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On Armstrong Relations for Strong Dependencies

Vu Duc Thi∗ and Nguyen Hoang Son†

Abstract

The strong dependency has been introduced and axiomatized in [2], [3], [4],
[5]. The aim of this paper is to investigate on Armstrong relations for strong
dependencies. We give a necessary and sufficient condition for an abitrary
relation to be Armstrong relation of a given strong scheme. We also give an
effective algorithm finding a relation r such that r is Armstrong relation of
a given strong scheme G = (U, S) (i.e. Sr = S+, where Sr is a full family of
strong dependencies of r, and S+ is a set of all strong dependencies that can
be derived from S by the system of axioms). We estimate this algorithm. We
show that the time complexity of this algorithm is polynomial in |U | and |S|.

1 Introduction

Let us give some necessary definitions and results that are used in next section.

Definition 1. Let U be a nonempty finite set of attributes, r = {h1, . . . , hm} a
relation over U , and A, B ⊆ U . We say that B strongly depends on A in r (denote

A
s
→
r

B) iff

(∀hi, hj ∈ r)((∃a ∈ A)(hi(a) = hj(a) ⇒ (∀b ∈ B)(hi(b) = hj(b))).

Let Sr = {(A, B) : A
s
→
r

B}. Sr is called a full family of strong dependencies

of r. Where we write (A, B) or A → B for A
s
→
r

B when r, s are clear from the

context.

Definition 2. A strong dependency (SD) over U is a statement of form X → Y ,

where X, Y ⊆ U . The SD X → Y holds in a relation r if A
s
→
r

B. We also say

that r satisfies the SD A → B.

Definition 3. Let U be a set of attributes and P(U) its power set. Let Y ⊆
P(U) × P(U). We say that Y is an s – family over U iff for all A, B, C, D ⊆ U

and a ∈ U
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(S1) ({a}, {a}) ∈ Y,

(S2) (A, B) ∈ Y, (B, C) ∈ Y, B 6= ∅ ⇒ (A, C) ∈ Y,

(S3) (A, B) ∈ Y, C ⊆ A, D ⊆ B ⇒ (C, D) ∈ Y,

(S4) (A, B) ∈ Y, (C, D) ∈ Y ⇒ (A ∪ C, B ∩ D) ∈ Y,

(S5) (A, B) ∈ Y, (C, D) ∈ Y ⇒ (A ∩ C, B ∪ D) ∈ Y.

It is easy to see that Sr is an s – family over U .
It is known [4] that if Y is an s – family over U , then there exists a relation r

such that Y = Sr.

Definition 4. A strong scheme G is a pair (U, S), where U is a finite set of
attributes, and S a set of SDs over U .

Let S+ be a set of all SDs that can be derived from S by the rules in Definition
3.

It can be seen [4] that if G = (U, S) is a strong scheme then there is a relation
r over U such that Sr = S+. Such a relation is called Armstrong relation of G.

Definition 5. Let K be a Sperner-system over U . We define the set of antikeys
of K, denoted by K−1, as follows:

K−1 = {A ⊂ U : (B ∈ K) ⇒ (B 6⊆ A) and (A ⊂ C) ⇒ (∃B ∈ K)(B ⊆ C)}.

Definition 6. The mapping F : P(U) −→ P(U) is called a strong operation over
U if for every a, b ∈ U and A ∈ P(U) the following properties hold:

(1) a ∈ F ({a}),

(2) b ∈ F ({a}) implies F ({b}) ⊆ F ({a}),

(3) F (A) =
⋂

a∈A

F ({a}).

Remark 7. It is clear that for arbitrary strong operation F

(1) F (∅) = U,

(2) For all A, B ∈ P(U) : F (A ∪ B) = F (A) ∩ F (B),

(3) If A ⊆ B then F (B) ⊆ F (A).

It can be seen that the set {F ({a}) : a ∈ U} determines the set {F (A) : A ∈
P(U)}.

The following theorem shows that between s – families and strong operations
there exists a one - to - one correspondence

Theorem 8. [7] Let S be a s – family over U . We define the mapping FS as
follows: FS(A) = {a ∈ U : (A, {a}) ∈ S}. Then FS is a strong operation over U .
Conversely, if F is a strong operation over U then there is exactly one s – family
S over U such that FS = F, where S = {(A, B) : B ⊆ F (A)}.
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Definition 9. Let G = (U, S) be a strong scheme over U , A ⊆ U . We set

A+ = {a ∈ U : A → {a} ∈ S+}.

