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A Fast Algorithm for the Constrained Multiple

Sequence Alignment Problem∗
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Abstract

Given n strings S1, S2, ..., Sn, and a pattern string P , the constrained
multiple sequence alignment (CMSA) problem is to find an optimal multiple
alignment of S1, S2, . . . , Sn such that the alignment contains P , i.e. in the
alignment matrix there exists a sequence of columns each entirely composed
of symbol P [k] for every k, where P [k] is the kth symbol in P , 1 ≤ k ≤ |P |,
and in the sequence, a column containing P [i] appears before the column
containing P [j] for all i, j, i < j. The problem is motivated from the problem
of comparing multiple sequences that share a common structure, or sequence
pattern. There are O(2ns1s2...snr)-time dynamic programming algorithms
for the problem, where s1, s2, ..., sn and r are, respectively, the lengths of the
input strings and the pattern string. Feasibility of these algorithms in practice
is limited when the number of sequences is large, or the sequences are long be-
cause of the impractically long time required by these algorithms. We present
a new algorithm with worst-case time complexity also O(2ns1s2...snr), but
the algorithm avoids redundant computations in existing dynamic program-
ming solutions. Experiments on both randomly generated strings and real
data show that this algorithm is much faster than the existing algorithms.
We present an analysis that explains the speed-up obtained in our experi-
ments by our algorithm over the naive dynamic programming algorithm for
constrained multiple sequence alignment of protein sequences. The speed-up
is more significant when pattern is long, or n is large. For example in the case
of constrained pairwise sequence alignment (the CMSA problem with n = 2)
when the pattern is sufficiently long for strings S1 and S2, the asymptotic
time complexity is observed to be O(s1s2) instead of O(s1s2r). Main ideas
in our algorithm can also be used in other constrained sequence alignment
problems.
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1 Introduction

Multiple sequence alignment [2] is one of the most important problems in com-
putational biology. Detecting similarities in DNA sequences gives clues about the
evolutionary relatedness of different species, and similarities in protein sequences
point out similar functionality. The multiple sequence alignment problem can be
defined in various ways depending on the objective function used for measuring the
similarity. When sum of pairs (SP ) scoring is used, the problem is defined as fol-
lows: Given a set of n ≥ 2 sequences S1, S2, ..., Sn, insert gap symbols ′−′ into these
sequences to obtain equal length strings, respectively, S∗

1 , S∗
2 , ..., S∗

n so that the
global similarity score

∑
1≤i<j≤n score(S∗

i , S∗
j ) is optimized where score(S∗

i , S∗
j ) is

the similarity between S∗
i and S∗

j computed under a given scoring scheme. When
n = 2, namely the sequence set has only two sequences S1, S2, the problem is the
classical pairwise sequence alignment problem for which there is an O(s1s2)-time
dynamic programming algorithm [11]. This dynamic programming solution is ex-
tended to multiple sequence alignment problem with the resulting time complexity
O(2ns1s2...sn). However, there are many heuristic algorithms to approximate the
optimal solution (e.g. Clustal W [8], T-Coffee [5]). Recent progress in multiple
sequence alignment is summarized in [6].

Given strings S1, S2, ..., Sn, and pattern string P , the constrained multiple se-
quence alignment (CMSA) problem is to find an optimal multiple alignment of
S1, S2, ..., Sn such that the alignment contains P , i.e. in the alignment matrix
there exists a sequence of columns each entirely composed of symbol P [k] for every
k, where P [k] is the kth symbol in P , 1 ≤ k ≤ |P |, and in the sequence, a column
containing P [i] appears before column containing P [j] for all i, j, i < j. A motiva-
tion for the problem is the alignment of RNase sequences. Such sequences are all
known to contain three active residues His(H), Lyn(K), His(H) that are essen-
tial for RNA degrading. Therefore, it is natural to expect that in an alignment of
RNA sequences, each of these residues should be aligned in the same column. The
CMSA problem when n = 2 is called the constrained pairwise sequence alignment
(CPSA) problem.

For example, for S1 = bbaba, S2 = abbaa, and P = ab, an optimal alignment
that maximizes the number of matches with the constraint is shown in Figure 1.

