such
rules: one for the precondition and one for the postcondition. Both of those rules
can be derived from our one and the rule of sequence.

Rule of sequence

If P ≫S Q and Q ≫S R then P ≫S R.
If [K]P,Q

S and [K]Q,R
S then [K]P,R

S .

To deal with the claim about the progress properties is quite simple: in each se-
quence starting with an element satisfying P , we can find an element for that Q
holds, because of the first hypothesis. And then, by the second hypothesis we know
that there is an element in the sequence for which R is true.

To prove the second statement we must explore cases depending on the order
of the first occurrence of Q, R and K. In each case by using one or two of the
hypothesis we can prove the statement.

This rule is essentially the rule of Hoare logic for program sequences and the
transitivity of leads to in Unity.

Rule of case analysis

If P ≫S R and Q ≫S R then P ∨ Q ≫S R.
If [K]P,R

S and [K]Q,R
S then [K]P∨Q,R

S .

To prove this rule it is enough to consider, that if the first element of a sequence
satisfies P ∨ Q, then it satisfies either P or Q. In each case we can use the cor-
responding hypothesis to prove the claim. This reasoning can be applied for both
statements.

This rule can be used to build proof for conditionals in a program. It splits the
precondition into parts and allows the programmer to reach the postcondition in
different ways from these parts. The corresponding rules are the disjunctivity of
leads to and the Hoare rule for if statements.

Programming Language Elements for Correctness Proofs 415

Rule of safety property application

If P ≫S Q and [K]P,Q
S then (P ∧ K) ≫S (Q ∧ K).

If [I]P,Q
S and [K]P,Q

S then [I]P∧K,Q∧K
S .

The core of both statements is that if K is a safety property between P and Q, then
starting from P ∧ K, if we reach Q, then K ∧ Q will hold. In the first statement
we additionally suppose that Q is surely reached, which means Q ∧ K is reached.
Similar reasoning applies for the second statement.

In Hoare logic proofs all the unchanged parts of the assertions are present in
every step of the proof. Using the rule described here we can “save” these unnec-
essary parts to safety properties and “put them back” into the progress properties
when necessary. In Unity a similar rule describes the connection between the leads
to operator and invariants of the program.

Rule of composition

Suppose that S = S1 ∪ S2 and DS1
∩ DS2

= ∅.
If P ≫S1

Q then P ≫S Q.

If [K]P,Q
S1

and P ≫S1
Q then [K]P,Q

S .

Because the program S1 reaches Q from P , every state on this way must be in
the domain of S1. Thus, by the crucial condition that the domains of the two
composed programs are disjoint, these states can not be in the domain of S2. From
this we get that the compound program does exactly the same from P to Q as S1

does. From this follows both claims of this rule.
Note that the disjointness can easily be fulfilled in case of sequential programs,

but it is much harder for parallel/concurrent ones. Similar rules are established in
Unity. In Hoare logic, this rule is implicitly present in each of its rules, as they are
all compositional. The Hoare-style sequencing rule can be emulated in this model
by first applying our composition rule for both programs and then applying our
sequencing rule.

3.3 Syntax of proofs

In this paper we do not deal with the formal description of the operation of tem-
plates. After processing the meta programming elements in the code, the resulted
proof consists of specification statements and their refinements. In this section we
present the syntax of these elements.

In the grammar the following notations are used: non-terminal symbols are
enclosed between the < and > symbols, alternatives are divided by the | symbol,
the [and] symbols enclose optional parts, while [and]* denotes iteration (0, 1 or
more times), terminals appear between single quotes.