A+ is called the closure of A over G.

It is clear that A → B ∈ S+ iff B ⊆ A+.

Lemma 10. Let G = (U, S) be a strong scheme over U . Suppose that A =
{a1, . . . , ak} and B = {b1, . . . , bl} are subsets of U . Then A → B ∈ S+ if and
only if {ai} → {bj} ∈ S+ for every i = 1, . . . , k; j = 1, . . . , l.

Proof. By rules (S3), (S4) and (S5), the lemma is obvious.

Algorithm 11. [6] (Finding {a}+)

Input: given a strong scheme G = (U, S), where S = {Ai → Bi : i = 1, . . . , m}, a ∈
U.

Output: compute {a}+.

Method: we compute {a}+ by induction.

Step 1. We set X(0) = {a}.

Step i+1. If there is a SD Aj → Bj ∈ S so that Aj ∩ X(i) 6= ∅ and Bj 6⊆ X(i) then
we set

X(i+1) = X(i) ∪ (
⋃

Aj∩X(i) 6=∅

Bj).

In the converse case we set {a}+ = X(i).

It is easy to see that there is a k such that {a} = X (0) ⊆ X(1) ⊆ · · · ⊆ X(k) =
X(k+1) = · · · and we set

{a}+ = X(k).

Proposition 12. [6] For each a ∈ U Algorithm 11 computes {a}+.

It can be seen that the complexity of Algorithm 11 is polynomial time in the
|U |, |S|.

Proposition 13. [6] Let G = (U, S) be a strong scheme over U , and A → B is a
SD. Then there is a polynomial time algorithm deciding whether A → B ∈ S+.

2 Armstrong Relation for Strong Dependency

It is known [8] that there is an algorithm that finds a set of all antikeys from a
given Sperner-system.

Algorithm 14. [8]

Input: a Sperner-system K = {B1, . . . , Bm} over U .

Output: K−1.
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Method:

Step 1. We set K1 = {U − {a} : a ∈ B1}. It is clear that K1 = {B1}−1.

Step q+1 (q < m). We suppose that Kq = Fq ∪ {X1, . . . , Xtq
}, where X1, . . . , Xtq

containing Bq+1 and Fq = {A : A ∈ Kq, Bq+1 6⊆ A}. For all i (i = 1, . . . , tq) we
construct the antikeys of {Bq+1} on Xi in an analogous way as K1. Denote them
by Ai

1, . . . , A
i
ri

(i = 1, . . . , tq). Let

Kq+1 = Fq ∪ {Ai
p : A ∈ Fq ⇒ Ai

p 6⊂ A, 1 ≤ i ≤ tq , 1 ≤ p ≤ ri}.

We set K−1 = Km.

Theorem 15. [8] For each q (1 ≤ q ≤ m), Kq = {B1, . . . , Bq}−1, i.e. Km = K−1.

It can be seen that K and K−1 are uniquely determined by one another and
the determination of K−1 based on our algorithm does not depend on the order of
B1, . . . , Bm. Denote Kq = Fq ∪ {X1, . . . , Xtq

} and let lq (1 ≤ q ≤ m − 1) be the
number of elements of Kq.

Proposition 16. [8] The worst-case time complexity of our Algorithm 14 is

O(|U |2
m−1
∑

q=1

tquq),

where

uq =

{

lq − tq if lq > tq,

1 if lq = tq.

Note that lq ≥ tq. Clearly, in each step of our algorithm Kq is a Sperner-
system. In the cases for which lq ≤ lm(q = 1, ..., m − 1), it is easy to see that
the time complexity of our algorithm is not greater than O(|U |2|K||K−1|2). Hence,
in these cases Algorithm 14 finds K−1 in polynomial time in |U |, |K| and |K−1|.
Obviously, if the number of elements of K is small, then Algorithm 14 is very
effective. It only requires polynomial time in |U |.

Definition 17. Let G = (U, S) be a strong scheme over U , and a ∈ U. We set

Ka = {A ⊆ U : A → {a} ∈ S+, 6 ∃B : (B → {a} ∈ S+)(B ⊂ A)}.

Ka is called the family of minimal sets of the attribute a.

Clearly, {a} ∈ Ka, U 6∈ Ka and Ka is a Sperner-system over U .

Proposition 18. Let G = (U, S) be a strong scheme over U, a ∈ U , Ka is a family
of minimal sets of a and n = |U |. Then

(1) Ka = {{b} : b ∈ U, {b} → {a} ∈ S+}.

