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Relational Databases and Homogeneity in Logics

with Counting

José Maŕıa Turull Torres
∗

Abstract

We define a new hierarchy in the class of computable queries to relational
databases, in terms of the preservation of equality of theories in fragments
of first order logic with bounded number of variables with the addition of
counting quantifiers (Ck). We prove that the hierarchy is strict, and it turns
out that it is orthogonal to the TIME-SPACE hierarchy defined with respect
to the Turing machine complexity. We introduce a model of computation of
queries to characterize the different layers of our hierarchy which is based on
the reflective relational machine of S. Abiteboul, C. Papadimitriou, and V.
Vianu. In our model the databases are represented by their C

k theories. Then
we define and study several properties of databases related to homogeneity
in C

k getting various results on the change in the computation power of
the introduced machine, when working on classes of databases with such
properties. We study the relation between our hierarchy and a similar one
which we defined in a previous work, in terms of the preservation of equality
of theories in fragments of first order logic with bounded number of variables,
but without counting quantifiers (FO

k). Finally, we give a characterization
of the layers of the two hierarchies in terms of the infinitary logics C

k

∞ω and
L

k

∞ω, respectively.

Keywords: query languages, database machines, query computability, complete-
ness of models, counting

1 Introduction

Given a relational database schema, it is natural to think about the whole class of
queries which might be computed over databases of that schema. That is, if we
do not restrict ourselves to a given implementation of certain query language on
some computer, in the same way as the notion of computable function over the
natural numbers was raised in computability theory. In [CH80], A. Chandra and
D. Harel devised a formalization for that notion. They defined a computable query
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as a function over the class of databases of some given schema which is not only
recursive but preserves isomorphisms as well. Isomorphism preservation is what
formalizes the intuitive property of representation independence.

In [Tur01a, Tur04] a strict hierarchy was defined, in the class of computable
queries (CQ) of A. Chandra and D. Harel, in terms of the preservation of equivalence
in bounded variable fragments of first order logic (FO), which we denote by FOk.
The logic FOk is the fragment of FO which consists of the formulas with up
to k different variables. We denote the whole hierarchy as QCQω. For every
natural k, the layer denoted as QCQk was proved to be a semantic characterization
of the computation power of the reflective relational machine of [APV98] with
variable complexity k (RRMk). The RRMk is a model of computation of queries
to relational databases which has been proved to be incomplete, i.e., it does not
compute all computable queries. Then, we defined and studied in [Tur01a, Tur04]
several properties of relational databases, related to the notion of homogeneity in
model theory [CK92], as properties which increase the computation power of the
RRMk when working on databases having those properties.

That research was enrolled in a very fruitful research program in the field of finite
model theory considered as a theoretical framework to study relational databases.
In that program different properties of the databases have been studied, which
allow incomplete computation models to change their expressive power when com-
puting queries on databases with those properties. Order [AV95, EF99], different
variants of rigidity [DLW95, Tur96, Tur98], and different notions related to homo-
geneity [Tur01a, Tur04] are properties which turned out to be quite relevant to the
expressive power of certain models of computation.

In the present paper, and following the same research program, we define a
new hierarchy in the class of computable queries, which we denote as QCQCω

. We
define this hierarchy in terms of the preservation of equivalence in bounded variable

logics with counting quantifiers (Ck). For every natural k, we denote as QCQCk

the layer of the hierarchy QCQCω

which consists of those queries that preserve
equivalence in Ck. The logic Ck is obtained by adding quantifiers “there exists
at least m different elements in the database such that...” to the logic FOk for
every natural m. The logic Ck has been deeply studied during the last decade
[CFI92, Gro96, Hel96, Ott97].

Defining the classes QCQCk

appears to be rather natural, since in the definition
of computable query of [CH80] the property of preservation of isomorphisms is
essential, and, as it is well known, in finite databases isomorphism coincides with
equivalence in first order logic. Moreover, it is also well known that for every
natural k, the logic Ck is strictly weaker than FO. So, when we define subclasses
of computable queries in terms of the preservation of Ck equivalence, for different
values of k, in a certain way we are classifying queries according to the different
levels in the amount of information which we really need about the input database
to evaluate a given query on that database.

The hierarchy QCQCω

turns out to have quite similar structure and behavior as
the hierarchy QCQω [Tur01a, Tur04]. The results of Sections 3 and 4 are analogous
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to the results in [Tur01a, Tur04] regarding QCQω, and their proofs follow a similar
strategy. However, there is a very important difference in the expressiveness of the
layers of both hierarchies, which is not surprising given the well known difference
in expressive power between the logics FOk and Ck. For every k ≥ 2 the subclass

QCQCk

is “big”, whereas each subclass QCQk is “small”, in a sense which we will
make precise in Section 5 using results on asymptotic probabilities. Roughly, we

can say that for every computable query q there is a query q′ in the layer QCQC2

which is equivalent to q over almost all databases. And this is not true for any
layer in QCQω , and not even for the whole hierarchy.

We prove that the hierarchy QCQCω

is strict, and that it is strictly included
in the class CQ of computable queries. Furthermore, it turns out to be orthogonal
to the TIME-SPACE hierarchy defined with respect to Turing machine complexity,
as it was also the case with the hierarchy QCQω. Hence, we can define finer
classifications in the class CQ by intersecting QCQCω

with the Turing machine
complexity hierarchy (see [Tur01b] for a preliminary discussion of this approach).
As an illustrating example, we include a classification of some problems in finite
group theory at the end of Section 5. This may be derived from results in [KL99]
and [KL00] together with our characterization of the layers of QCQω in terms of
fragments of the infinitary logic Lω

∞ω.

Having defined the different classes QCQCk

in a semantic way, we look next
for a syntactic characterization of these classes in terms of a computation model.
For that sake we define a machine which we call reflective counting machine with
bounded variable complexity k (RCMk), as a variant of the reflective relational
machine of [APV98]. In our model, dynamic queries are formulas of Ck , instead of
FOk. In [Ott96] a similar model has been defined to characterize the expressibility
of fixed point logics with counting terms, but it was based on the relational machine

of [AV95], instead. Then we prove that for every natural k, the class QCQCk

characterizes exactly the expressive power of the machine RCM k.

The model RCMk turns out to be incomplete, i.e., there are computable queries
which cannot be computed by any such machine. Then, we define several proper-
ties related to homogeneity (which are quite analogous to the properties studied in
([Tur01a], [Tur04]) regarding the model RRMk), and we study the way in which
the computation power of the model RCMk changes when working on such classes
of databases. Such properties are Ck-homogeneity, strong Ck-homogeneity and
pairwise Ck-homogeneity. A database is Ck-homogeneous if the properties of every
k-tuple in the database, up to automorphism, can be expressed by Ck formulas
(i.e., whenever two tuples satisfy the same properties expressed by FO formulas
with k variables and with counting quantifiers, then there is an automorphism
of the database mapping each tuple onto each other). We prove that for every
k ≥ 1 there are queries whose restriction to Ck-homogeneous databases can be
computed by RCMk machines, whilst the same queries cannot be computed by
any RCMk on the whole class of databases of the given schema. A database is
strongly Ck-homogeneous if it is Cr-homogeneous for every r ≥ k. Here we show
that, roughly speaking, for every r > k ≥ 1, the class of queries whose restric-
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tion to such classes of databases can be computed by RCM r machines, strictly
includes the class of queries whose restriction to classes of databases which are
Ck-homogeneous but which are not strongly Ck-homogeneous can be computed by
RCMr machines. Concerning the third notion, we say that a class of databases
is pairwise Ck-homogeneous if for every pair of databases in the class, and for
every pair of k-tuples taken respectively from the domains of the two databases,
if both k-tuples satisfy the same properties expressible by Ck formulas, then the
two databases are isomorphic and there is an isomorphism mapping one tuple onto
the other. We show that for every k, machines in RCM k working on such classes
achieve completeness provided the classes are recursive.