<proof> ::=

[<safety property> | <temporal axiom> | <classical axiom>

416 Gergely Dévai

| <sequence> | <case analysis>

| <conclusion refinement>]*

<safety property> ::=

’[’ <expression> ’]’ ’;’

<temporal axiom> ::=

[[<condition> ’:’] <safety property> ’;’]*

<expression> ’>>’ <expression> ’;’

<classical axiom> ::=

<expression> ’=>’ <expression> ’;’

<sequence> ::=

<expression> ’>>’ <expression> ’{’ <proof> ’}’

<case analysis> ::=

<expression> ’>>’ <expression> ’select’

’{’ [<sequence> | <case analysis>

| <conclusion refinement>]* ’}’

<conclusion refinement> ::=

<expression> ’=>’ <expression> [’select’]

’{’ [<conclusion axiom> | <conclusion refinement>]* ’}’

That is, the proof is a sequence of safety and progress properties and conclusions.
Each progress property and conclusion has to be refined, unless it is a progress
property axiom or a conclusion axiom. These axioms are always produced by a
template containing temporal or first order logic axioms. Conditions in safety
property axioms are special expressions that can be computed in compile time.

3.4 Semantics of statements

Now we connect the statements of the language with the model presented in section
3.2. First, we define the state space, that the formulas are interpreted on. Let the
A = {v1, ..., vn} be the set of program variables and B = {p1, ..., pm} be the set of
parameter variables in the proof, and let Vi and Pj denote the sets of values corre-
sponding to the types of vi and pj respectively. Then the formulas are interpreted
on the space (V1 × ... × Vn) × (P1 × ... × Pm).

Let S denote the model of the specified program on state space V1 × ...×Vn. A
progress property Q ≫ R of the proof specifies that Q ≫S R has to be fulfilled by
S.

In the grammar of section 3.3 the sequence of statements directly derived from
the < proof > symbol is called a block. The scope of a safety property consists of
the statements from the location of the safety property to the end of the innermost

Programming Language Elements for Correctness Proofs 417

block that contains it. If the progress properties Q1 ≫ R1, ..., Qn ≫ Rn are in the
scope of the safety property [K], it specifies, that S fulfills [K]Q1,R1

S , ..., [K]Qn,Rn

S .
A safety property axiom c : [K]; may contain expression variables. We say that

[K ′] is stated by the axiom if it is possible to assign expressions to the expression
variables such that replacing them in K results in K ′, and the condition c is true for
this assignment. If the temporal axiom consists of c1 : [K1]; ... cn : [Kn]; P ≫ Q;
then the axiom specifies P ≫S Q, and for each [L] that is stated by one of the

safety property axioms, [L]P,Q
S is specified too.

We say that a refinement is sound, if each program that fulfills the refining prop-
erties, also fulfills the refined properties. In the next section we present algorithms
to check refinements, and prove that each refinement accepted by these algorithms
is sound in the sense of the previous definition.

4 Algorithms to check refinements

In this section we present the algorithms of the compiler used to check the sound-
ness of refinement steps. In the pseudo codes we use the following conventions.
Parameters are always passed by value, that is, the procedures do not have side-
effects, results are given by return values only. We use set variables with the usual
set operations, and stacks with push, pop and top operations. In section 4.5 the
function sizeof is also used to give the number of elements in a stack. If T is a
progress property, we use the notations pre(T) and post(T) to denote the pre- and
postconditions of T respectively.

In the algorithms the procedure infer(P,Q) is called. This can be any algorithm
that tries to infer the formula Q from P . The only requirement is, that it has to be
sound, that is, if it returns true then P ⇒ Q has to hold. Of course, this procedure
can not be complete, because first order logic is not decidable.

An other algorithm, GCNF (P) is also used in the algorithms. It transforms the
formula P to a generalized conjunctive normal form. The exact form of this GCNF
and the infer algorithm currently used in the compiler are described in [11].