Solutions for CPSA can also be used to solve the CMSA problem. One idea
is to progressively align the sequences into a multiple alignment by using a mini-

b b a b a -

- - b a aba

S1

S 2

=

=

P = a b

-

Figure 1: For S1 = bbaba, S2 = abbaa, and P = ab, an optimal alignment which
maximizes the number of matches with the constraint.



A Fast Algorithm for the Constrained Multiple Sequence Alignment Problem 703

mum spanning tree obtained from a pairwise distance matrix of the sequences [7, 3].
There are many dynamic programming algorithms for the CMSA and CPSA prob-
lems, and their variations [7, 3, 9, 10, 1, 4]. The best known time complexity for
the CMSA problem is O(2ns1s2 . . . snr) (see for example Chin et al. [3], or Tsai et
al. [10]).

In this paper, we present a new dynamic programming algorithm for CMSA
based on the dynamic programming formulation given by Chin et al. [3], and the
observation that we can use the pattern string P to avoid redundant computations
in the dynamic programming matrix.

We have implemented our algorithm, and performed tests on both randomly
generated data and real protein sequences. Experiments show that our algorithm
is much more efficient in both time and space than a naive implementation of the al-
gorithm presented by Chin et al. [3]. For the CPSA problem the time requirement
of our algorithm we observe in experiments is O(s1s2) when the pattern length r
is large for given strings S1 and S2. For the CMSA problem when n > 2, effi-
ciency with respect to the naive algorithm we achieve with our algorithm increases
significantly as the pattern length of P , or the number n of the set of sequences,
S1, S2, ..., Sn increases. The speed-up we obtain by our algorithm over the original
naive dynamic programming algorithm proposed in [3] for the case of real protein
sequences indicates that our algorithm is more feasible for solving the constrained
multiple sequence alignment problem in practice.

The outline of this paper is as follows: in Section 2 we present our algorithm for
the CMSA problem. We summarize the results of our experiments in Section 3,
and present mathematical analysis in Section 4 to explain the speed-up we observe
in these tests using our algorithm. We include our final remarks in Section 5.

2 An Algorithm for the Constrained Multiple Se-

quence Alignment Problem

Our algorithm uses the dynamic programming formulation given by Chin et al. [3].
Let D(i1, i2, ..., in, k) be the optimal constrained pairwise sequence alignment

score of sequences S1[1..i1],S2[1..i2],...,Sn[1..in] with constrained pattern sequence
P [1..r]. Then this score can be computed by the following recurrence:

Theorem 1 ([3]). For all k, 1 ≤ k ≤ r, D(i1, . . . , in, k) = ∞ if i1 = 0 or i2 = 0
or . . . or in = 0. D({0}n, 0) = 0. For all i1, i2, . . . , in, k, 0 < i1 ≤ s1, 0 < i2 ≤
s2, . . . , 0 < in ≤ sn, 0 ≤ k ≤ r,

D(i1, i2, ..., in, k) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(i1 − 1, i2 − 1, ..., in − 1, k − 1)
+δ(S1[i1], S2[i2], ..., Sn[in])

if (S1[i1] = S2[i2] = ... = Sn[in] = P [k]) and k ≥ 1

mine∈{0,1}nD(i1 − e1, i2 − e2, ..., in − en, k)
+δ(e1 ∗ S1[i1], e2 ∗ S2[i2], ..., en ∗ Sn[in])
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where ej = 0 or 1, ej ∗ Sj [ij ] with ej = 0 represents a space character ′−′, and
Sj [ij] when ej = 1, and δ(x1, x2, ..., xk) =

∑
1≤i<j≤n δ(xi, xj) (when sum-of-pairs

distance is used) where δ(xi, xj) is the given minimum distance between the symbols
xi and xj.

A naive CMSA algorithm for the dynamic programming solution in Theo-
rem 1 is shown in Algorithm 1. The algorithm returns the optimal CMSA score,
D(s1, s2, ..., sn, r), in time O(2ns1s2 . . . snr) where s1, s2, ..., sn, r are the lengths
of the sequences S1, S2, ..., Sn, and P , respectively. The reason for factor 2n is
that computing D(i1, i2, ..., in, k) uses Θ(2n) neighboring entries of (i1, i2, ..., in, k)
in the dynamic programming matrix. When n = 2, the solution in Theorem 1 is a
solution for the CPSA problem.