Considering that equivalence in Ck is decidable in polynomial time [Ott97], a
very important line of research, which is quite relevant to complexity theory, is
the identification of classes of graphs where Ck equivalence coincides with isomor-
phism. These classes are the classes which we define as pairwise Ck-homogeneous,
and include the class of trees [IL90] and the class of planar graphs [Gro98b]. In
the study of Ck-homogeneity we intend to generalize this approach by defining a
formal framework, and by considering not only those “optimal” classes, but also
other properties which, still not being so powerful as to equate Ck equivalence
with isomorphism, do increase the computation power of the model RCM k to an
important extent.

In Section 5, we investigate the relationship between our classes QCQCk

and
recursive fragments of the infinitary logic Cω

∞ω . We prove that for every natural

k, the restriction of QCQCk

to Boolean queries characterizes the expressive power
of Ck

∞ω restricted to sentences with recursive classes of models. As a corollary,
we get a characterization of the expressive power of the model RRM k restricted
to Boolean queries, for every natural k, in terms of the infinitary logic Lk

∞ω . The
characterization for the whole class of relational machines (RM) (and, hence, also
of RRMO(1), given the equivalence of the two classes which was proved in [AV95])
in terms of the infinitary logic Lω

∞ω was proved in [AVV95], but the expressive
power of each subclass of machines RRMk in terms of the corresponding fragment
of the infinitary logic was unknown up to the author’s knowledge.

Some of the results presented here have been included in [Tur01b].
An extended abstract of this article has been published as [Tur02].

2 Preliminaries

Unless otherwise stated, in the present article we will follow the usual notation
in finite model theory, as in [EF99]. We define a relational database schema, or
simply schema, as a set of relation symbols with associated arities. We do not
allow constraints in the schema, and we do not allow constant symbols either. If
σ = 〈R1, . . . , Rs〉 is a schema with arities r1, . . . , rs, respectively, a database instance
or simply database over the schema σ, is a structure I = 〈DI , RI

1, . . . , R
I
s〉 where DI

is a finite set which contains exactly all elements of the database, and for 1 ≤ i ≤ s,
RI

i is a relation of arity ri, i.e., RI
i ⊆ (DI)ri . We will often use dom(I) instead of
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DI . We define the size of the database I as the cardinality of DI , i.e., |DI |. We will
use ' to denote the isomorphism relation. A k-tuple over a database I , for k ≥ 1,
is a tuple of length k formed from elements of dom(I). We will denote a k-tuple of
I by āk, or simply by ā. We use Bσ to denote the class of all finite databases of
schema σ.

2.1 Computable Queries and Relational Machines

In this paper, we will consider total queries only. Let σ be a schema, let r ≥ 1,
and let R be a relation symbol of arity r. A computable query of arity r and
schema σ [CH80], is a total recursive function qr : Bσ → B〈R〉 which preserves
isomorphisms and such that for every database I of schema σ, dom(q(I)) ⊆ dom(I).
By preservation of isomorphisms we mean that for every I, J ∈ Bσ and for every
isomorphism f : dom(I) → dom(J), q(J) = f(q(I)). A Boolean query is a 0-
ary query. We denote the class of computable queries of schema σ as CQσ , and
CQ =

⋃
σ CQσ. Relational machines (RM) have been introduced in [AV95]. A

RM is a one-tape Turing machine (TM) with the addition of a relational store
(rs) formed by a possibly infinite set of relations whose arity is bounded by some
integer. The only way to access the relations in the rs is through FO (first order
logic) formulas in the finite control of the machine. The input database as well
as the output relation are in rs. In a transition of the machine one of these FO
formulas can be evaluated in rs. The resulting relation is then assigned to some
relation symbol of the appropiate arity in the rs. The arity of a given relational
machine is the maximum number of variables (free or bound) of any formula in its
finite control.

Reflective relational machines (RRM) have been introduced in [APV98] as an
extension of RMs. In an RRM , FO queries are generated during the computation
of the machine, and they are called dynamic queries. Each of these queries is written
on a query tape and it is evaluated by the machine in one step. A further important
difference to RM is that in RRM relations in the rs can be of arbitrary arity.
New relations can be created in rs during a computation, and they can be used in
building the dynamic queries. An integer index can be used in the formulas to name
a relation, and if that relation does not exist in rs it is created with the appropriate
arity. The variable complexity of an RRM is the maximum number of variables
which may be used in the dynamic queries generated by the machine throughout
any computation. We will denote as RRMk, with k ≥ 1, the sub-class of RRM
with variable complexity k. Furthermore, we define RRMO(1) =

⋃
k≥1 RRM

k.

In [AVV97] it was shown that RRMO(1) = RM , i.e., that the class of queries
which can be computed by reflective relational machines of bounded variable com-
plexity is exactly the same as the class of queries which can be computed by re-
lational machines. However, it is not known whether for every RRM of variable
complexity O(1) there exists an equivalent RM whose arity is the same as the
variable complexity of the given RRM . Moreover, this is strongly believed to be
not true (see [AVV95], particularly Remark 3.3, and [AV95]).
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2.2 Finite Model Theory and Databases

We refer the reader to [EF99] and [Imm99] for an in-depth study of finite model
theory, and to [AHV94] for the relation between databases and finite model theory.
We will use the notion of a logic in a general sense. A formal definition would only
complicate the presentation and is unnecessary for our work. The interested reader
can see [Ebb85] for a formal study of a general framework of abstract logics. As
usual in finite model theory, we will regard a logic as a language, that is, as a set of
formulas (see [EF99, AHV94]). We will only consider signatures, or vocabularies,
which are purely relational. We will always assume that the signature includes a
symbol for equality. We consider finite structures only. Consequently, if L is a logic,
the notion of satisfaction, denoted as |=L, will be related to only finite structures.
If L is a logic and σ is a signature, we will denote by Lσ the class of formulas from
L with signature σ. If I is a structure of signature σ, or σ-structure, we define the
L theory of I as follows:

ThL(I) = {ϕ ∈ Lσ : I |=L ϕ}

A database schema will be regarded as a relational signature, and a database
instance of some schema σ as a finite and relational σ-structure. If ϕ is a sentence
in Lσ , we define

MOD(ϕ) = {I ∈ Bσ : I |= ϕ}

By ϕ(x1, . . . , xr) we denote a formula of some logic whose free variables are
exactly {x1, . . . , xr}. Let free(ϕ) be the set of free variables of the formula ϕ.
If ϕ(x1, . . . , xk) ∈ Lσ , I ∈ Bσ, āk = (a1, . . . , ak) is a k-tuple over I , let I |=
ϕ(x1, . . . , xk)[a1, . . . , ak] denote that ϕ is TRUE, when interpreted by I , under a
valuation v where for 1 ≤ i ≤ k v(xi) = ai. Then we consider the set of all such
valuations as follows:

