
Acta Cybernetica 17 (2006) 521–531.

On Armstrong Relations for Strong Dependencies

Vu Duc Thi∗ and Nguyen Hoang Son†

Abstract

The strong dependency has been introduced and axiomatized in [2], [3], [4],
[5]. The aim of this paper is to investigate on Armstrong relations for strong
dependencies. We give a necessary and sufficient condition for an abitrary
relation to be Armstrong relation of a given strong scheme. We also give an
effective algorithm finding a relation r such that r is Armstrong relation of
a given strong scheme G = (U, S) (i.e. Sr = S+, where Sr is a full family of
strong dependencies of r, and S+ is a set of all strong dependencies that can
be derived from S by the system of axioms). We estimate this algorithm. We
show that the time complexity of this algorithm is polynomial in |U | and |S|.

1 Introduction

Let us give some necessary definitions and results that are used in next section.

Definition 1. Let U be a nonempty finite set of attributes, r = {h1, . . . , hm} a
relation over U , and A, B ⊆ U . We say that B strongly depends on A in r (denote

A
s
→
r

B) iff

(∀hi, hj ∈ r)((∃a ∈ A)(hi(a) = hj(a) ⇒ (∀b ∈ B)(hi(b) = hj(b))).

Let Sr = {(A, B) : A
s
→
r

B}. Sr is called a full family of strong dependencies

of r. Where we write (A, B) or A → B for A
s
→
r

B when r, s are clear from the

context.

Definition 2. A strong dependency (SD) over U is a statement of form X → Y ,

where X, Y ⊆ U . The SD X → Y holds in a relation r if A
s
→
r

B. We also say

that r satisfies the SD A → B.

Definition 3. Let U be a set of attributes and P(U) its power set. Let Y ⊆
P(U) × P(U). We say that Y is an s – family over U iff for all A, B, C, D ⊆ U

and a ∈ U

∗Institute of Information Technology, Vietnamese Academy of Science and Technology, 18

Hoang Quoc Viet, Hanoi, Vietnam
†Department of Mathematics, College of Sciences, Hue University, Vietnam

521

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147062265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

522 Vu Duc Thi and Nguyen Hoang Son

(S1) ({a}, {a}) ∈ Y,

(S2) (A, B) ∈ Y, (B, C) ∈ Y, B 6= ∅ ⇒ (A, C) ∈ Y,

(S3) (A, B) ∈ Y, C ⊆ A, D ⊆ B ⇒ (C, D) ∈ Y,

(S4) (A, B) ∈ Y, (C, D) ∈ Y ⇒ (A ∪ C, B ∩ D) ∈ Y,

(S5) (A, B) ∈ Y, (C, D) ∈ Y ⇒ (A ∩ C, B ∪ D) ∈ Y.

It is easy to see that Sr is an s – family over U .
It is known [4] that if Y is an s – family over U , then there exists a relation r

such that Y = Sr.

Definition 4. A strong scheme G is a pair (U, S), where U is a finite set of
attributes, and S a set of SDs over U .

Let S+ be a set of all SDs that can be derived from S by the rules in Definition
3.

It can be seen [4] that if G = (U, S) is a strong scheme then there is a relation
r over U such that Sr = S+. Such a relation is called Armstrong relation of G.

Definition 5. Let K be a Sperner-system over U . We define the set of antikeys
of K, denoted by K−1, as follows:

K−1 = {A ⊂ U : (B ∈ K) ⇒ (B 6⊆ A) and (A ⊂ C) ⇒ (∃B ∈ K)(B ⊆ C)}.

Definition 6. The mapping F : P(U) −→ P(U) is called a strong operation over
U if for every a, b ∈ U and A ∈ P(U) the following properties hold:

(1) a ∈ F ({a}),

(2) b ∈ F ({a}) implies F ({b}) ⊆ F ({a}),

(3) F (A) =
⋂

a∈A

F ({a}).

Remark 7. It is clear that for arbitrary strong operation F

(1) F (∅) = U,

(2) For all A, B ∈ P(U) : F (A ∪ B) = F (A) ∩ F (B),

(3) If A ⊆ B then F (B) ⊆ F (A).