Algorithm 1 The dynamic programming algorithm for the CMSA problem pro-
posed by Chin et al. [3].

Algorithm NaiveCMSA

1. Initialize D(0, 0, ..., 0) = 0, D(i1, i2, ..., in, k) = ∞, for all

i1 ∗ i2 ∗ . . . ∗ in = 0, 0 ≤ i1 ≤ s1, 0 ≤ i2 ≤ s2, ..., 0 ≤ in ≤ sn, 1 ≤ k ≤ r

2. for k = 0 to r do

for i1 = 0 to s1 do

for i2 = 0 to s2 do
...

for in = 0 to sn do

If D(i1, i2, ..., in, k) is not initialized, compute D(i1, i2, ..., in, k)

according to Theorem 1

3. return D(s1, s2, ..., sn, k)

This algorithm computes the complete dynamic programming matrix parts of
which are redundant in many cases. We observe that in an alignment matrix for
S1, S2, . . . , Sn, each P [k] in P is required to appear in an entire column (we
call such a column a constraint-column for P [k]) for the constraint to be satisfied.
If Si[ji] is aligned to P [k] for the satisfaction of the constraint (i.e. if Si[ji] ap-
pears in a constraint-column for P [k] together with S1[j1], S2[j2], . . . , Si−1[ji−1],
Si+1[ji+1], . . . , Sn[jn]) then Si[1..(ji − 1)] can never be aligned with Sp[(jp +1)..sp]
for all p, 1 ≤ p ≤ n and p �= i. This means that we can save time by avoiding
calculations in redundant regions in the dynamic programming matrix.

Our algorithm is based on the same dynamic programming formulation for
computing D(i1, i2, ..., in, k) given in Theorem 1. It is shown in Algorithm 2.

We first analyze Algorithm FastCMSA for CPSA computations. The analysis,
and the results can be generalized for CMSA computations which involve more
than two sequences (i.e. n > 2). The dynamic programming algorithm here can be
seen as computing r + 1 layers, one layer at each iteration k, where each layer is
an n dimensional dynamic programming matrix. Figure 2 illustrates layers during
the computations of CPSA for a pattern whose length is 2.
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Algorithm 2 Our algorithm for the CMSA problem.

Algorithm FastCMSA

1. Initialize D(0, 0, ..., 0) = 0, D(i1, i2, ..., in, k) = ∞, for all

i1 ∗ i2 ∗ i3 ∗ ... ∗ in = 0, 0 ≤ i1 ≤ s1, 0 ≤ i2 ≤ s2, ..., 0 ≤ in ≤ sn, 1 ≤ k ≤ r

2. For each k, find every pair of first and last possible positions

that match P [k] in each string S1, S2, . . . , Sn in a constrained alignment:

for t = 1 to n do

for k = 0 to r − 1 do

set Sfirst[t][k] = the first position f in St

such that P [1..(k + 1)] is a subsequence of St[1..f ]

set Slast[t][k] = the last position l in St

such that P [(k + 1)..r] is a subsequence of St[l..st]

3. For each k, find a pair of start point and end point:

(S1begin[k], S1last[k]), (S2begin[k], S2last[k]), ..., (Snbegin[k], Snlast[k])

for k=0 to r do

if(k == 0){
S1begin[0] = 0;

S2begin[0] = 0;
...

Snbegin[0] = 0;

} else {
S1begin[k] = Sfirst[1][k − 1] + 1;

S2begin[k] = Sfirst[2][k − 1] + 1;
...

Snbegin[k] = Sfirst[n][k − 1] + 1;

}
if (k == r){
S1last[k] = s1;

S2last[k] = s2;
...

Snlast[k] = sk;

}else{
S1last[k] = Slast[1][k] + 1;

S2last[k] = Slast[2][k] + 1;
...