ϕI = {(a1, . . . , ak) : a1, . . . , ak ∈ dom(I) ∧ I |= ϕ(x1, . . . , xk)[a1, . . . , ak]}

That is, ϕI is the relation defined by ϕ in the structure I , and its arity is given
by the number of free variables in ϕ. Sometimes, we will use the same notation
when the set of free variables of the formula is strictly included in {x1, . . . , xk}.
Formally, we say that a formula ϕ(x1, . . . , xk) of signature σ, expresses a query q
of schema σ, if for every database I of schema σ, q(I) = ϕI . Similarly, a sentence
ϕ expresses a Boolean query q if for every database I of schema σ, is q(I) = 1 iff
I |= ϕ. We will also deal with extensions of structures. If R is a relation of arity
k in the domain of a structure I , we denote as 〈I, R〉 the τ -structure resulting by
adding the relation R to I , where τ is obtained from σ by adding a relation symbol
of arity k. Similarly, if āk is a k-tuple over I , we denote by 〈I, āk〉 the τ -structure
resulting by adding the k-tuple āk to I , where τ is obtained from σ by adding k
constant symbols c1, . . . , ck, and where for 1 ≤ i ≤ k, the constant symbol ci of τ is
interpreted in I by the i-th component of āk. This is the only case where we allow
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constant symbols in a signature. We denote by FOk , where k ≥ 1 is an integer,
the fragment of FO where only formulas whose variables, either free or bound, are
in {x1, . . . , xk} are allowed. In this setting, FOk itself is a logic. This logic is
obviously less expressive than FO. We denote as Ck the logic which is obtained
by adding to FOk counting quantifiers, i.e., all existential quantifiers of the form
∃≥mx with m ≥ 1. Informally, ∃≥mx(ϕ) means that there are at least m different
elements of the database which satisfy ϕ.

2.3 Types

Given a database I and a k-tuple āk over I , we would like to consider all properties
of āk in the database I including the properties of every component of the tuple and
the properties of all different sub-tuples of āk. Therefore, we use the notion of type.
Let L be a logic. Let I be a database of some schema σ and let āk = (a1, . . . , ak)
be a k-tuple over I . The L type of āk in I , denoted tpLI (āk), is the set of formulas
in Lσ with free variables among {x1, . . . , xk} such that every formula in the set is
TRUE when interpreted by I for any valuation which assigns the i-th component
of āk to the variable xi, for every 1 ≤ i ≤ k. In symbols

tpLI (āk) = {ϕ ∈ Lσ : free(ϕ) ⊆ {x1, . . . , xk} ∧ I |= ϕ[a1, . . . , ak]}

It is noteworthy that, according to this definition, the L theory of the database
I , i.e., ThL(I), is included in the L-type of every tuple over I . That is, the class
of all the properties of a given tuple, which are expressible in L, includes not only
the properties of all its sub-tuples, but also the properties of the database itself.

Note that the type of two different k-tuples of the same database may be differ-
ent, even if the types of their components are the same. Think of a complete binary
tree of depth h. If we consider types for single elements (i.e., k = 1), then we have
only h+1 different types, because all the nodes of the same depth satisfy the same
properties. They can be exchanged by an automorphism of the tree. Now let us
consider types for pairs (k = 2). We can build two pairs, such that the type of the
two first components is the same, and the type of the two second components is
also the same, but the types of the two pairs are different. Just take for one pair a
node in some depth > 0 and one of its sons, and for the other pair we take a node
of the same depth as the first component of the first pair, and another node in the
next level of the tree, but which is not the son of the first component.

We may also regard an L-type as a set of queries, and even as a query. We
can think of a type without having a particular database in mind. That is, we add
properties (formulas with the appropiate free variables) as long as the resulting
set remains consistent. Let us denote as TpL(σ, k) for some k ≥ 1 the class of all
L-types for k-tuples over databases of schema σ. In symbols

TpL(σ, k) = {tpLI (āk) : I ∈ Bσ ∧ āk ∈ (dom(I))k}

Hence, TpL(σ, k) is a class of properties, or a set of sets of formulas. Let
α ∈ TpL(σ, k) (i.e., α is the L-type of some k-tuple over some database in Bσ). We
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say that a database I realizes the type α if there is a k-tuple āk over I whose L-type
is α. That is, if tpLI (āk) = α. We denote by TpL(I, k) the class of all L-types for
k-tuples which are realized in I . That is, it is the class of properties of all the
k-tuples over the database I which can be expressed in L. In symbols

TpL(I, k) = {tpLI (āk) : āk ∈ (dom(I))k}

The following well known fact (see [Ott97]) relates types of tuples with Ck-
theories of databases (and also FO, see Fact 2).

Fact 1. For every k > 0, for every schema σ, and for every pair of databases I , J
of schema σ, the following holds:

I≡CkJ ⇐⇒ TpCk

(I, k) = TpCk

(J, k)

The following fact means that when two databases realize the same Ck-types
for tuples, it doesn’t matter which length of tuples we consider. It is well known
(see [Ott97]).

Fact 2.

• For every k > 0, for every schema σ, for every pair of databases I , J of schema
σ, and for every 1 ≤ l ≤ k, the following holds:

TpCk

(I, k) = TpCk

(J, k) ⇐⇒ TpCk

(I, l) = TpCk

(J, l)

• For every schema σ, for every pair of databases I , J of schema σ, and for
every l ≥ 1, the following holds:

I≡FOJ ⇐⇒ TpFO(I, l) = TpFO(J, l)

Note that the L-type of the 0-tuple is the L-theory of the database.
The following is a well known result which, among other sources, can be found

as Proposition 2.1.1 in [EF99].

Proposition 3. For every schema σ and for every pair of (finite) databases I, J
of schema σ the following holds:

I≡FOJ ⇐⇒ I ' J

Although types are infinite sets of formulas, a single Ck formula is equivalent
to the Ck-type of a tuple over a given database. The equivalence holds for all
databases of the same schema. This result has been proved by M. Otto.
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Proposition 4. ([Ott96]): For every schema σ, for every database I of schema
σ, for every k ≥ 1, for every 1 ≤ l ≤ k, and for every l-tuple āl over I, there is a

Ck formula χ ∈ tpCk

I (āl) such that for any database J of schema σ and for every
l-tuple b̄l over J

J |= χ[b̄l] ⇐⇒ tpCk

I (āl) = tpCk

J (b̄l)

Moreover, such a formula χ can be built inductively for a given database. If a
Ck formula χ satisfies the condition of Proposition 4, we call χ an isolating formula

for tpCk

I (āl).
Concerning logical characterizations of databases, the next two propositions are

quite important and well known, and we will make use of them in the present work
(see [Ott97] and [EF99]). Recall that we are considering only finite databases in
the present article.