(2) ∀A ∈ Ka : |A| = 1.
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(3) |Ka| ≤ n.

(4) |K−1
a | = 1.

Proof. (1) We define the mapping FS : P(U) −→ P(U) as follows:

FS(A) = {a ∈ U : A → {a} ∈ S+}.

By Theorem 8, it is clear that FS is a strong operation over U . It is easy to see
that A+ = FS(A). Consequently, by Definition 6 we have

A+ =
⋂

a∈A

FS({a})

=
⋂

a∈A

{b ∈ U : {a} → {b} ∈ S+}

=
⋂

a∈A

{a}+.

(1)

By (1) we obtain A+ ⊆ {a}+ ∀a ∈ A. From this and the definition of Ka we
immediately get

Ka = {{b} : b ∈ U, {b} → {a} ∈ S+}.

(2) It is obvious from (1).
(3) Because for each A ∈ Ka : |A| = 1, we can be seen that |Ka| ≤ n.

(4) By (2) and the definition of antikeys set, it is clear that |K−1
a | = 1.

The proposition is proved.

From this proposition we construct an algorithm finding a minimal set of the
attribute a.

Algorithm 19. MSA

Input: a strong scheme G = (U, S), and a ∈ U.

Output: A ∈ Ka.

Method:
MSA(G, a)
BEGIN

Test:=true;
WHILE test AND there is an attribute b ∈ U such that

{b} → {a} ∈ S+

DO BEGIN
A := {b};
Test:=false

END
RETURN(A)

END.
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Lemma 20. A ∈ Ka.

Proof. Because {a} ∈ Ka and U is a finite set of attributes, the lemma is clear.

The following lemma is obvious

Lemma 21. The worst-case time complexity of MSA is O(|U |2|S|).

Remark 22. By Lemma 10 we have A → B ∈ S+ if and only if {a} → B ∈ S+

for every a ∈ A.

From this, we obtain the following lemma

Lemma 23. Let G = (U, S) be a strong scheme, a ∈ U, Ka be a family of minimal
sets of a, L ⊆ Ka, {a} ∈ L. Then L ⊂ Ka if and only if there are C ∈ L, A → B ∈
S+ such that ∀E ∈ L ⇒ E 6⊆ A ∪ (C − B).

Proof. Suppose that L ⊂ Ka. Hence, there exists a D ∈ Ka − L. By {a} ∈ L and
the definition of Ka, we have

D → {a} ∈ S+ (2)

and

a 6∈ D. (3)

If for every SD A → B ∈ S implies (A ∩ D 6= ∅, B ⊆ D), or A ∩ D = ∅, then
D+ = D. Therefore, by (3) we have D → {a} 6∈ S+. Which contradicts (2). Hence,
there exists a SD A → B ∈ S such that A ⊆ D and B 6⊆ D. From this and Remark
22 we have a C such that C ∈ L, A ⊆ D and C−B ⊆ D. Clearly, A∪ (C −B) ⊆ D.

Consequently, we obtain E 6⊆ A ∪ (C − B) for every E ∈ L.

Conversely, assume that there are C ∈ L, A → B ∈ S+ such that

E 6⊆ A ∪ (C − B) (4)

for every E ∈ L. By the definition of L we have A∪ (C −B) → {a} ∈ S+. Because
{a} ∈ L, there is a D such that D ∈ Ka, a 6∈ D and D ⊆ A∪ (C −B). From (4) we
obtain E 6⊆ D for all E ∈ L, i.e. D ∈ Ka − L, or L ⊂ Ka.

The lemma is proved.

From this lemma and MSA we construct the following algorithm by induction

Algorithm 24. FAMMSA

Input: a strong scheme G = (U, S) and a ∈ U .

Output: Ka.

Method:

Step 1. Set L(1) = E(1) = {{a}}.
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Step i+1. If there are C and A → B such that C ∈ L(i), A → B ∈ S, ∀E ∈ L(i) ⇒
E 6⊆ A∪(C−B), then by MSA construct an E(i+1), where E(i+1) ⊆ A∪(C−B)
and E(i + 1) ∈ Ka. We set

L(i + 1) = L(i) ∪ E(i + 1).

In the converse case we set Ka = L(i).

By Lemma 23 there exists a natural number n such that Ka = L(n).
The following lemma is obvious

Lemma 25. The worst-case time complexity of FAMMSA is

O(|U |2|S||Ka|(1 + |U ||Ka|)).

