
Acta Cybernetica 18 (2007) 9–14.

The activities of László Kalmár in the world of

information technology

Árpád Makay∗

Abstract

Since the end of the 1950s László Kalmár has been interested in the in-

formation technology. During a 20 years period he designed several variants

of computers interpreting high-level programming languages on architectural

levels.

Keywords: logical machine, formula-driven computer, high-level language

interpreter machine

Towards the end of the 1950s, information technology (IT) became one of the
fields in which László Kalmár was highly interested. He was clearly aware of the
rapid spread of computers and their excellent applicability for numeral computa-
tions. It is nevertheless extremely likely that the links between mathematics and
IT were what caught his interest and shaped his views of this field. It is undoubted
that he tackled problems from the aspect of a mathematician, always attempt-
ing to apply mathematical methods in a world, which at that time was virtually
purely technical and technological. It soon became obvious that IT requires and
makes wide use of the laws and methods of mathematics: it may suffice merely
to mention the inspiring role of automata theory or coding theory. The exactness
of mathematics is reflected in the problem solving of IT, the precise understand-
ing of the problems and their detailed analysis, which often demands considerable
work. Kalmár’s interdisciplinary knowledge played a significant role in his continu-
ous search for new areas of use of IT, defining concrete problems for which he often
found solutions and attracted the interest of researchers and developers.

It should be remembered that the freedom of researchers to carry out effec-
tive work in Hungary in that period was restricted by a number of factors. The
technical resources in the country were rather poor. For understandable reasons,
most of the resources were placed in the service of the economy and the running
of the state, only a minor part being made available for teaching and research.
Kalmár’s wide-ranging contacts and (from the 1960s) his nationwide recognition in
the world of IT helped him overcome many of the technical obstacles, especially

∗University of Szeged, Árpád tér 2, Szeged, Hungary.

9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147062286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


10 Árpád Makay

in the practical teaching area. Nonetheless, the need to adapt to the external con-
straints certainly influenced his thoughts and plans. One of the main areas of his
interest, the combination programming languages and mathematics, and especially
the formal language of logic, was restricted from the outset, the limitations being
set by his ambition for the availability of the necessary resources.

Kalmár was unceasingly convinced that the already considerable development
of the IT world could benefit still further from the innovative work of Hungarian
researchers. In consequence of his international reputation, the leading journals and
technical books were at his disposal, often as complimentary copies. The world was
generally open to him. At conferences, he was able to meet internationally respected
researchers and to set out his ideas and achievements. In this way he acquired up-
to-date information on the areas of perspective research and development, which
he readily shared with his students and colleagues.

When an effective tool such as the computer becomes available to an individ-
ual, his or her imagination suddenly catches wings. And this is what happened to
the early IT researchers, engineers and end-users in Hungary, among them László
Kalmár. As an example, the machine translation of natural languages seemed
attainable from the very beginning. Kalmár closely watched and supported the
Hungarian group working on this project. We now know that this goal was reached
in part only much later. For that group at that time, the objective appeared
unattainable, though their activities furnished important information and knowl-
edge relating to the field of linguistics.

László Kalmár was no stranger to philosophy. Perhaps this was one of the rea-
sons why he became interested in some of the unanswered questions of mathematical
logic which (with full mathematical exactness) touched on the limits of reliability of
mathematics. Questions often arose in IT (also referred to as cybernetics) such as
those concerning the relationship of man and a ”thinking” machine, the ability of
a machine to reproduce itself, and the controllability of computers. Kalmár devel-
oped his own concepts of these issues and often put forward his ideas at appropriate
forums. He did this mainly as a mathematician, a stranger to exaggeration and
science fiction.

László Kalmár worked in the purely theoretical realm of mathematical logic;
it may be stated that he was a real theoretical researcher. In the world of IT,
however, he strived towards concrete instruments. The technology was limited, but
he designed tools that could be constructed.

The first project that was achieved was a by-product of a departmental seminar.
The theme was the technical implementation of mathematical logic (propositional
logic). This is an exciting topic if it is considered that the active parts of computers
are logical circuits, the tasks of which are logical calculations. The decision was
taken to build a ”logical machine” that computes the values of logical formulae [1].

The formula applied could contain a maximum of 8 variables, and all the basic
operators of calculus could be used. A double contact switch represented the value
of a variable or a component formula. One pole had the value TRUE, and the other
one the value FALSE. Accordingly, an operator of two variables needed two input
and one output switches. Special cables connected the poles. These connections



The activities of László Kalmár in the world of information technology 11

had to be set according to the logical operators; it may be said that the operators
were programmed. The input and output poles of the boxes, already programmed
for the basic operators, were appropriately connected to each other so that formulae
of desired length became computable. Operator priority and the use of parentheses
were enabled. It is obvious that the machine did not tackle the problem by reducing
the formula to some kind of normal form. The values of the maximum 8 operands
were set by a simple series of switches, their values and that of the formula being
indicated by lamps on the display.