Proposition 5. Let L ∈ {FOk, Ck}, for some k ≥ 1. Let I be a database of some
schema σ. Then there exists a sentence αI in L which characterizes I up to ≡L,
i.e., for every database J in Bσ, the following holds:

J |= αI ⇐⇒ I ≡L J

Proposition 6. Let k ≥ 1. Then the following holds:

(i) ≡FOk coincides with ≡Lk
∞ω

, i.e., for every schema σ, and for every two
databases I, J in Bσ:

I ≡FOk J ⇐⇒ I ≡Lk
∞ω

J

(ii) ≡Ck coincides with ≡Ck
∞ω

, i.e., for every schema σ, and for every two
databases I, J in Bσ:

I ≡Ck J ⇐⇒ I ≡Ck
∞ω

J

Let āk = (a1, . . . , ak) be a k-tuple over I . We say that the type tpLI (āk) is
an automorphism type in the database I if for every k-tuple b̄k = (b1, . . . , bk) over
I , if tpLI (āk) = tpLI (b̄k), then there exists an automorphism f of the database I
which maps āk onto b̄k, i.e., for 1 ≤ i ≤ k, f(ai) = bi. Regarding the tuple āk in
the database I , the logic L is therefore sufficiently expressive with respect to the
properties which might make āk distinguishable from other k-tuples in the database
I . We say that the type tpLI (āk) is an isomorphism type if for every database J ∈ Bσ,
and for every k-tuple b̄k = (b1, . . . , bk) over J , if tpLI (āk) = tpLJ (b̄k), then there exists
an isomorphism f : dom(I) → dom(J) which maps āk in I onto b̄k in J , i.e., for
1 ≤ i ≤ k, f(ai) = bi.
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2.4 Asymptotic Probabilities

See [EF99], among other sources. Let ϕ be a sentence in Lσ . We define

MODn(ϕ) = {I ∈ Bσ : dom(I) = {1, . . . , n} ∧ I |= ϕ}

Let’s denote as Bσ,n the sub-class of databases of schema σ with domain
{1, . . . , n}. We define the following limit, which we call asymptotic probability of ϕ:

µϕ = lim
n→∞

(|MODn(ϕ)|/|Bσ,n|)

We say that a logic L has a 0–1 Law if for every sentence ϕ ∈ L µϕ exists,
and is either 0 or 1. The same notion can also be defined on classes of databases,
or Boolean queries. This means that the asymptotic probability of every property
which can be expressed in the formalism (or of the given class) always exists, and
is either 0 or 1. Among other logics, FO has this Law.

3 Definition of the Hierarchy

One of the main reasons for the weakness of FOk regarding expressibility of queries,
is its inability to count beyond the bound given by k. For instance, note that we
need k + 2 different variables to express that a node in a graph has out degree
exactly k. Hence, it seems quite natural to add to FOk the capability to count
beyond that bound, while still restricting the number of different variables which
may be used in a formula. In this way we get the logic Ck (see Section 2), which
turns out to be much more expressive than FOk (see [EF99] and [Imm99]). In
logics with counting, 2 variables are enough to express any out degree of a node
in a graph. Then, we define in this section a hierarchy which is similar to the
one defined in [Tur01a, Tur04], but for which we consider the logics Ck instead of
FOk. In this way we get a new hierarchy whose layers are much bigger than the
corresponding layers in the hierarchy of [Tur01a, Tur04]. In Section 5 we compare
the two hierarchies.

Definition 7. Let σ be a database schema and let k ≥ 1 and k ≥ r ≥ 0. Then we
define

QCQCk

σ = {fr ∈ CQσ | ∀I, J ∈ Bσ :

TpCk

(I, k) = TpCk

(J, k) =⇒ TpCk

(〈I, f(I)〉, k) = TpCk

(〈J, f(J)〉, k)}

where 〈I, f(I)〉 and 〈J, f(J)〉 are databases of schema σ ∪ {R}, with R being a
relation symbol of arity r.

We also require that the answer to the query f must be the union of complete Ck-
types, i.e., for all databases I in Bσ, and for all tuples ā, b̄ in dom(I)r, if ā ∈ f(I)

and tpCk

I (ā) = tpCk

I (b̄), then also b̄ ∈ f(I).

We define further QCQCk

=
⋃

σ QCQCk

σ and QCQCω

=
⋃

k≥1 QCQCk

.
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That is, a query is in the sub-class QCQCk

if it preserves realization of Ck-
types for k-tuples. By preservation of Ck-types realization, we mean the property
that for every pair of databases of the corresponding schema, say σ, and for every

Ck-type for k-tuples (i.e., for every type in TpCk

(σ, k)), if both databases have the
same number of k-tuples of that type then the relations defined by the query in each
database also agree in the same sense, considering the schema of the databases with
the addition of a relation symbol with the arity of the query. Note the difference
with the classes QCQk in ([Tur01a], [Tur04]), where the cardinalities of the corre-
sponding sets of tuples may be different. By Fact 1 equality in the set of Ck-types
for k-tuples realized in two given databases is equivalent to ≡Ck , i.e., equality of
Ck theories. Moreover, by Fact 2 the size of the tuples which we consider for the

types is irrelevant. Thus, queries in QCQCk

may also be regarded as those which

preserve equality of Ck theories. Note that the different classes QCQCk

form a

hierarchy, i.e., for every k ≥ 1, QCQCk

⊆ QCQCk+1

. This follows from the notion

of Ck-type and from the definition of the classes QCQCk

. It can be also obtained
as a straightforward corollary of Theorem 13.

Hence, queries in CQ may be considered as ranging from those for whose compu-
tation we need to consider every property of the input database up to isomorphism
(i.e., every FO property), to those for whose computation it is enough to consider
the Ck properties of the input database, for some fixed k. Different sub-classes

QCQCk

in the hierarchy QCQCω

correspond to different degrees of “precision”
with which we need to consider the input database to evaluate the queries in the
sub-class on that database.

Next, we give an important result from [CFI92] which we will use in most of

our proofs. Then, we show that the hierarchy defined by the sub-classes QCQCk

σ ,
for k ≥ 1, is strict.

Proposition 8. ([CFI92]) For every k ≥ 1, there are two non isomorphic graphs
Gk, Hk, such that Gk ≡Ck Hk.

Proposition 9. For every k ≥ 1, there is some h > k such that QCQCh

σ ⊃ QCQCk

σ .

Proof. The inclusion is trivial and can also be easily obtained as a corollary to
Theorem 13. For the strict inclusion we will use the graphs Gk, Hk of Proposition
8. Note that by Proposition 3, for every pair of the graphs Gk, Hk there exists an
integer h > k such that the Ch-types are FO-types for both graphs. Let us write
h as h(k). Then, for every k ≥ 1, by Proposition 8 there are nodes in one of the
graphs, say Gk, whose Ch(k)-types are not realized in the other graph Hk. Then we
define for every k ≥ 1, the query fk in the schema of the graphs, say σ, as the nodes
of the input graph whose Ch(k)-types are not realized in Hk. We will show first

that fk ∈ QCQCh(k)

σ . Let I , J be an arbitrary pair of graphs with I ≡Ch(k) J . If
they are Ch(k) equivalent to Hk, then the result of fk will be the empty set for both
graphs. If they are not Ch(k) equivalent to Hk, then clearly the nodes in the result
of fk will have the same Ch(k)-types in both graphs. So, fk preserves realization of

Ch(k)-types and hence fk ∈ QCQCh(k)

σ . Now, we will show that fk 6∈ QCQCk

σ . To
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see that, note that fk(Hk) = ∅ by definition of fk, but by Proposition 8 and by our
assumption fk(Gk) 6= ∅ and Hk ≡Ck Gk. Thus, fk does not preserve realization of

Ck-types and hence fk 6∈ QCQCk

σ .