It can be seen that the set {F ({a}) : a ∈ U} determines the set {F (A) : A ∈
P(U)}.

The following theorem shows that between s – families and strong operations
there exists a one - to - one correspondence

Theorem 8. [7] Let S be a s – family over U . We define the mapping FS as
follows: FS(A) = {a ∈ U : (A, {a}) ∈ S}. Then FS is a strong operation over U .
Conversely, if F is a strong operation over U then there is exactly one s – family
S over U such that FS = F, where S = {(A, B) : B ⊆ F (A)}.

On Armstrong Relations for Strong Dependencies 523

Definition 9. Let G = (U, S) be a strong scheme over U , A ⊆ U . We set

A+ = {a ∈ U : A → {a} ∈ S+}.

A+ is called the closure of A over G.

It is clear that A → B ∈ S+ iff B ⊆ A+.

Lemma 10. Let G = (U, S) be a strong scheme over U . Suppose that A =
{a1, . . . , ak} and B = {b1, . . . , bl} are subsets of U . Then A → B ∈ S+ if and
only if {ai} → {bj} ∈ S+ for every i = 1, . . . , k; j = 1, . . . , l.

Proof. By rules (S3), (S4) and (S5), the lemma is obvious.

Algorithm 11. [6] (Finding {a}+)

Input: given a strong scheme G = (U, S), where S = {Ai → Bi : i = 1, . . . , m}, a ∈
U.

Output: compute {a}+.

Method: we compute {a}+ by induction.

Step 1. We set X(0) = {a}.

Step i+1. If there is a SD Aj → Bj ∈ S so that Aj ∩ X(i) 6= ∅ and Bj 6⊆ X(i) then
we set

X(i+1) = X(i) ∪ (
⋃

Aj∩X(i) 6=∅

Bj).

In the converse case we set {a}+ = X(i).

It is easy to see that there is a k such that {a} = X (0) ⊆ X(1) ⊆ · · · ⊆ X(k) =
X(k+1) = · · · and we set

{a}+ = X(k).

Proposition 12. [6] For each a ∈ U Algorithm 11 computes {a}+.

It can be seen that the complexity of Algorithm 11 is polynomial time in the
|U |, |S|.

Proposition 13. [6] Let G = (U, S) be a strong scheme over U , and A → B is a
SD. Then there is a polynomial time algorithm deciding whether A → B ∈ S+.

2 Armstrong Relation for Strong Dependency

It is known [8] that there is an algorithm that finds a set of all antikeys from a
given Sperner-system.

Algorithm 14. [8]

Input: a Sperner-system K = {B1, . . . , Bm} over U .

Output: K−1.

524 Vu Duc Thi and Nguyen Hoang Son

Method:

Step 1. We set K1 = {U − {a} : a ∈ B1}. It is clear that K1 = {B1}−1.

Step q+1 (q < m). We suppose that Kq = Fq ∪ {X1, . . . , Xtq
}, where X1, . . . , Xtq

containing Bq+1 and Fq = {A : A ∈ Kq, Bq+1 6⊆ A}. For all i (i = 1, . . . , tq) we
construct the antikeys of {Bq+1} on Xi in an analogous way as K1. Denote them
by Ai

1, . . . , A
i
ri

(i = 1, . . . , tq). Let

Kq+1 = Fq ∪ {Ai
p : A ∈ Fq ⇒ Ai

p 6⊂ A, 1 ≤ i ≤ tq , 1 ≤ p ≤ ri}.

We set K−1 = Km.

Theorem 15. [8] For each q (1 ≤ q ≤ m), Kq = {B1, . . . , Bq}−1, i.e. Km = K−1.

It can be seen that K and K−1 are uniquely determined by one another and
the determination of K−1 based on our algorithm does not depend on the order of
B1, . . . , Bm. Denote Kq = Fq ∪ {X1, . . . , Xtq

} and let lq (1 ≤ q ≤ m − 1) be the
number of elements of Kq.