Snlast[k] = Slast[n][k] + 1;

}
4. for k = 0 to r do

for i1 = S1begin[k] to S1last[k]

for i2 = S2begin[k] to S2last[k]
...

for in = Snbegin[k] to Snlast[k]

compute D(i1, i2, ..., in, k) using the expression in Theorem 1

5. return D(s1, s2, ..., sn, r)
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Figure 2: CPSA computation for pattern string of length 2.

In the naive solution in Algorithm 1, at every iteration k (staring at k = 0)
the whole layer is computed. On the other hand in Algorithm FastCMSA,
when we process Layer k we compute only the subregion of the n dimen-
sional dynamic programming matrix whose two diagonal corners, respectively, are
(S1begin[k], S2begin[k], ..., Snbegin[k]), (S1last[k], S2last[k], ..., Snlast[k]). This is based
on our observation that the area outside this region is not needed in later itera-
tions because an optimal constrained alignment path does not pass there. For
illustrative purposes, we only give an example for CPSA computations in Figure
3. We only show the first two layers, and the last layer in the figure. Layers for
CMSA when n > 2 are similar, but have more dimensions. In Layer 0 we only
need to compute the region whose two diagonal corners are ((S1begin[0], S2begin[0]),
(S1last[0], S2last[0])). This is the only region required in the computations in the
next layer, Layer 1. Similarly, at Layer 1, we only need to consider the region
identified by two diagonal corners ((S1begin[1], S2begin[1]), and (S1last[1], S2last[1])).
Computations in our algorithm proceed layer by layer in this manner.

Compared to the naive algorithm, our algorithm performs fewer operations on
average for the points in the computed region of the dynamic programming ma-
trix. For simplicity, we show this in the pairwise alignment case in Figure 4.
On layer 0, we need to compute the rectangular region identified by its two di-
agonal corners (S1begin[0], S2begin[0]), (S1last[0], S2last[0]). In this region, the
number of operations per point is the same in both algorithms. The differences
are on Layer 1 and higher. For Layer 1, we need to compute the rectangular re-
gion of (S1begin[1], S2begin[1]), (S1last[1], S2last[1]). In the rectangular region of
(S1begin[1], S2begin[1]), ( S1last [0], S2last [0]) (in Figure 4 the rectangular region
shaded with backward diagonal lines) the number of operations per point consid-
ered is still the same in both algorithms, but for the region elsewhere on Layer 1
(non-rectangular region shaded with forward diagonal lines in the figure), we do
not need to consider the entries from the previous layer, Layer 0 in this case, since
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Figure 3: Regions in each layer considered in the computation of CPSA with
pattern string length r > 2.
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on Layer 0, this region is not computed at all since there are no entries from last
layer in this region.

 

 

    S1begin[0]              S1begin[1]         S1last[0]      S1last[1]           

S2begi0] 
 
S2begin[1] 
 
 
 
 
 
 
S2last[0] 
 
 
 
S1last[1] 

Figure 4: Illustration of the computation efficiency of our algorithm FastCMSA
over the naive dynamic programming algorithm.

Clearly the time complexity of our solution in Algorithm 2 is O(s1s2r) for
CPSA computations. In our algorithm, for each layer, we only compute the region
identified by (S1begin[k], S2begin[k], ..., Snbegin[k]), (S1last[k], S2last[k], ..., Snlast[k]).
The larger the area, the longer our algorithm runs. We can create a worst case
scenario as follows: For Layer 0, we try to move the last possible position which
matches P [1] as far as possible and the most backward position for Si is si − r
since the length of the pattern string is r, there must be at least r symbols from
this position. For the first layer, the area we need to compute is Ω((s1 − r)(s2 −
r)...(sn − r)). For simplicity we only consider the pairwise sequence alignment case
in Figure 5. For Layer 1, we try to move the first possible position which matches
P [1] to the beginning as much as possible, and move the last possible position which
matches P [2] to the end as much as possible. For similar reasons we discuss for
the case of Layer 0, the smallest and largest positions, that determine the region
we need to consider, in S1, respectively, are 1 and s1 − r + 1. Then we can see
that the computations for Layer 1 takes Ω((s1 − r)(s2 − r)) time. We can conclude
that there is a case in which our algorithm requires Ω((s1 − r)(s2 − r)r) time for
CPSA computation. For n > 2 case, we can create a similar worst-case scenario for
S1, S2 . . . Sn, and P , and therefore, the worst-case computation time for CMSA is
Ω(2n(s1 − r)(s2 − r)...(sn − r)r). From the analysis of the worst-case scenarios, we
can see that the longer the pattern string, or the higher the dimension, the better
the speed-up we achieve relative to the naive CMSA algorithm. We verify this by
the results of our experiments.