Proposition 10. QCQCω

⊂ CQ.

Proof. The inclusion is trivial, since clearly every query in QCQCω

is computable.
For the strict inclusion we will use again the graphs Gk, Hk of Proposition 8. We
define a query f on the schema of the pairs of disjoint graphs, say σ, as the nodes
in the first graph, whose FO-type is not realized in the second graph. Clearly,
f is computable and total. Now, towards a contradiction, let us assume that

f ∈ QCQCω

. Then, for some h ≥ 1, f ∈ QCQCh

σ . For some order of the pairs
of corresponding graphs as in Proposition 8, say (Gh, Hh), the result of f is non
empty, by the definition of f . If we consider now the pair (Gh, Gh), the result of f

is empty. Since (Gh, Hh) ≡Ch (Gh, Gh), it turns out that f 6∈ QCQCh

σ , which is a

contradiction. Thus, f 6∈ QCQCω

.

3.1 A Reflective Machine for Logics with Counting.

We will now define a model of computation to characterize the sub-classes QCQCk

σ .
In [Ott96], M. Otto defined a new model of computation of queries inspired by

the RM of [AV95], to characterize the expressive power of fixed point logic with
counting terms (see [Imm99]). Here, we define a machine which is similar to the
model of Otto, but which is inspired by the RRM of [APV98], instead. In this
paper, we will not compare the expressive power of the model of Otto and ours.
However, it is straightforward to prove that the machine of Otto can be simulated
in our model.

Definition 11. For every k ≥ 1, we define the reflective counting machine of
variable complexity k which we denote by RCM k, as a reflective relational machine
RRMk where dynamic queries are Ck formulas, instead of FOk formulas. In all
other aspects, our model works in exactly the same way as RRM k. We define
RCMO(1) =

⋃
k≥1 RCM

k.

We need first a technical result. Then, we can prove the characterization of the
expressive power of the model RCMk.

Let ϕ be a formula of some logic L, where the relation symbols R1, . . . , Rk, with
arities r1, . . . , rk, are used. Let ϕ1(x11, . . . , x1r1), . . ., ϕk(xk1, . . . , xkrk

) be also for-
mulas in L. We say that ϕ̂ is obtained from ϕ by composition with ϕ1, . . . , ϕk, if for
every 1 ≤ i ≤ k, every occurrence of an atomic formula of the form Ri(z1, . . . , zri

)
in ϕ, is replaced by the formula ϕi in such a way that, for all 1 ≤ j ≤ ri, each
occurrence of the free variable xij in ϕi is replaced by the variable zj .

Lemma 12. Let k ≥ 1, let σ be a schema, let I be a database of schema σ and let
M be an RCMk which computes a query of schema σ. Then, there is a formula
ϕM,I in Ck which defines on I the relation resulting from the computation of M
on input I. Moreover, ϕM,I depends only on M and I.
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Proof. The only transitions of M which may affect the content of the output re-
lation in the relational store of M, are those transitions where a Ck formula is
evaluated, and the relation defined by the evaluation is assigned to some relation
symbol in the relational store. Informally, in every computation step where a Ck

formula, say ψ, is evaluated, we can use composition as defined above, replacing
each relation symbol R which is used in ψ, and which is not in σ, by the last Ck

formula whose resulting relation from its evaluation on the relational store was as-
signed to R. Then, by induction on the length of the computation of M on input
I , and by applying composition, it is straightforward to prove that we get finally
a Ck formula ϕM,I which, evaluated on I , defines the same output relation as the
computation of M on input I . And clearly this formula depends only on M and
I . Finally, note that Ck is closed under composition, as defined above.

Theorem 13. For every k ≥ 1, the class of total queries which are computable by

RCMk machines is exactly the class QCQCk

.

Proof. a) (⊆): Suppose that an r-ary query f of schema σ is computable by a
RCMk M, for some k ≥ r. And let I and J be two databases of schema σ such

that TpCk

(I, k) = TpCk

(J, k). According to the definition of the RCMk machine,
the only way to assign a relation to an r-ary relation symbol in the relational
store is through a Ck formula with r free variables, say ϕ. And, by Fact 18 the
result of the evaluation of ϕ on the database in the relational store of M is the
projection of the union of some equivalence classes in the relation of equality of
Ck-types for k-tuples over I . That is, ϕ is equivalent to the disjunction of some
isolating formulas of Ck-types for r-tuples. But, by definition, the isolating formulas
express the same Ck-types in every database of the corresponding schema. Thus,
the r-tuples from dom(J) which form the relation induced by ϕ in J must be
those with the same Ck-types as the r-tuples from dom(I) which form the relation

induced by ϕ in I . So TpCk

(〈I, f(I)〉, r) = TpCk

(〈J, f(J)〉, r). By Fact 2, also

TpCk

(〈I, f(I)〉, k) = TpCk

(〈J, f(J)〉, k), so f ∈ QCQCk

. Note that the only way
for the machine not to evaluate the same formula ϕ for both databases is the
existence of a Ck sentence which evaluates to different truth values on I and J .
But this is not possible by Fact 1 because I ≡Ck J .

b) (⊇): Let f ∈ QCQCk

be an r-ary query of schema σ for some k ≥ r. We
build an RCMk machine Mf , which will compute f . We use a countably infinite
number of k-ary relation symbols in its relational store. With the input database
I in its relational store, Mf will build an encoding of a database I ′ in its TM tape

such that TpCk

(I, k) = TpCk

(I ′, k). For this purpose, Mf will work as follows:

(i) Mf finds out the size of I , say n. Note that this can be done through an
iteration by varying m in the query ∃≥mx(x = x) ∧ ¬∃≥m+1x(x = x) which
is in C1.

(ii) Then Mf builds an encoding of every possible database I ′ of schema σ and
of size n in its TM tape with domain {1, . . . , n}.
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(iii) For every I ′ and for every k-tuple si over I ′, Mf builds on its TM tape the
isolating formula χsi

(as in Proposition 4) for the Ck-type of si in the database

I ′, and in this way we get isolating formulas for the types in TpCk

(I ′, k).

(iv) Mf evaluates as dynamic queries the formulas χsi
, for every i, which are in

Ck and assigns the results to the working k-ary relation symbols Si in the
relational store, respectively (note that these queries are evaluated on the
input database I).

(v) If every relation Si is non-empty, and if the union of all of them is the set

of k-tuples over I , then it means that TpCk

(I, k) = TpCk

(I ′, k) and I ′ is the
database we were looking for; otherwise, we try another database I ′. Note
that Mf can check whether the relation Si is empty with the dynamic query
∃x1 . . . xk(Si(x1, . . . , xk)).

(vi) Now Mf computes f(I ′) on its TM tape, which is possible because f ∈ CQ
and f is defined on I ′ because it is total, and then expands the r-ary relation
f(I ′) to a k-ary relation fk(I ′) by taking the cartesian product with dom(I ′).