4.1 Processing sequential refinements

Algorithm: process − sequent(Stm,K, V)
Parameters: Stm: the statement to process, K: set of formulas, V : stack of
formulas
Local variables: T : statement, P : formula
Return value: stack of formulas

1. V := push(V,GCNF (pre(Stm))); T :=the first refining statement;

2. if T is the first statement of an axiom then call
V, T := process − axiom(T,K, V);
go to step 8;

418 Gergely Dévai

3. if T is a safety property [K] then K := K ∪ {K}; go to step 8;

4. if infer(top(V), pre(T)) returns false then return ERROR;

5. if T is a sequential refinement then call
V := process − sequent(T,K, V);
go to step 7;

6. if T is a refinement by case analysis then call
V := process − select(T,K, V);
go to step 7;

7. P := top(V); V := pop(V); V := push(V,GCNF (P&post(T)));

8. if T is the last refining statement in Stm,

a) then go to step 9;

b) else T :=the next statement of the refinement; go to step 2;

9. if infer(top(V), post(Stm)) returns false then return ERROR;

10. return pop(V);

4.2 Processing refinements by case analysis

Algorithm: process − select(Stm,K, V)
Parameters: Stm: the statement to process, K: set of formulas, V : stack of
formulas
Local variables: T : statement, P : formula
Return value: stack of formulas

1. D :=empty disjunction; T :=the first refining statement;

2. V := push(V,GCNF (pre(Stm))); D := D | pre(T);

3. if T is a sequential refinement then call
V := process − sequent(T,K, V);
go to step 5;

4. if T is a refinement by case analysis then call
V := process − select(T,K, V);
go to step 5;

5. P := top(V); V := pop(V); V := push(V,GCNF (P&post(T)));

6. if infer(top(V), post(Stm)) returns false then return ERROR;

7. V := pop(V);

8. if T is the last refining statement in Stm,

Programming Language Elements for Correctness Proofs 419

a) then go to step 9;

b) else T :=the next statement of the refinement; go to step 2;

9. if infer(pre(Stm),D) returns false then return ERROR;

10. return V ;

4.3 Processing axioms

Algorithm: process − axiom(Stm,K, V)
Parameters: Stm: the first statement to process, K: set of formulas, V : stack of
formulas
Local variables: M: set of statements, U : formula, W : stack of formulas
Return value: stack of formulas, statement

1. M := ∅; W :=empty stack;

2. if Stm is a safety property axiom [M]

a) then M := M∪ {M}; Stm :=the next statement; go to step 2;

b) else go to step 3;

3. if infer(top(V), pre(Stm)) returns false then return ERROR;

4. for each element K ∈ K: if ∃M ∈ M: check − safety − property(K,M)
returns false then return ERROR;

5. for each element F = F1&...&Fn of V (from the bottom to the top):

a) for each Fi (i ∈ [1..n]):
if ∃M ∈ M: check − safety − property(Fi,M) returns false then
F :=remove Fi from F ;

b) W := push(W,F);

6. U := top(W); W := pop(W); W := push(W,GCNF (U&post(Stm)));

7. return W , Stm;

4.4 Using safety property axioms

Algorithm: check − safety − property(K,L)
Parameters: K: formula, L: safety property axiom statement (of the form c : [I])
Return value: boolean

1. Try to assign an expression to the expression variables in I such than K and
I match. If it is not possible then return false;

2. Evaluate the condition c with the assigned expressions. If it is true return
true, else return false.

420 Gergely Dévai

4.5 Soundness of the algorithms

In this section we present a theorem that states the soundness of the presented al-
gorithms, and three lemmas that are used in the proof of the theorem. The proofs
can be found in appendix A.

Theorem. If the refinements in a (finite) proof are accepted by the algorithms
presented in sections 4.1–4.4, and a program fulfills all the axioms used in the
proof, then the program fulfills all the temporal properties appearing in the proof.

Lemma 1. If a program S fulfills an axiom with properties c : [I]; and P ≫ Q

and check − invariant(K, c : [I]) returns true, then [K]P,Q
S also holds.