Our discussions about the application of Algorithm FastCMSA for the CPSA
computations can be extended to CMSA computations that involve more than two
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S1b[0], S1b[1], S1b[2], S1b[3]          S1l[0], S1l[1], S1l[2], S1l[3]  

S2b[0 
S2b[1] 
S2b[2] 
S2b[3] 
 
 
 
 
 
 
 
 
S2l[0] 
S2l[1] 
S2l[2] 
S2l[3] 
 

Figure 5: A worst case scenario for our algorithm FastCMSA for a CPSA com-
putation with pattern string length 3. We use Sib[j] for Sibegin[j], and Sil[j] for
Silast[j] to save space in the figure.

dimensions. Compared to the naive solution in Algorithm 1, our algorithm does
computations for fewer points, and spends less time at each point.

3 Experiments

We first tested the performance of our algorithm FastCMSA (which we call
FastCPSA when n = 2, i.e. when it is used for solving the CPSA problem).
We compare its performance with that of Algorithm NaiveCMSA (which we call
NaiveCPSA when it is used for solving the CPSA problem). In our tests, we ran-
domly generate, over the alphabet of amino acids that contains 20 symbols, strings
S1 and S2 with equal length, and pattern string P . We use 10 consecutive seeds
to generate the sequences and the pattern each time, and show only the average
performance. To measure time we count in the dynamic programming matrix the
number of points for which the algorithms perform computations. Our algorithm
is consistently faster than the naive solution in Algorithm 1. We note that when
sequences S1 and S2 are fixed, the time requirement of our algorithm does not
increase linearly with the increasing length of P . Figure 6 illustrates this. We plot
pattern length plength versus time in the figure. In this test, we fix the sequence
lengths seqlength as 1, 000 and increase the pattern length plength from 4 to 35.
The time requirement of the naive algorithm linearly increases with the pattern
length, and for our algorithm, it increases at slower pace first, and it starts to de-
crease permanently after certain level of plength. This is because as the plength
increases, the matching regions in the matrix on average is confined to smaller parts
in the matrix and the volume computed by our algorithm is expected to be smaller
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Figure 6: Time requirement of CPSA computation when seqlength is fixed as
1, 000, and plength is increased from 4 to 35. For each pattern length we use 10
consecutive seeds to generate the sequences and the pattern, and show only the
average performance.

in ratio on average to the size of the entire matrix. We will discuss this in more
detail in Section 4.

We next tested the performance of Algorithm FastCMSA on randomly gener-
ated sets of 4 protein sequences with equal length, and pattern string with length
1, 2, 3, 4 separately, over alphabet of 20 amino acid symbols. For each pattern
length we use 10 consecutive seeds to generate the sequences and the pattern, and
show only the average performance.

We compare the number of points in the dynamic programming matrix Algo-
rithm FastCMSA needs to compute with the number of points the naive dynamic
programming algorithm computes. Table 1 shows that our algorithm is consistently
faster than the naive CMSA algorithm, and the performance of our algorithm over



A Fast Algorithm for the Constrained Multiple Sequence Alignment Problem 711

Table 1: Average number of points the two algorithms need to compute for the
alignment of 4 sequences when we fix seqlength as 100 and increase plength from
1 to 4 at increments of 1, and use 10 consecutive seeds to generate the sequences
and the pattern for each pattern length, and show only the average performance.