(vii) Mf builds fk(I) in the relational store as the union of the relations Si which
correspond to the Ck-types χsi

of the k-tuples si which form fk(I ′), and
finally it reduces the k-ary relation fk(I) to an r-ary relation f(I).

Corollary 14. RCMO(1) = QCQCω

.

Corollary 15. The computation model RCMO(1) is incomplete. That is, there are
computable queries which cannot be computed by any RCMO(1) machine.

Corollary 16. Let f ∈ CQ, of some schema σ. Then, for every k ≥ 1 and for every
natural number i, if f preserves realization of Ck-types for k-tuples for every pair
of databases in Bσ, then f also preserves realization of Ck+i-types for (k+ i)-tuples
for every pair of databases in Bσ.

Remark 17. The hierarchy defined by the classes QCQCk

is not only strict, but it
is orthogonal to the hierarchy of complexity classes defined in terms of TIME and
SPACE of Turing machines (like LOGSPACE ⊆ PTIME ⊆ NP ⊆ PSPACE ⊆
EXPTIME). This is also the case with the classes QCQk of ([Tur01a], [Tur04]).
Note that any recursive predicate, evaluated on the number of equivalence classes
in the (equivalence) relation defined by equality of Ck-types in the set of k-tuples

of a database, is in QCQCk

. Therefore, there is no complexity class defined by any

bounds in TIME or SPACE of Turing machines which may include QCQCk

. And
this is the case for every k ≥ 1. In Section 5 we make some considerations to this
regard.
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4 Homogeneity in Logics with Counting

In this section, we will study some properties of databases which are relevant to the
computation power of the machines RCMO(1), when working on databases with
such properties. That is, we will prove that there are important queries which
cannot be computed by an RCMO(1) on the whole class of databases of a given
schema, but whose restriction to certain classes of databases are computable by
such machines.

First, we will give some definitions and well known facts which we need (see
[Ott97]). Let k, l be positive integers such that k ≥ l ≥ 1. Let us denote by ≡k

the (equivalence) relation induced on the set of l-tuples over a given database I by
equality of Ck-types of l-tuples. That is, for every pair of l-tuples āl and b̄l over I ,

āl ≡k b̄l iff tpCk

I (āl) = tpCk

I (b̄l).

Fact 18. For every schema σ, for every database I of schema σ, for every k ≥ 1, for
every 1 ≤ r ≤ k, and for every Ck formula ϕ of signature σ, with r free variables,
the relation which ϕ defines on I is the projection of the union of some equivalence
classes in the relation ≡k for k-tuples over I .

When the query which ϕ expresses is of arity k, i.e., when r = k, the result
simply means that the query cannot distinguish between two k-tuples whose Ck-
types are the same. On the other hand, if r < k, the intuitive idea is the same, but
of course the k-tuples in the equivalence classes of ≡k must be reduced to r-tuples
in some uniform way.

So that the equivalence classes in the relation ≡k for r-tuples, are unions of
equivalence classes in the relation ≡k for k-tuples, reduced to r-tuples in some
uniform way. And this is what the first part of the following fact shows.

Fact 19.

• For every schema σ, for every database I of schema σ, for every k ≥ 1, for
every 1 ≤ r ≤ k, every equivalence class in the relation ≡k for r-tuples over
I , is the projection of the union of some equivalence classes in the relation
≡k for k-tuples over I .

• For every schema σ, for every database I of schema σ, for every k ≥ 1, for
every 1 ≤ r ≤ k, every equivalence class in the relation ≡r for r-tuples over
I , is the projection of the union of some equivalence classes in the relation
≡k for k-tuples over I .

From Fact 19 it follows that allowing more variables in isolating formulas for
Ck-types of tuples results in a more precise view of the properties which identify
a given sub-set of tuples among the whole set of tuples which may be built over
the database. By Proposition 3, we know that the limit is FO which includes the
logic Ck for every natural k. Types in FO are isomorphism types (and, hence, also
automorphism types) for tuples of every length in every database. So, we want to
consider the number of variables which are needed for a given database and for a
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given integer k to express in FO with counting quantifiers the properties of the
k-tuples in that database up to automorphism. For this purpose we define different
variants of the notion of homogeneity from model theory (see [EF99] and [CK92])
in the context of logics with counting. For every k ≥ 1 and for any two k-tuples
āk and b̄k over a given database I , we will denote as ≡' the (equivalence) relation
defined by the existence of an automorphism in the database I mapping one k-tuple
onto the other. That is, āk ≡' b̄k iff there exists an automorphism f on I such
that, for every 1 ≤ i ≤ k, f(ai) = bi.

Let k ≥ 1. A database I is Ck-homogeneous if for every pair of k-tuples āk and
b̄k over I , if āk ≡k b̄k, then āk ≡' b̄k. Let σ be a schema. A class C of databases
of schema σ is Ck-homogeneous if every database I ∈ C is Ck-homogeneous.

The next fact is immediate (see [Ott97]).

Fact 20. Let k ≥ 1. If a database I is Ck-homogeneous, then for every 1 ≤ l ≤ k
and for every pair of l-tuples āl and b̄l over I , if āl ≡k b̄l, then āl ≡' b̄l.

We define next a presumably stronger notion regarding homogeneity: strong
Ck-homogeneity. To the author’s knowledge it is not known whether there exist ex-
amples of classes of databases which are Ck-homogeneous for some k, but which are
not strongly Ck-homogeneous. This was also the case with the analogous notions
in ([Tur01a], [Tur04]). However, the consideration of strong Ck-homogeneity makes
sense not only because of the intuitive appeal of the notion, but also because this
is the property which we use in Proposition 27 to prove that the class QCQC (see
Definition 26) is a lower bound with respect to the increment in computation power
of the machine RCMk when working on strongly Ck-homogeneous databases. Up
to know, we could not prove that this result holds for Ck-homogeneous databases as
well. Let k ≥ 1. A database I is strongly Ck-homogeneous if it is Cr-homogeneous
for every r ≥ k. Let σ be a schema. A class C of databases of schema σ is strongly
Ck-homogeneous if every database I ∈ C is strongly Ck-homogeneous.

Note that, by Proposition 3, every database is strongly Ck-homogeneous for
some k ≥ 1. However, it is clear that this is not the case with classes of databases.

In [Ott96] it was noted that the discerning power of the machine defined there,
which is similar to our machine RCMk (see discussion before Definition 11), is
restricted to Ck-types for k-tuples. So, the following result seems quite natural,
and is somehow implicit in Otto’s work. If f is a query of schema σ, and C is a class
of databases of schema σ, we will denote as f |C the restriction of f to the class C.

Theorem 21. For every schema σ and for every k ≥ 1, there is a query f such
that if C and C′ are any two classes of databases of schema σ such that C is Ck-
homogeneous and C ′ is not Ck-homogeneous, then f |C is computable by an RCMk

machine but f |C′ is not computable by any RCMk machine.