Proposition 16. [8] The worst-case time complexity of our Algorithm 14 is

O(|U |2
m−1
∑

q=1

tquq),

where

uq =

{

lq − tq if lq > tq,

1 if lq = tq.

Note that lq ≥ tq. Clearly, in each step of our algorithm Kq is a Sperner-
system. In the cases for which lq ≤ lm(q = 1, ..., m − 1), it is easy to see that
the time complexity of our algorithm is not greater than O(|U |2|K||K−1|2). Hence,
in these cases Algorithm 14 finds K−1 in polynomial time in |U |, |K| and |K−1|.
Obviously, if the number of elements of K is small, then Algorithm 14 is very
effective. It only requires polynomial time in |U |.

Definition 17. Let G = (U, S) be a strong scheme over U , and a ∈ U. We set

Ka = {A ⊆ U : A → {a} ∈ S+, 6 ∃B : (B → {a} ∈ S+)(B ⊂ A)}.

Ka is called the family of minimal sets of the attribute a.

Clearly, {a} ∈ Ka, U 6∈ Ka and Ka is a Sperner-system over U .

Proposition 18. Let G = (U, S) be a strong scheme over U, a ∈ U , Ka is a family
of minimal sets of a and n = |U |. Then

(1) Ka = {{b} : b ∈ U, {b} → {a} ∈ S+}.

(2) ∀A ∈ Ka : |A| = 1.

On Armstrong Relations for Strong Dependencies 525

(3) |Ka| ≤ n.

(4) |K−1
a | = 1.

Proof. (1) We define the mapping FS : P(U) −→ P(U) as follows:

FS(A) = {a ∈ U : A → {a} ∈ S+}.

By Theorem 8, it is clear that FS is a strong operation over U . It is easy to see
that A+ = FS(A). Consequently, by Definition 6 we have

A+ =
⋂

a∈A

FS({a})

=
⋂

a∈A

{b ∈ U : {a} → {b} ∈ S+}

=
⋂

a∈A

{a}+.

(1)

By (1) we obtain A+ ⊆ {a}+ ∀a ∈ A. From this and the definition of Ka we
immediately get

Ka = {{b} : b ∈ U, {b} → {a} ∈ S+}.

(2) It is obvious from (1).
(3) Because for each A ∈ Ka : |A| = 1, we can be seen that |Ka| ≤ n.

(4) By (2) and the definition of antikeys set, it is clear that |K−1
a | = 1.

The proposition is proved.

From this proposition we construct an algorithm finding a minimal set of the
attribute a.

Algorithm 19. MSA

Input: a strong scheme G = (U, S), and a ∈ U.

Output: A ∈ Ka.

Method:
MSA(G, a)
BEGIN

Test:=true;
WHILE test AND there is an attribute b ∈ U such that

{b} → {a} ∈ S+

DO BEGIN
A := {b};
Test:=false

END
RETURN(A)

END.

526 Vu Duc Thi and Nguyen Hoang Son

Lemma 20. A ∈ Ka.

Proof. Because {a} ∈ Ka and U is a finite set of attributes, the lemma is clear.

The following lemma is obvious

Lemma 21. The worst-case time complexity of MSA is O(|U |2|S|).

Remark 22. By Lemma 10 we have A → B ∈ S+ if and only if {a} → B ∈ S+

for every a ∈ A.

From this, we obtain the following lemma

Lemma 23. Let G = (U, S) be a strong scheme, a ∈ U, Ka be a family of minimal
sets of a, L ⊆ Ka, {a} ∈ L. Then L ⊂ Ka if and only if there are C ∈ L, A → B ∈
S+ such that ∀E ∈ L ⇒ E 6⊆ A ∪ (C − B).

Proof. Suppose that L ⊂ Ka. Hence, there exists a D ∈ Ka − L. By {a} ∈ L and
the definition of Ka, we have

D → {a} ∈ S+ (2)

and

a 6∈ D. (3)

If for every SD A → B ∈ S implies (A ∩ D 6= ∅, B ⊆ D), or A ∩ D = ∅, then
D+ = D. Therefore, by (3) we have D → {a} 6∈ S+. Which contradicts (2). Hence,
there exists a SD A → B ∈ S such that A ⊆ D and B 6⊆ D. From this and Remark
22 we have a C such that C ∈ L, A ⊆ D and C−B ⊆ D. Clearly, A∪ (C −B) ⊆ D.