plength FastCMSA NaiveCMSA Naive/Fast
1 8.09e + 007 2.12e + 008 2.62
2 6.30e + 007 3.18e + 008 5.05
3 4.77e + 007 4.25e + 008 8.90
4 2.10e + 007 5.31e + 008 25.28

seqlength = 100

Table 2: Number of points both algorithms need to compute when we fix seqlength
as 200, plength as 4 and increase the number of sequences from 3 to 6. For each
case, we use 10 consecutive seeds to generate the sequences and the pattern, and
show only the average performance.

dimension FastCMSA NaiveCMSA Naive/Fast
3 9.60e + 006 4.06e + 007 4.22
4 1.10e + 008 8.16e + 009 7.42
5 1.19e + 011 1.64e + 012 13.78
6 1.30e + 013 3.30e + 014 25.38

seqlength = 200, plength = 4

the naive CMSA algorithm increases quickly with the increasing pattern length.
This is because the larger the plength, the less chances there are for the worst-case
scenario. Therefore, for the same sequence set, the longer the pattern string is, the
more significantly our algorithm outperforms the naive CMSA algorithm.

In another set of tests, we fixed the sequence lengths seqlength as 200 and the
pattern length plength as 4. Then we solved CMSA problems for n = 3, 4, 5, 6.
For each n, we also show the average performance of 10 tests by 10 consecutive
seeds. We summarize the results in Table 2. We observe that the performance
of Algorithm FastCMSA over the naive CMSA algorithm nearly doubles every
time we add one more sequence (increase n by one). This is because with new
sequences being involved in the alignment, a larger region in the original dynamic
programming matrix is avoided.

Another advantage of our algorithm is that it first computes the possible pat-
tern occurrence positions in each sequence, if there are no such positions then our
algorithm stops immediately while NaiveCPSA computes the entire dynamic pro-
gramming matrix.
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Table 3: Experiments on constrained alignment of 5 RNase sequences with pattern
string HKH and HKSH , separately.

pattern FastCMSA NaiveCMSA Naive/Fast
HKH 7.343e + 009 2.737e + 011 37.3

HKSH 5.053e + 009 3.421e + 011 67.7

number of computation points

We have also done experiments on real protein sequences. We used the set of
sequences with references given in [3](Data Set 1, and Data Set 2):

Seq1 : gi|119124|sp|p12724|ecp human,
Seq2 : gi|2500564|sp|p70709|ecp rat,
Seq3 : gi|13400006|pdb|ldyt|,
Seq4 : gi|20930966|ref |xp 142859.1,
Seq5 : gi|20930966|ref |xp 142859.1

The results of the experiments are shown in Table 3. Clearly, our algorithm is much
faster than the naive CMSA algorithm on RNase sequences.

4 Performance analysis of our algorithm

The performance of our algorithm depends on the total size of the layers from Layer
0 to Layer r.

We note that our algorithm does not perform computations for all the points
considered by the naive algorithm implementing Theorem 1, and for the points it
does it spends less time than the naive algorithm. Therefore, we compare the total
volume (number of points) at which our algorithm performs computations with
the total size of the (n + 1)-dimensional dynamic programming matrix the naive
algorithm uses.

Size of each layer in our algorithm is determined by the first and last matches
of the given pattern P in each dimension (i.e. on each sequence). Let bi,k be the
position of P [k] in the first occurrence of P [1..k] in Si, and let ei,k be the position
of P [k] in the last occurrence of P [k..r] in Si.

We assume that pattern P occurs at least once in each sequence Si. Otherwise,
our algorithm does not do any computations in the dynamic programming matrix.

Throughout our analysis we also assume that each symbol in alphabet Σ over
which sequences S1, S2, . . . , Sn are defined appears with equal probability in each
position in these sequences.

Layer 0 is identified by two extreme points (0, 0, . . . , 0) and (e1,r, e2,r, . . . , en,r),
and its size is

n∏
i=1

ei,1 (1)
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Each Layer k, 1 < k < r, has two extreme points (b1,k, b2,k, . . . , br,k) and
(e1,k+1, b2,k+1, . . . , br,k+1), and its size is

k=r−1∑
k=1

n∏
i=1

(ei,k+1 − bi,k) (2)

Two extreme points on Layer r are (b1,1, b2,1, . . . , bn,1) and (s1, s2, . . . , sn), and
the size of this layer is

n∏
i=1

(si − bi,r) (3)

We study the expected sizes of these layers and their sum.