Lemma 2. If the call W,Stm′ := process − axiom(Stm,K, V) processes the ax-
iom consisting of statements c1 : [I1](= Stm), c2 : [I2], ..., cn : [In], P ≫ Q without
returning an error and the program S fulfills these properties, then

• top(V) ≫S top(W),

• ∀K ∈ K : [K]
top(V),top(W)
S ,

• ∀i ∈ [1..sizeof(pop(V)) − 1] for the ith elements Fi of pop(V) and Gi of

pop(W): Fi ⇒ Gi and [Gi]
top(V),top(W)
S is true.

Lemma 3. If the call W := process − sequent(Stm,K, V) or W := process −
select(Stm,K, V) accepts a refinement without error, and the program S fulfills all
the properties inside the refinement, then the following hold:

• pre(Stm) ≫S post(Stm),

• ∀K ∈ K : [K]
pre(Stm),post(Stm)
S ,

• ∀i ∈ [1..sizeof(V)] for the ith elements Fi of V and Gi of W : Fi ⇒ Gi and

[Gi]
pre(Stm),post(Stm)
S .

5 Summary

The project presented in this paper experiments with two aspects of formal meth-
ods:

• embedding of a refinement based calculus into a compiler to produce code
correct by construction,

• and using metaprogramming techniques to make proof construction easier.

Programming Language Elements for Correctness Proofs 421

In the current paper we discussed the first aspect. Semantics of specification state-
ments were presented as well as the basic refinement-checking algorithms of the
compiler together with their proofs of correctness.

Further research efforts have been issued to test the flexibility of our program-
ming model and specification language. We embedded a model to reason of dynamic
memory management and pointers [13], and also some datatypes of the C++ Stan-
dard Template Library and their basic operations with iterators were specified in
this language [14]. These embeddings were possible without modifying the com-
piler and language design. Therefore we concluded that it is flexible and expressive
enough.

In this paper we gave only a brief overview of the metaprogramming toolset of
this language. Our current research concentrates on supporting the programmers’
work by these tools. We investigate how to emulate higher level proof rules by
templates.

There are also interesting research areas for later development of this work. It
would be useful to extend the expressive power of the specification statements, for
example to specify randomized algorithms, parallel programs, resource consumption
of the program etc.

In its current state this system in already applicable to specify programming
problems and to derive not-too-complicated algorithms as verified solutions. The
limitation is clearly the non-sufficient automatic reasoning capabilities of the sys-
tem. We experiment with the metaprogramming features of the language to over-
come this limitation. While most formal methods use their built-in provers as black
boxes, in our case most of the proof strategies are implemented not in the compiler
but using the language itself. They are accessible and extendable.

A Proof of theorems of section 4.5

A.1 Proof of the theorem

We prove the theorem by structural induction on the structure of the proof tree.
In the base case we observe a refinement where all the refining statements are
axioms. By the assumption of the theorem, the program S fulfills all these axioms.
From this, by lemma 3 we get that S fulfills the refined properties too.
In the inductive case, by the induction assumption the program fulfills all the
properties inside a refinement. From this, by lemma 3 we get that S fulfills the
refined properties too.

A.2 Proof of lemma 1

If the call returned true, it means that it was possible to assign expressions to the
expression variables such that K and I matched and the condition was also true.
Using the semantics described in section 3.4 it means that K is stated by c : [I],

and [K]P,Q
S .

422 Gergely Dévai

A.3 Proof of lemma 2

Step 2 of the algorithm collects all the safety property axioms into the set M.
Because the algorithm processed the axioms without error, by step 4 we know that
∀K ∈ K : [K]P,Q

S .
Step 5 copies the elements of V to W in such a way that it removes certain parts of
the conjunctive chains, thus ∀i ∈ [1..sizeof(V)] : Fi ⇒ Gi, where Fi and Gi are the
ith elements of V and W respectively. By lemma 1 we get that the removed parts are
those that are not safety properties of the axiom. It means that ∀G ∈ W : [G]P,Q

S .
In the following steps the algorithm modifies only the top element of W , so at the
end we have ∀i ∈ [1..sizeof(pop(V))] : Fi ⇒ Gi and [Gi]

P,Q, where Fi and Gi are
the ith elements of pop(V) and pop(W) respectively.