Consequently, we obtain E 6⊆ A ∪ (C − B) for every E ∈ L.

Conversely, assume that there are C ∈ L, A → B ∈ S+ such that

E 6⊆ A ∪ (C − B) (4)

for every E ∈ L. By the definition of L we have A∪ (C −B) → {a} ∈ S+. Because
{a} ∈ L, there is a D such that D ∈ Ka, a 6∈ D and D ⊆ A∪ (C −B). From (4) we
obtain E 6⊆ D for all E ∈ L, i.e. D ∈ Ka − L, or L ⊂ Ka.

The lemma is proved.

From this lemma and MSA we construct the following algorithm by induction

Algorithm 24. FAMMSA

Input: a strong scheme G = (U, S) and a ∈ U .

Output: Ka.

Method:

Step 1. Set L(1) = E(1) = {{a}}.

On Armstrong Relations for Strong Dependencies 527

Step i+1. If there are C and A → B such that C ∈ L(i), A → B ∈ S, ∀E ∈ L(i) ⇒
E 6⊆ A∪(C−B), then by MSA construct an E(i+1), where E(i+1) ⊆ A∪(C−B)
and E(i + 1) ∈ Ka. We set

L(i + 1) = L(i) ∪ E(i + 1).

In the converse case we set Ka = L(i).

By Lemma 23 there exists a natural number n such that Ka = L(n).
The following lemma is obvious

Lemma 25. The worst-case time complexity of FAMMSA is

O(|U |2|S||Ka|(1 + |U ||Ka|)).

By (3) in Proposition 18 we are easy to see that the time complexity of FAMMSA
is polynomial in |U | and |S|. Consequently, our algorithm is very effective.

It is obvious that if S = {{a} → Bi : i = 1, . . . , m} or for each SD A → B ∈ S+

implies a 6∈ B, then Ka = {{a}}.

Let G = (U, S) be a strong scheme over U . Set

MAX(S+, a) = {A ⊆ U : (A → {a} 6∈ S+)

and ((A ⊂ B) ⇒ (∃D ⊂ B)(D → {a} ∈ S+)}.

It can be seen that

MAX(S+, a) = K−1
a ∀a ∈ U. (5)

Denote MAX(S+) =
⋃

a∈U

MAX(S+, a).

Lemma 26. If U − ∪MAX(S+) 6= ∅ then

{c} → U ∈ S+,

where for every c ∈ U − ∪MAX(S+).

Proof. Suppose that c ∈ U −∪MAX(S+). Hence c 6∈ ∪MAX(S+). By (5) we have

{c} 6∈ K−1
a ∀a ∈ U.

According to Proposition 18 and the definition of set of antikeys we have

{c} ∈ Ka ∀a ∈ U.

Consequently by (S5) in Definition 3 and the definition of Ka we immediately get

{c} → U ∈ S+.

The lemma is proved.

528 Vu Duc Thi and Nguyen Hoang Son

Lemma 27. For every b ∈ A, A ∈ K−1
a : {b} → {c} 6∈ S+, where c ∈ U − A.

Proof. Assume that there exists an A ∈ K−1
a and b ∈ A such that {b} → {c} ∈ S+.

Because A ∈ K−1
a and c ∈ U − (A ∪ {a}), we have {c} ∈ Ka. Then by Proposition

18 we have

{c} → {a} ∈ S+, a ∈ U.

Hence, by (S2) in Definition 3 we obtain

{b} → {a} ∈ S+.

Which contradicts the facts that A ∈ K−1
a and b ∈ A. Therefore, we have

{b} → {c} 6∈ S+∀b ∈ A, A ∈ K−1
a and c ∈ U − (A ∪ {a}).

The lemma is proved.

Now we assume that MAX(S+) = {A1, . . . , At}. Then we defined the mapping
Max : U −→ P(U) as follows:

Max(a) =

⋂

a∈Ai

Ai if ∃Ai ∈ MAX(S+) : a ∈ Ai,

U otherwise.