By (3) in Proposition 18 we are easy to see that the time complexity of FAMMSA
is polynomial in |U | and |S|. Consequently, our algorithm is very effective.

It is obvious that if S = {{a} → Bi : i = 1, . . . , m} or for each SD A → B ∈ S+

implies a 6∈ B, then Ka = {{a}}.

Let G = (U, S) be a strong scheme over U . Set

MAX(S+, a) = {A ⊆ U : (A → {a} 6∈ S+)

and ((A ⊂ B) ⇒ (∃D ⊂ B)(D → {a} ∈ S+)}.

It can be seen that

MAX(S+, a) = K−1
a ∀a ∈ U. (5)

Denote MAX(S+) =
⋃

a∈U

MAX(S+, a).

Lemma 26. If U − ∪MAX(S+) 6= ∅ then

{c} → U ∈ S+,

where for every c ∈ U − ∪MAX(S+).

Proof. Suppose that c ∈ U −∪MAX(S+). Hence c 6∈ ∪MAX(S+). By (5) we have

{c} 6∈ K−1
a ∀a ∈ U.

According to Proposition 18 and the definition of set of antikeys we have

{c} ∈ Ka ∀a ∈ U.

Consequently by (S5) in Definition 3 and the definition of Ka we immediately get

{c} → U ∈ S+.

The lemma is proved.
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Lemma 27. For every b ∈ A, A ∈ K−1
a : {b} → {c} 6∈ S+, where c ∈ U − A.

Proof. Assume that there exists an A ∈ K−1
a and b ∈ A such that {b} → {c} ∈ S+.

Because A ∈ K−1
a and c ∈ U − (A ∪ {a}), we have {c} ∈ Ka. Then by Proposition

18 we have

{c} → {a} ∈ S+, a ∈ U.

Hence, by (S2) in Definition 3 we obtain

{b} → {a} ∈ S+.

Which contradicts the facts that A ∈ K−1
a and b ∈ A. Therefore, we have

{b} → {c} 6∈ S+∀b ∈ A, A ∈ K−1
a and c ∈ U − (A ∪ {a}).

The lemma is proved.

Now we assume that MAX(S+) = {A1, . . . , At}. Then we defined the mapping
Max : U −→ P(U) as follows:

Max(a) =







⋂

a∈Ai

Ai if ∃Ai ∈ MAX(S+) : a ∈ Ai,

U otherwise.

It is easy to see that ∀a ∈ U : a ∈ Max(a), and hence Max(a) 6= ∅. On the
other hand, we are easy to see that if S = {{a1} → U, . . . , {an} → U} where
U = {a1, . . . , an} then

∀ai ∈ U : Max(ai) = U.

Lemma 28. If Max(a) = {a} ∪ A, A 6= ∅ and a 6∈ A then {a} → A ∈ S+.

Proof. First we suppose that there is b ∈ A such that {a} → {b} 6∈ S+. By
Proposition 18 we get {a} 6∈ Kb. Assume that K−1

b = {{a} ∪ B}. It is clear
that {b} ∈ Kb. Hence b 6∈ ∪K−1

b , i.e. b 6∈ B. It can be seen that if B 6= ∅ then
A ⊆ B. Thus we obtain b ∈ B. This is a contradiction. Therefore, B = ∅ holds. By
the definition of Max(a) we obtain Max(a) = {a}. Which conflicts with the fact
that Max(a) = {a} ∪ A, A 6= ∅ and a 6∈ A. Consequently, we have

{a} → {b} ∈ S+ ∀b ∈ A.

From this and according to (S5) in Definition 3 we immediately get

{a} → A ∈ S+.

The Lemma is proved.

By Lemma 28 it is obvious that if Max(a) = U then {a} → U ∈ S+.
The following theorem gives a necessary and sufficient condition for an arbitrary

relation to be Armstrong relation of a strong scheme.
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Theorem 29. Let G = (U, S) be a strong scheme, r = {h1, . . . , hm} a relation
over U . Then a necessary and sufficient condition for r to be Armstrong relation
of strong scheme G is

∀a ∈ U : {a}+
r = Max(a),

where {a}+
r = {b ∈ U : {a} → {b} ∈ Sr}.

Proof. First we show that {a}+ = Max(a) for all a ∈ U. Denote H = {Ai : Ai ∈
MAX(S+) and a ∈ Ai}. It can be seen that if H = ∅ then according to Lemma
26 we get {a} → U ∈ S+.

Suppose that H 6= ∅. It is easy to see that if H ⊆ MAX(S+) holds then by
Lemma 28 we have {a} → Max(a) ∈ S+.