Proof. For every k ≥ 1, and for every database I , we define the Boolean query
f as follows: f(I) = TRUE iff the number of equivalence classes in the relation
≡' for k-tuples over I is even. The query f is clearly computable by an RCM k

machine on classes of databases which are Ck-homogeneous. To see this, note
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that we can use the same construction as in the proof of Theorem 13 to build
the isolating formulas for Ck-types for k-tuples, which for Ck-homogeneous classes
of databases, by definition, are also automorphism types for k-tuples. Note that
different relation symbols Si of item iv in that proof can have the same contents,
since there can be several k-tuples of the same Ck-types in I . For each pair Si, Sj

of those relations, Mf can check whether they are different simply with the query
∀x1 . . . xk(Si(x1, . . . , xk) ↔ Sj(x1, . . . , xk)). Then, Mf can count on its TM tape
the number of different relations Si. Note that this is the number of Ck-types for
k-tuples realized in I , and as I ∈ C and C is Ck-homogeneous, this is also the
number of equivalence classes in ≡'.

On the other hand, for some J ∈ C ′, J is not Ck-homogeneous. Then in
that database J , the number of Ck-types realized is different than the number of
equivalence classes in ≡' since, by definition, there are at least two k-tuples ā, b̄ in
J such that ā ≡k b̄ but ā 6≡' b̄. And, as we saw in Theorem 13, no RCMk machine
can distinguish between the k-tuples ā, b̄ in J , so that no such machine can count
the number of equivalence classes in ≡' on that database.

Remark 22. Note that the sub-class of queries whose restriction to Ck-homo-
geneous databases can be computed by RCMk machines, but which cannot be
computed by such machines on arbitrary classes of databases, is quite big. As we
saw in the proof of the previous theorem, an RCM k machine can count the num-
ber of equivalence classes in ≡' for k-tuples on a Ck-homogeneous database as an
intermediate result on its TM tape. Then we can use this parameter, which we
will call type index for k-tuples following [AV95], as the argument for any recur-
sive predicate in an RCMk machine. Thus, the whole class of recursive predicates,
evaluated on the type index for k-tuples of the input database, is included in the
sub-class of queries whose restriction to Ck-homogeneous databases can be com-
puted with RCMk machines, but which cannot be computed by such machines on
arbitrary classes of databases.

However, we still do not know whether the machine RCM k can achieve com-
pleteness when computing queries on databases which are Ck-homogeneous. This
problem has important consequences in query computability and complexity, and
is also related to the expressibility of fixed point logics (see [Ott96]). In particu-
lar, it is related to the problem of knowing whether whenever two databases are
Ck-homogeneous, and are also Ck equivalent then they are isomorphic.

Next, we will show that the property of strong Ck-homogeneity will allow
RCMO(1) machines to extend their power with respect to computability of queries.

Proposition 23. For every schema σ and for every k ≥ 1, there is a class of
queries F = {fr}r≥k such that, if C and C ′ are any two classes of databases
of schema σ such that C is strongly Ck-homogeneous and C ′ is not strongly Ck-
homogeneous, then for every fr ∈ F , fr|C is computable by an RCM r machine, but
it is not the case that for every fr ∈ F , fr|C′ is computable by an RCM r machine.

Proof. We can use here the same strategy as we used in the proof of Theorem
21. For every r ≥ k, we define fr as follows: fr(I) = TRUE iff the number of
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equivalence classes in the relation ≡' for r-tuples over I is even. Clearly, for I ∈ C,
and for every r ≥ k, the equivalence classes in ≡r coincide with the equivalence
classes in ≡' for r-tuples over I . So, for each r ≥ k, fr can be computed by an
RCMr machine, as we did in the proof of Theorem 21.

On the other hand, for some J ∈ C ′, which is not strongly Ck-homogeneous,
there wil be some r ≥ k, such that the equivalence classes in ≡r will not coincide
with the equivalence classes in ≡' for r-tuples over J . Then no RCM r machine will
be able to distinguish between r-tuples which have the same Cr-type, and hence
no RCMr machine will be able to count the equivalence classes in ≡' for r-tuples
over J .

With the next notion of homogeneity we intend to formalize the property of
the classes of databases where Ck equivalence coincides with isomorphism. Among
other classes, this is the case with the class of trees ([IL90]), the class of planar
graphs ([Gro98b]) and the class of databases of bounded tree-width ([GM98]). With
this stronger notion we can achieve completeness with RCM k machines.

Definition 24. Let σ be a schema and let C be a class of databases of schema σ.
Let k ≥ 1. We say that C is pairwise Ck-homogeneous, if for every pair of databases
I, J in C, and for every pair of k-tuples āk ∈ (dom(I))k and b̄k ∈ (dom(J))k, if
āk ≡k b̄k, then there exists an isomorphism f : dom(I) −→ dom(J) such that
f(ai) = bi for every 1 ≤ i ≤ k.

Proposition 25. For every schema σ, for every k ≥ 1 and for every query f of
schema σ in CQ, if C is a recursive and pairwise Ck-homogeneous class of databases
of schema σ, then there is an RCMk machine which computes f |C.

Proof. We use the same strategy to build an RCM k machine Mf which computes
a given query f ∈ CQ, as we did in the proof of Theorem 13. In this case we must
also check that the database I ′ which we build in the TM tape is in the class of
databases on which Mf is defined to work. This is the reason why we ask for the
class to be recursive. So we will know that if I ′ and I (the input database) realize
the same Ck-types for k-tuples, then the two databases are isomorphic, and we can
compute f on I ′ in the TM part of Mf . Finally, to build f(I), we just take the
corresponding equivalence classes of the k-tuples which realize in I the Ck-types
for k-tuples which are realized in f(I ′).

4.1 A Lower Bound for Strong Homogeneity

The queries which preserve realization of FO-types for tuples (i.e., the computable
queries), but which do not preserve realization of Ck-types for k-tuples for any k,

do not belong to any QCQCk

class. This is because if we fix some k ≥ 1, the number
of variables which are needed for the automorphism types for k-tuples in different
databases may be different. And the number of different bounds for the number
of variables may be infinite. Thus, we define a new class of queries, following the
same strategy as in [Tur01a, Tur04] regarding FOk. The intuitive idea behind
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this new class is that queries which belong to it preserve, for any two databases of
the corresponding schema, the realization of types in Ck where k is the number of
variables which is sufficient for both databases to define tuples up to automorphism.

Definition 26. For any schema σ, let us denote as arity(σ) the maximum arity of
a relation symbol in the schema. We define the class QCQC as the class of queries
f ∈ CQ of some schema σ and of any arity, for which there exists an integer
n ≥ max{arity(f), arity(σ)} such that for every pair of databases I, J in Bσ, the
following holds:

TpCh

(I, h) = TpCh

(J, h) =⇒ TpCh

(〈I, f(I)〉, h) = TpCh

(〈J, f(J)〉, h)

where 〈I, f(I)〉 and 〈J, f(J)〉 are databases of schema σ ∪ {R} with R being
a relation symbol with the arity of the query f , and h = max{n,min{k :
I and J are strongly Ck-homogeneous}}.

We also require that the answer to the query f must be the union of complete
Ch-types, i.e., for all databases I in Bσ, and for all tuples ā, b̄ in dom(I)r, if

ā ∈ f(I) and tpCh

I (ā) = tpCh

I (b̄), then also b̄ ∈ f(I).