It is easy to see that ∀a ∈ U : a ∈ Max(a), and hence Max(a) 6= ∅. On the
other hand, we are easy to see that if S = {{a1} → U, . . . , {an} → U} where
U = {a1, . . . , an} then

∀ai ∈ U : Max(ai) = U.

Lemma 28. If Max(a) = {a} ∪ A, A 6= ∅ and a 6∈ A then {a} → A ∈ S+.

Proof. First we suppose that there is b ∈ A such that {a} → {b} 6∈ S+. By
Proposition 18 we get {a} 6∈ Kb. Assume that K−1

b = {{a} ∪ B}. It is clear
that {b} ∈ Kb. Hence b 6∈ ∪K−1

b , i.e. b 6∈ B. It can be seen that if B 6= ∅ then
A ⊆ B. Thus we obtain b ∈ B. This is a contradiction. Therefore, B = ∅ holds. By
the definition of Max(a) we obtain Max(a) = {a}. Which conflicts with the fact
that Max(a) = {a} ∪ A, A 6= ∅ and a 6∈ A. Consequently, we have

{a} → {b} ∈ S+ ∀b ∈ A.

From this and according to (S5) in Definition 3 we immediately get

{a} → A ∈ S+.

The Lemma is proved.

By Lemma 28 it is obvious that if Max(a) = U then {a} → U ∈ S+.
The following theorem gives a necessary and sufficient condition for an arbitrary

relation to be Armstrong relation of a strong scheme.

On Armstrong Relations for Strong Dependencies 529

Theorem 29. Let G = (U, S) be a strong scheme, r = {h1, . . . , hm} a relation
over U . Then a necessary and sufficient condition for r to be Armstrong relation
of strong scheme G is

∀a ∈ U : {a}+
r = Max(a),

where {a}+
r = {b ∈ U : {a} → {b} ∈ Sr}.

Proof. First we show that {a}+ = Max(a) for all a ∈ U. Denote H = {Ai : Ai ∈
MAX(S+) and a ∈ Ai}. It can be seen that if H = ∅ then according to Lemma
26 we get {a} → U ∈ S+.

Suppose that H 6= ∅. It is easy to see that if H ⊆ MAX(S+) holds then by
Lemma 28 we have {a} → Max(a) ∈ S+.

By Lemma 27, it is obvious that for any M such that M ⊃ Max(a) we have
{a} → M 6∈ S+.

Consequently, according to the definition of {a}+ we have

∀a ∈ U : {a}+ = Max(a). (6)

Obviously, according to Theorem 8 we can see that Sr = S+ iff for every
a ∈ U : {a}+ = {a}+

r holds. Hence, if Sr = S+ holds then {a}+
r = Max(a) for all

a ∈ U.

Conversely, we suppose that {a}+
r = Max(a) for all a ∈ U. Then by Theorem 8

and (6) we obtain Sr = S+.

The theorem is proved.

Now we construct an algorithm that from a given strong scheme G finds a
relation r such that r is Armstrong relation of G.

Algorithm 30.

Input: a strong scheme G = (U, S).

Output: a relation r such that Sr = S+.

Method:

Step 1. By FAMMSA compute Ka for each a ∈ U.

Step 2. By Algorithm 14 we compute K−1
a for each a ∈ U .

Step 3. Set

MAX(S+) =
⋃

a∈U

K−1
a .

Step 4. Denote elements of MAX(S+) by A1, . . . , At. We construct a relation
r = {h0, h1, . . . , ht} as follows

for all a ∈ U, h0(a) = 0, ∀i = 1, . . . , t

hi(a) =

{

0 if a ∈ Ai,

i otherwise.

530 Vu Duc Thi and Nguyen Hoang Son

By Theorem 29 we have r is an Armstrong relation of G, i.e. Sr = S+.

The following example shows that for a given strong scheme G, Algorithm 30
can be applied to construct a relation r such that r is an Armstrong relation of G.

Example 31. A strong scheme G = (U, S), where U = {a, b, c, d} and S =
{{a, b} → {c}, {b} → {a, d}, {d} → {b}}.