The logical machine was a demonstrative tool, but it led to a degree of self-
confidence necessary for more difficult challenges to be tackled. Every creator feels
the need to explain what his or her creation is good for: the formula built up
from the boxes is a circuit that is being tested by the machine. This activity was
supported by a relayed ”memory”, together with the potential for the simultane-
ous handling of a number of formulae. By 1959 the machine had received a new
application (one necessary in most computers): it had become a binary adder.

It was roughly at this time that the training of ”programming mathematicians”
started at the University of Szeged, and these courses became increasingly more
popular. The characteristic features of the courses were very thorough training
in mathematics and programming, first in assembly, and later in higher-level lan-
guages. While providing several mathematical courses, László Kalmár was the
professor of machine programming.

In the 1960s, he experienced that programs written in assembly (or in direct
code) were more effective than the codes generated by the compilers, not to mention
the time and memory requirements of the compilation process. The effectiveness
was a result of the work of the programmer in searching for the memory and time
optimum. He also observed that the programming work, i.e. the human energy
invested in problem solving, is more effective if a higher-level language is used. This
latter is nowadays held to be of greatest importance. At that time, Kalmár could
not predict that within 25 years the memory and computing capacity of computers
would have become virtually limitless, and that the abilities of compilers would have
been enhanced considerably as a consequence of theoretical results. He believed
that the solution lay in the approach of machine code to the syntax and semantics
of higher-level languages.

During his productive IT activities, Kalmár often returned to this idea of a
formula-driven machine. The possibilities available in the various periods are re-
flected by some of the versions planned throughout the years. In parallel, his
goal was a definition of the computer as an algebraic structure, his plans being
constructed on this precise theory. As an example, he looked upon a computer
operation as (amongst others) a transformation in the memory state. However,
because of the large number and complexity of the operations, the characteristics
of this transformation could not be written with mathematical exactness. In order
for this to be done, the model should have been brought into a much simpler level,
e.g. to the level of Turing machine theory, but the practical demands did not allow
this. Accordingly, the algebraic model rather played the role of a general approach
and was not used directly in the design.



12 Árpád Makay

The first plans involved the use of the Ljapunov operational language inter-
preter machine [2]. The language allowed the use of a limited number of variables,
expressions built up with the applications of arithmetical operations, and a few
algorithmic tools: conditional clauses and cycles. The syntax was straightforward.
Lexical analysis was barely needed. Because of the lack of block structures and
program segmentation, there was no need for the most difficult techniques applied
in modern interpreters, which at that time were probably impossible to implement
with the technical support available then.

The computational unit of the machine was a stack-like structure built up from
register quartets. These were designed to handle the arithmetical and logical oper-
ations of two operands; they stored the two operands, the operation and (once the
values of the operands were available) the result. The result register of the register
quartet was connected to both operand registers of the higher-level register quartet
through gates. At most one of the gates was open, in order to receive the result of
the operation computed at the lower level.

The program was run through the sequential reading of the characters in one
pass. At all times there was one active register quartet and one of its registers was
active. In one step, the value (if any) of the next variable from the sequence was
placed in the active register. In every step, the state of activation of the current
register quartet and its register was refreshed, and the states of the gates were set.
If the operation could be computed (both operands present in a register quartet),
the operation was performed and the result flowed upwards through the open gate.

An analysis of the system reveals that simple cycles can be implemented with
the described register hierarchy, since the repeating condition is also an expression.
Apart from this, a control unit was needed, with the role of interpretation of the
sequential, conditional and cyclic clauses. The memory assignments and the in-
dexed variable handling demanded a special design. Kalmár’s plans included all of
these features, but the result of prime importance was the technically applicable,
special stack architecture. The conditions for the building of the machine could not
be met within Hungary, but parts of his machine plans were utilized in the MIR
machine of the Ukrainian Academy of Sciences, built in 1966.

By the beginning of the 1960s, it was evident that the stack was an extremely
powerful tool in IT. If the traditional infix expressions were converted to postfix
form and put into the stack, their interpretation was child’s play. The use of a stack
simplified the conversion too. If the algorithmic parts of programming languages
such as ALGOL-60 could be converted to postfix form, then (by means of a one-
pass compilation) the program could be run several times without being compiled
in the classical machine language. This was more or less achieved, and extremely
efficient interpreters were developed on the basis of this theory. The efficiency was
further increased by building the stack into the hardware level of the architecture
of the computer, together with the technique of microprogramming.