Lemma 2. Suppose P = a1a2 . . . ar is a pattern of length r. Let S be a sequence
of length s that contains P as a subsequence. Let Σ be the alphabet for P and S.
The expected position of P [r] in the first occurrence of P [1..r] in S is |Σ|r.
Proof. Let āi = Q \ {ai} be the set of alphabet except ai. Then, all strings contain
the first occurrence of P as a subsequence must have a unique representation of the
form A = ā1

�a1ā2
� . . . ār

�ar. One can see this because when we scan the sequence
from left to right, we first seek for a1, then a2, and so on until we find ar eventually.
We next compute a generating function f(x) that counts the number of strings in
A. Here, we mean f(x) =

∑
a∈A xlen(a) where len(a) denotes the length of a. Based

on the decomposition of A, we can easily deduce that f(x) = ( x
1−(|Σ|−1)x)r [12].

In order to compute the expected length of such sequences, we need to determine∑∞
i=0 ifi where fi is the coefficient of xi in the function f(x). It is evident that the

expected length is equal to xf
′
(x)|x= 1

|Σ|
. Simple calculus shows that the expected

length of such strings is |Σ|r. We can also calculate the expected length when the
sequence length is finite. This gives us the expected position of P [r] in the first
occurrence of P in S given that P occurs in S at least once. In this case, for a given

sequence length s, the expected length is
∑s

i=0 ifi =
∑s

n=0 n
(n−1

r−1)(|Σ|−1)n−r

|Σ|n . We
calculate expected lengths for s = 10, . . . , 200 in increments of 10, and in Figure
7 we plot them versus sequence length s for varying pattern lengths r = 1, . . . , 5,
and for a fixed alphabet size |Σ| = 20. We see that they converge to |Σ|r quickly
(before the sequence length s approaches to 200). We note that length of a protein
sequence used in constrained multiple sequence alignments is typically 150 [3, 7].

By using Lemma 2, and observing that the expected position of the last occur-
rence of pattern P is the same as the expected first occurrence of the pattern PR

where PR means the reverse of the pattern, we can reach the following corollaries:

Corollary 3. For a given pattern P of length r, and a string S of length s that
contains P as a subsequence, the expected position of P [1] in the last occurrence of
P [1..r] approaches quickly to s − |Σ|r if S is sufficiently long for r and |Σ| where
Σ is the alphabet for S and P .
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Figure 7: Expected position of P [r] in the first occurrence of pattern P [1..r] in
string S that contains P as a subsequence versus the length s of S. Pattern length
r varies from 1 to 5. The alphabet size is |Σ| = 20. The convergence is observed
when s approaches to 200.

We use x ∼ V to denote that the value of x approaches to V .

Corollary 4. For all i, 1 ≤ i ≤ n, E(bi,r) = |Σ|r, and if Si is sufficiently long for
r and |Σ| then E(ei,1) ∼ si − |Σ|r.
Corollary 5. For a given pattern P of length r, and a string S of length s that
contains P as a subsequence where P and S are defined over alphabet Σ, for all k,
1 < k < r, let bk be the position of P [k] in the first occurrence of P [1..k] in S, and
let ek+1 be the position of P [k + 1] in the last occurrence of P [(k + 1)..r] in S. The
expected position E(bk) = |Σ|k, and if S is sufficiently long for r and |Σ| then the
expected position E(ek+1) ∼ s − |Σ|(r − k), and therefore, the expected difference
E(ek+1 − bk) = E(ek+1) − E(bk) ∼ s − |Σ|r.
Corollary 6. For all i, 1 ≤ i ≤ n, and k, 1 ≤ k ≤ r, if Si is sufficiently long for
r and |Σ| then E(ei,k+1 − bi,k) ∼ si − |Σ|r.