Let us denote the value of top(W) by T at the end of step 5. Thus, we also

have top(V) ⇒ T and [T]P,Q
S . Because the call did not return an error, by step 3

we know that top(V) ⇒ P , and because of top(V) ⇒ T also top(V) ⇒ P&T . By
the assumption of the lemma we know that P ≫S Q holds. Using the rule of safety
property application we get that P&T ≫S Q&T . In step 6 the algorithm changes
top(W) from T to Q&T , that is we have P&T ≫S top(W). From this and from
top(V) ⇒ P&T by the rules of conclusion and sequence we get top(V) ≫S top(W).
Using the safety property parts of the same rules give:

∀G ∈ pop(W) : [G]
top(V),top(W)
S and ∀K ∈ K : [K]

top(V),top(W)
S .

A.4 Proof of lemma 3

We prove the lemma by structural induction on the structure of the proof tree.
The base case is a refinement where all the refining statements are axioms. From
the syntax presented in section 3.3 follows that such a refinement is a sequential one.
First, we prove, that each time when the algorithm process−sequent(Stm′,K′, V ′)
is at step 2, then the following loop invariants hold: pre(Stm′) ≫S top(V), ∀K ∈

K′ : [K]
pre(Stm′),top(V)
S and ∀i ∈ [1..sizeof(V ′)] for the ith element Fi ∈ V ′ and

Gi ∈ V : Fi ⇒ Gi and [Gi]
pre(Stm′),top(V)
S . When the algorithm is at step 2 for the

first time top(V) = pre(Stm′), because of the initialization in step 1, so the loop
invariants hold because of the rule of conclusion. By lemma 2 we get that step
2 preserves these invariants. As, according to our assumption, there are axioms
in this refinement only, step 2 and 8 are repeated until we reach the end of the
refinement. Then by step 9 we get that top(V) ⇒ post(Stm′). From this and the
loop invariants, using the rules of conclusion and sequence we get the properties
that we wanted to prove.
In the inductive case of the proof we have two cases: the cases of refinements by
sequence and case analysis.
If the refinement is sequential, then the proof is similar to the base case including
the loop invariant, but we have to deal with steps 3-7 too. In step 3 K is changed
but in the loop invariant K′ is present, so that is preserved. If the execution is
at step 4 then we know that T is a progress property, and that top(V) ⇒ pre(T).
Then, depending on the type of the refinement of T step 5 or 6 is executed. We use

Programming Language Elements for Correctness Proofs 423

the induction assumption and a proof similar to the end of the proof A.3 to show
that the loop invariant is preserved.
If the refinement is a case analysis, let V 1

i and V 2
i denote the value of the stack

V at the end of step 2 and step 6 respectively at the ith refining statement Ti.
By the induction assumption at steps 3 and 4 we get that pre(Ti) ≫S post(Ti),

∀K ∈ K : [K]
pre(Ti),post(Ti)
S and ∀i ∈ [1..sizeof(V 1

i)] for the jthelement Fj ∈ V 1
i

and Gj ∈ V 2
i : Fj ⇒ Gj and [Gj]

pre(Ti),post(Ti)
S . Thus we have pre(Stm) ⇒

top(V 2
i) and [top(V 2

i)]
pre(Ti),post(Ti)
S . From the latter one by the rule of safety

property application we get pre(Ti)&top(V 2
i) ≫S post(Ti)&top(V 2

i), ∀K ∈ K :

[K]
pre(Ti)&top(V 2

i
),post(Ti)&top(V 2

i
)

S and ∀G ∈ V 2
i :[G]

pre(Ti)&top(V 2

i
),post(Ti)&top(V 2

i
)