In the meantime, theoretical results were obtained that gave a definitive direc-
tion to the evolution of IT. The design of efficient lexical analysis algorithms was
based on the theory of finite automata. The theory of pushdown automata and their
special classes defined the limits to be taken into consideration within the syntax



The activities of László Kalmár in the world of information technology 13

of programming languages for the building of efficient compilers and interpreters.
The limitations were loose, and the requirements of the programmers concerning
the programming languages could therefore be fully satisfied. The main direction of
IT therefore became the use of high-level programming languages (supporting both
general needs and special requirements) and the construction of efficient compilers
and interpreters for them.

In 1973, László Kalmár was requested by the Hungarian Academy of Sciences to
examine the situation regarding computers and higher-level programming languages
(including machine languages) and the progress to be expected in these fields. The
goal was for Hungarian IT to find its place and to play an appropriate role in the
bright future of IT research and development. It was becoming increasingly more
obvious that, like all other countries in Eastern Europe, Hungary had failed to
recognize the importance of IT in time, and had not allocated sufficient funds for
IT research. This invitation was a sign of appreciation of the leader of one of the
few research groups which had been producing results and which had come up with
constructive ideas despite the inadequate support.

The development of the various generations of computers up to that time, and
the methods of constructing computer architectures, were reviewed in a series of
monographs [3]. Naturally, the emphasis was on programming languages and their
interpretational possibilities, one of Kalmár’s main interests. In the final edition,
some 15 years after the planning of the first formula-driven machine he put forward
a new proposal for a computer that could be programmed through the use of a
high-level machine language.

What were the challenges, to which the new plan was intended to respond?
A look at the algorithmic (problem-oriented) languages reveals that the parts

building up the syntax have become clear, and new languages can be designed by
combining these parts at will. The block structure and the use of modules were
necessities. From the aspect of semantics, the notion of the expression had become
very clear, mainly as a result of the increased number of data structures. The pro-
grams themselves defined complex data types, and the classical sets of values could
no longer be used without appropriate care. The definition and implementation
were separated, a situation regarded as normal by today’s C++ or Java program-
mer. It was now obvious that the handling of reference types needed extensive
redesigning, a feature applied earlier only for indexed variables and memory as-
signments. It cannot be claimed that the new plan provided adequate answer to
all these questions, but it did so for most of them.

The technology too had been evolving. The problems involving the hardware-
manipulated stack had been eliminated. The technique of microprogramming was
available, a tool that raised the programming level above that of the architecture.
The implementation of a redesigned architecture with high-level machine language
again seemed feasible.

In the design stage, it became obvious to Kalmár that a single algorithmic lan-
guage running on a given architecture could no longer satisfy the users. Compilers
were clearly needed. The suggested high-level language was designed to be close to
more general programming languages, particularly from the aspect of syntax. This



14 Árpád Makay

could result in easier compiling, less human work, and lower hardware requirements.
The research group led by Kalmár devised the proposed language. He did not

develop a technical plan for the implementation of this language as he had earlier
done with the formula-driven machine. He hoped that the various Hungarian work-
groups would share their knowledge and that his plans would materialize via such
collaboration. In order to verify the language and prove its suitability, he suggested
simulation methods. His research group did not lack the necessary knowledge, but
the simulator was not built. It is probable that Kalmár’s energy was wasted to some
extent by his intent on publishing his conceptions in academic and technical circles.
The reception was appropriate, and the observations were professional. However,
it was at this time that Eastern Europe started planning great developments in the
field of IT, and Hungary did not want to be left behind; it therefore adapted to the
tendencies determined by ”the greats”.

What can be said today about formula-driven issues?

Some 30 years ago, IT developed at a very rapid, but quite unexpected tempo.
Economizing with hardware resources now belongs to the past; the pace is dictated
by the application needs. Many criticize this attitude. Not only has the lowest
programming level not risen but it has even become lower, e.g. as a consequence
of the RISC technology. The need for the portability of applications over various
architectures has nevertheless given rise to a shared-language machine, the Java
virtual machine. This has taken place with a different objective and by different
means, but its roots are common with those of the formula-driven machine.

References

[1] L. Kalmár, A new principle of construction of logical machines, in Proceedings
of 2-e Congres Unternat. de Cybernetique, Namur (1958) 458-463. See in PDF
form: http://www.inf.u-szeged.hu/kalmar2005/tcs/kalmar1958.pdf

[2] L. Kalmár, On a digital computer which can be programmed in a mathemat-
ical formula language, in Proceedings of 2nd Hungarian Congress of Mathe-
matics, Budapest (1960) Vol. 5, 3-16. See in PDF form: http://www.inf.u-
szeged.hu/kalmar2005/tcs/kalmar1960.pdf

[3] Manuscript series under the title ”Belső gépi nyelvek”, Szeged (1973) (ed.:
László Kalmár). Only available in Hungarian.

Szeged, 10 December 2004