It is easy to see that ei,1 for different Si’s are independent, and by the product
rule of expectation for independent random variables, and using Equation (1) the
expected size of Layer 0 is

E(
n∏

i=1

ei,1) =
n∏

i=1

E(ei,1) (4)
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If we consider ei,k+1 and bi,k as random variables then ei,k+1− bi,k are indepen-
dent for different Si’s. We note that ei,k+1 − bi,k are not independent for different
layer k’s for the same Si but the linearity of expectation does not require this
property, and therefore, using Equation (2) the expected size of Layer k, for all
1 ≤ k ≤ r − 1, is

E(
n∏

i=1

ei,k+1 − bi,k) =
n∏

i=1

E(ei,k+1 − bi,k) (5)

Since (si − bi,r) are independent for different Si’s, and if we use Equation (3) we
can see that the expected size of Layer r is

E(
n∏

i=1

(si − bi,r) =
n∏

i=1

E(si − bi,r) (6)

Adding equations (4), (5), and (6), and using corollaries 4 and 6, if Si is sufficiently
long for r and |Σ| for all i, 1 ≤ i ≤ n, then the expected total volume of layers from
0 to r approaches to

(r + 1)
n∏

i=1

(si − |Σ|r) (7)

If we compare this volume with the total size (r + 1)
∏n

i=1 si of the dynamic
programming matrix used by the naive algorithm we can see that the expected
speed-up achieved by our algorithm over the naive algorithm approaches to

n∏
i=1

si

si − |Σ|r .

Given a pattern of length r, and n sequences of lengths s1, s2, . . . , sn over al-
phabet Σ where each Si contains P as a subsequence, and Si sufficiently long for r
and |Σ|, and si > |Σ|r, let Ci = si

|Σ|r for all i, 1 ≤ i ≤ n, then we can see that the
expected speed-up of our algorithm over the naive algorithm approaches to

n∏
i=1

si

si − |Σ|r ≥
n∏

i=1

Ci

Ci − 1
.

This expression for the speed-up explains the results we have shown in Figure
6, and tables 1, 2, and 3. The speed-up is more significant if Ci = si

|Σ|r > 1 is a
small number close to 1. For example, for the CPSA problem with fixed sequence
lengths s1 = s2 = 1000 and with pattern length r increasing from 4 to 35, and
alphabet size is 20, the speed-up accelerates with increasing r as shown in Figure
6.

The target application of this paper is the constrained multiple sequence align-
ment of protein sequences where the alphabet is composed of 20 amino acids, a
typical protein sequence length is 150 [3, 7], and a pattern used as a constraint
is typically 3 − 4 character-long. In these cases all Ci ≤ 2.5, and the expected
speed-up ∼ (5/3)n where n is the number of sequences compared.
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5 Concluding Remarks

We present an algorithm for the constrained multiple sequence alignment problem
based on the dynamic programming formulation given by Chin et al. [3]. We
observe that it is redundant to compute the entire dynamic programming matrix
because the alignments are constrained to include pattern string P . We can pre-
compute a set of points that breaks the dynamic programming matrix into parts
some of which are redundant for solving the problem. Although our algorithm does
not improve the worst-case time-complexity of the problem, the experiments we
have conducted on both syntectic data and real RNase sequences show that our
algorithm is significantly faster than the original naive dynamic programming algo-
rithm proposed by Chin et al. [3]. The speed-up we achieve is more significant when
the pattern is long, and the number of sequences is large. We present mathemat-
ical analysis for the expected speed-up achieved by our algorithm. The speed-up
is expected to be significant if the product of the alphabet size and the pattern
length is a relatively large fraction of the sequences aligned. This is in general true
in practice in constrained multiple sequence alignment of protein sequences [3, 7].

An interesting behavior of our algorithm is observed when it is applied to the
constrained pairwise sequence alignment. In this case, our algorithm’s observed
asymptotic time complexity is quadratic instead of cubic when the pattern is suf-
ficiently long for given sequences.

Our ideas on the CMSA can also be used in the algorithms for the constrained
longest common subsequence problems [1, 4], and similar speed-up can be achieved.

Other kinds of existing techniques for multiple sequence alignment, both heuris-
tic and exact, can be combined with the main steps of our algorithm to increase
the feasibility of the CMSA problem in real-life applications.
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