S .
As step 5 changes top(V) from top(V 2

i) to post(Ti)&top(V 2
i) by step 6 we get that

post(Ti)&top(V 2
i) ⇒ post(Stm). From this by the rules of consequence and se-

quence we have pre(Ti)&top(V 2
i) ≫S post(Stm), ∀K ∈ K : [K]

pre(Ti)&top(V 2

i
),post(Stm)

S

and ∀G ∈ V 2
i :[G]

pre(Ti)&top(V 2

i
),post(Stm)

S , which is true for each statement Ti in the
refinement. Using the rule of disjunction n − 1 times, we get (pre(T1)&top(V 2

1)) |
... | (pre(Tn)&top(V 2

n)) ≫S post(Stm) and the similar safety properties.
Because of step 2 we know that at step 9 D = pre(T1) | ... | pre(Tn), and step
9 checks that pre(Stm) ⇒ D. From this, by pre(Stm) ⇒ top(V 2

i) we get that
pre(Stm) ⇒ (pre(T1)&top(V 2

1)) | ... | (pre(Tn)&top(V 2
n)) is also true. Using the

rule of consequence and the rule of sequence for this and for the previous result we
get the properties of the lemma.

References

[1] Home of LaCert: http://deva.web.elte.hu/LaCert.

[2] Home of MASM: http://masm32.com/.

[3] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge Uni-
versity Press, New York, NY, USA, 1996.

[4] J. Barnes. High Integrity Software: The SPARK Approach to Safety and Se-
curity. Addison Wesley, 2003.

[5] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer Verlag, 2004.

[6] J. P. Bowen and M. G. Hinchey. Ten commandments revisited: a ten-year
perspective on the industrial application of formal methods. In FMICS ’05:
Proceedings of the 10th international workshop on Formal methods for indus-
trial critical systems, pages 8–16, New York, NY, USA, 2005. ACM Press.

[7] K. M. Chandy and J. Misra. Parallel Program Design, A Foundation. Addison-
Wesley, 1988.

424 Gergely Dévai

[8] D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,
volume 3362/2005, pages 108–128. Springer, 2005.

[9] M. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

[10] M. de Mol, M. van Eekelen, and R. Plasmeijer. Theorem proving for functional
programmers, Sparkle: A functional theorem prover. LNCS, page 55, 2001.

[11] G. Dévai. Programming language elements for proof construction. In Volume of
abstracts of the 6th Joint Conference on Mathematics and Computer Science,
2006.

[12] G. Dévai. Refinement rules of LaCert. Technical report, Dept. of Programming
Languages and Compilers, Fac. of Informatics, ELTE University, 2007.

[13] G. Dévai and Z. Csörnyei. Separation logic style reasoning in a refinement
based language. In Proceedings of the 7th International Conference on Applied
Informatics (to appeare), 2007.

[14] G. Dévai and N. Pataki. Towards verified usage of the C++ Standard Template
Library. In Proceedings of the 10th Symposium on Programming Languages and
Software Tools (to appeare), 2007.

[15] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[16] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[17] Z. Horváth. A Relational Model of Parallel Programs (in Hungarian). PhD
thesis, Phd School in Informatics, Eötvös Loránd University, Budapest, Hun-
gary, 1996.

[18] Z. Horváth, T. Kozsik, and M. Tejfel. Extending the Sparkle core language
with object abstraction. Acta Cybernetica, 17:419–445, 2005.

[19] M. Kaufmann, J. S. Moore, and P. Manolios. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[20] F. Kröger. Temporal Logic of Programs. Springer, Berlin, Heidelberg, 1987.

[21] J. McDonald and J. Anton. Specware - producing software correct by con-
struction, 2001.

[22] C. Morgan. Programming from specifications. Prentice Hall International (UK)
Ltd., second edition, 1994.

[23] J. M. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Sci. Comput. Program., 9(3):287–306, 1987.

Programming Language Elements for Correctness Proofs 425

[24] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

[25] J. Winkler. The frege program prover FPP. Internationales Wissenschaftliches
Kolloquium, 42:116–121, 1997.