By Lemma 27, it is obvious that for any M such that M ⊃ Max(a) we have
{a} → M 6∈ S+.

Consequently, according to the definition of {a}+ we have

∀a ∈ U : {a}+ = Max(a). (6)

Obviously, according to Theorem 8 we can see that Sr = S+ iff for every
a ∈ U : {a}+ = {a}+

r holds. Hence, if Sr = S+ holds then {a}+
r = Max(a) for all

a ∈ U.

Conversely, we suppose that {a}+
r = Max(a) for all a ∈ U. Then by Theorem 8

and (6) we obtain Sr = S+.

The theorem is proved.

Now we construct an algorithm that from a given strong scheme G finds a
relation r such that r is Armstrong relation of G.

Algorithm 30.

Input: a strong scheme G = (U, S).

Output: a relation r such that Sr = S+.

Method:

Step 1. By FAMMSA compute Ka for each a ∈ U.

Step 2. By Algorithm 14 we compute K−1
a for each a ∈ U .

Step 3. Set

MAX(S+) =
⋃

a∈U

K−1
a .

Step 4. Denote elements of MAX(S+) by A1, . . . , At. We construct a relation
r = {h0, h1, . . . , ht} as follows

for all a ∈ U, h0(a) = 0, ∀i = 1, . . . , t

hi(a) =

{

0 if a ∈ Ai,

i otherwise.
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By Theorem 29 we have r is an Armstrong relation of G, i.e. Sr = S+.

The following example shows that for a given strong scheme G, Algorithm 30
can be applied to construct a relation r such that r is an Armstrong relation of G.

Example 31. A strong scheme G = (U, S), where U = {a, b, c, d} and S =
{{a, b} → {c}, {b} → {a, d}, {d} → {b}}.

Then we have
Ka = {{a}, {b}, {d}}, Kb = {{b}, {d}}, Kc = {{a}, {b}, {c}, {d}}, Kd =

{{b}, {d}}.
K−1

a = {{c}}, K−1
b = {{a, c}}, K−1

c = ∅, K−1
d = {{a, c}}.

MAX(S+) = {{a, c}, {c}}.
Consequently

r =

a b c d

0 0 0 0
0 1 0 1
2 2 0 2

It is obvious that Sr = S+.

Algorithm 32. [8]

Input: a Sperner-system Kai
= {B1, . . . , Bmi

} over U .

Output: K−1
ai

.

Method:

Step 1. We set Ki1 = {U − {a} : a ∈ B1}. It is clear that Ki1 = {B1}
−1.

Step q+1 (q < mi). We suppose that Kiq
= Fiq

∪ {X1, . . . , Xtiq
}, where

X1, . . . , Xtiq
containing Bq+1 and Fiq

= {A : A ∈ Kiq
, Bq+1 6⊆ A}. For all j

(j = 1, . . . , tiq
) we construct the antikeys of {Bq+1} on Xj in an analogous way as

Ki1 . Denote them by A
j
1, . . . , A

j
ri

(j = 1, . . . , tiq
). Let

Kiq+1 = Fiq
∪ {Aj

p : A ∈ Fiq
⇒ Aj

p 6⊂ A, 1 ≤ j ≤ tiq
, 1 ≤ p ≤ rj}.

We set K−1
ai

= Kim
.

Denote Kiq
= Fiq

∪ {X1, . . . , Xtiq
} and liq

(1 ≤ q ≤ mi − 1) be the number of
elements of Kiq

.
It is easy to see that the time complexity of Algorithm 30 is the time complexity

of step 1 and step 2. By Proposition 16 and Lemma 25, the following proposition
is clear.

Proposition 33. The worst-case time complexity of Algorithm 30 is

O(n2
n

∑

i=1

(

mi−1
∑

q=1

tiq
uiq

+ |S|mi(1 + nmi)))
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where
U = {a1, . . . , an}, mi = |Kai

|,

uiq
=

{

liq
− tiq

if liq
> tiq

,

1 if liq
= tiq

.

In the cases for which liq
≤ lmi

(∀i, ∀q : 1 ≤ q ≤ mi), it is easy to see that the
time complexity of our algorithm is

O(n2
n

∑

i=1

|Kai
|(|S| + n|Kai

||S| + |K−1
ai

|2)).

By (3) and (4) in Proposition 18 we are easy to see that the time complexity
of Algorithm 30 is polynomial in |U | and |S|. Consequently, our algorithm is very
effective.
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