Then we have
Ka = {{a}, {b}, {d}}, Kb = {{b}, {d}}, Kc = {{a}, {b}, {c}, {d}}, Kd =

{{b}, {d}}.
K−1

a = {{c}}, K−1
b = {{a, c}}, K−1

c = ∅, K−1
d = {{a, c}}.

MAX(S+) = {{a, c}, {c}}.
Consequently

r =

a b c d

0 0 0 0
0 1 0 1
2 2 0 2

It is obvious that Sr = S+.

Algorithm 32. [8]

Input: a Sperner-system Kai
= {B1, . . . , Bmi

} over U .

Output: K−1
ai

.

Method:

Step 1. We set Ki1 = {U − {a} : a ∈ B1}. It is clear that Ki1 = {B1}
−1.

Step q+1 (q < mi). We suppose that Kiq
= Fiq

∪ {X1, . . . , Xtiq
}, where

X1, . . . , Xtiq
containing Bq+1 and Fiq

= {A : A ∈ Kiq
, Bq+1 6⊆ A}. For all j

(j = 1, . . . , tiq
) we construct the antikeys of {Bq+1} on Xj in an analogous way as

Ki1 . Denote them by A
j
1, . . . , A

j
ri

(j = 1, . . . , tiq
). Let

Kiq+1 = Fiq
∪ {Aj

p : A ∈ Fiq
⇒ Aj

p 6⊂ A, 1 ≤ j ≤ tiq
, 1 ≤ p ≤ rj}.

We set K−1
ai

= Kim
.

Denote Kiq
= Fiq

∪ {X1, . . . , Xtiq
} and liq

(1 ≤ q ≤ mi − 1) be the number of
elements of Kiq

.
It is easy to see that the time complexity of Algorithm 30 is the time complexity

of step 1 and step 2. By Proposition 16 and Lemma 25, the following proposition
is clear.

Proposition 33. The worst-case time complexity of Algorithm 30 is

O(n2
n

∑

i=1

(

mi−1
∑

q=1

tiq
uiq

+ |S|mi(1 + nmi)))

On Armstrong Relations for Strong Dependencies 531

where
U = {a1, . . . , an}, mi = |Kai

|,

uiq
=

{

liq
− tiq

if liq
> tiq

,

1 if liq
= tiq

.

In the cases for which liq
≤ lmi

(∀i, ∀q : 1 ≤ q ≤ mi), it is easy to see that the
time complexity of our algorithm is

O(n2
n

∑

i=1

|Kai
|(|S| + n|Kai

||S| + |K−1
ai

|2)).

By (3) and (4) in Proposition 18 we are easy to see that the time complexity
of Algorithm 30 is polynomial in |U | and |S|. Consequently, our algorithm is very
effective.

References

[1] Armstrong W. W., Dependency structure of database relationship, Information
Processing 74, North-Holland Pub. Co. , (1974) 580-583.

[2] Czédli G., Dependencies in the relational model of data (Hungarian), Alkalmaz
Mat. Lapok 6 (1980), 131-143.

[3] Czédli G., On dependencies in the relational model of data, EIK 17 (1981),
103-112.

[4] Demetrovics J.,Logical and structural investigation of relation datamodel, MTA
SZTAKI Tanulm-ányok 114 (1980), 1-97 (in Hungarian).

[5] Demetrovics J., Gyepesi G., On the functional dependency and generalizations
of it. Acta Cybernetica Hungary 3 (1983), 295-305.

[6] Demetrovics J.,Thi V. D., Armstrong relations, functional dependencies and
strong dependencies, Computers and Artificial Intelligence 14 (1995), 279-298.

[7] Thi V. D., Strong dependencies and s-semilattices, Acta Cybernetica 8 (1987),
195-202.

[8] Thi V. D., Minimal keys and Antikeys, Acta Cybernetica 7 (1986), 361-371.

[9] Thi V. D., Son N. H., Some problems related to keys and the Boyce-Codd normal
form, Acta Cybernetica 16, 3 (2004), 473-483.

Received April, 2005