Clearly, QCQC ⊇ QCQCω

. But, unlike the analogous class QCQ in [Tur01a,
Tur04], we do not know neither whether the inclusion is strict, nor whether CQ
strictly includes QCQC . Both questions seem to be non trivial since they are
related to the problem which we mentioned after Remark 22, by Proposition 27
below.

Note that the queries based on the Ck-type index for k-tuples which we men-
tioned in Remark 22 are in QCQC . Therefore, the class of queries which can be com-
puted by RCMO(1) machines on classes of databases which are Ck-homogeneous
is actually quite big. It is big enough to allow for a RCM k machine to go through
the whole hierarchy QCQCω

, in a sense which will be clarified next, and, further, to
get into QCQC . This is actually quite natural, because classes of databases which
are strongly Ck-homogeneous will not benefit from the possibility of using > k
variables in dynamic queries, since Ck-types on them cannot be further refined, as
long as the number of variables which may be used remains constant for the whole
class of databases. So, the next result is rather intuitive.

Proposition 27. Let f be a query of schema σ in QCQC, with parameter n ac-
cording to Definition 26. Let C be a class of databases of schema σ which is strongly
Ck-homogeneous for some k ≥ 1. Then, the restriction of f to C is computable by
an RCMh machine where h = max{n, k}.

Proof. Let f and C be as in the statement of the proposition, and let f ′ be the
restriction of f to C. Let I, J ∈ C, such that I is is strongly Ck1 -homogeneous and J
is strongly Ck2 -homogeneous. Without loss of generality, let k1 ≤ k2 ≤ k. We must
prove that f ′ can be computed on I and J by an RCMn machine, if k ≤ n, or by an
RCMk machine, otherwise. If k ≤ n, by Definition 26, if TpCn

(I, n) = TpCn

(J, n),
then TpCn

(〈I, f ′(I)〉, n) = TpCn

(〈J, f ′(J)〉, n)}. So, by Definition 7 and Theorem
13, f ′ can be computed on I and J by a RCMn machine. As for every pair
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of databases in C, the minimum k′ such that both databases are strongly Ck′

-
homogeneous is bounded by k, then f ′ preserves realization of Cn-types for n-tuples
in C. So, f ′ is computable by a RCMn machine.

If, on the other hand, k > n, we have two different cases. Either k2 ≤ n < k
or n ≤ k2 ≤ k. In the first case f ′ preserves realization of Cn-types for n-tuples
in I and J , and by Corollary 16 f ′ also preserves realization of Ck-types for k-
tuples in those databases. In the second case f ′ preserves realization of Ck2 -types
for k2-tuples in I and J , and by the same corollary f ′ also preserves realization of
Ck-types for k-tuples in those databases. Then, by the same argument as before, in
both cases f ′ preserves realization of Ck-types for k-tuples for any pair of databases
in C. So, f ′ is computable by a RCMk machine.

5 Further Considerations

5.1 Infinitary Logics with Counting

The infinitary logic Lk
∞ω , for every k ≥ 1, has the usual first order rules for the

formation of formulas. In addition, it is closed under infinitary conjunctions and
disjunctions. Formulas in Lk

∞ω contain at most k different variables. We write
Lω
∞ω =

⋃
k L

k
∞ω. Similarly, we define infinitary logics with counting, denoted as

Ck
∞ω and Cω

∞ω, respectively. These logics are defined in the same way as Lk
∞ω

and Lω
∞ω with the addition of all counting quantifiers. That is, Ck

∞ω has the same
formation rules as Lk

∞ω plus the following one: if ψ is a formula in Ck
∞ω , x is a

variable and m ≥ 1, then ∃≥mx(ψ) is also a formula in Ck
∞ω , provided the number

of different variables in ∃≥mx(ψ) is ≤ k. Then Cω
∞ω =

⋃
k≥1 C

k
∞ω.

We define the following recursive fragments of the infinitary logics Cω
∞ω and

Lω
∞ω as in [AVV95]. For every k ≥ 1, let Ck

∞ω |rec denote the fragment of the
infinitary logic Ck

∞ω that contains exactly all sentences with a recursive class of
models. We also define Lk

∞ω|rec in the same way. Now we give a characterization
of the expressive power of the computation model RCM k (and, hence, also of each

subclass QCQCk

) in terms of the fragment Ck
∞ω |rec.

Theorem 28. For every k ≥ 1, the expressive power of the RCM k machine,
restricted to Boolean queries, is exactly Ck

∞ω |rec.

Proof. ⊆): Let M be an RCMk of schema σ for some natural k. By Propositions
5 and 6, every database I is characterized up to ≡Ck

∞ω
by a Ck formula. Let αI

be such a formula. On the other hand, by Lemma 12, the computation of M on a
database I is equivalent to a Ck formula ϕM,I . Then we build the Ck

∞ω formula
ΨM ≡

∨
I∈Bσ

(αI ∧ϕM,I). Clearly, the models of the formula ΨM are the databases

accepted by M. To see that the formula is in the fragment Ck
∞ω |rec, note that we

can build a Turing machine M which simulates M and which accepts a database
iff it is accepted by M.

⊇): Let Ψ be a Ck
∞ω formula of schema σ such that its class of models is

recursive, i.e., it is decidable by some Turing machine M . We build an RCM k
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machine M which works as follows. On input I it builds on the TM tape an
encoding of every possible database I ′ of schema σ building the corresponding
isolating formulas for the Ck-types realized in I ′, as in the proof of Theorem 13,
until I ≡Ck I ′. Since by Proposition 6 in finite databases Ck equivalence coincides
with Ck

∞ω equivalence, we have I |= Ψ iff I ′ |= Ψ. Hence, M simulates the TM M
in its tape on input I ′ and M accepts I iff M accepts I ′.

We can use the same strategy to characterize the expressive power of the model
RRMk (and, hence also of each subclass QCQk of ([Tur01a], [Tur04]) in terms
of the corresponding fragment Lk

∞ω |rec. For the proof, we use Corollary 2.3 of
[Ott97] and a result from ([APV98], Proof of Theorem 5.6) which is analogous to
our Lemma 12 for RRMk machines.

Theorem 29. For every k ≥ 1, the expressive power of the RRM k machine,
restricted to Boolean queries, is exactly Lk

∞ω |rec.

Now we will get a similar characterization for the classes of machines which
might not halt on all input databases, i.e., for those machines which compute partial
queries. For the rest of the present sub-section we will consider partial computable
queries, that is, queries which are not necessarily defined on all the databases of a
given schema. It is noteworthy that this is the way in which computable queries
were originally defined (see [CH80] and [AHV94]), though usually only total queries
are considered in the literature.

Following the definition in [AVV95] for the logic Lω
∞ω , for every k ≥ 1, let

Ck
∞ω|r.e. denote the fragment of the infinitary logic Ck

∞ω that contains exactly
all sentences whose classes of models are recursively enumerable. We also define
Lk
∞ω|r.e. in the same way. Now we give a characterization of the expressive power

of the computation models RCMk when we consider also machines which compute
partial queries, in terms of the fragment Ck

∞ω|r.e..

Theorem 30. For every k ≥ 1, the expressive power of the RCM k machine which
computes partial queries, restricted to Boolean queries, is exactly Ck

∞ω |r.e..

Proof. ⊆): We follow a similar strategy to the one used in the proof of Theorem
28. For the construction of the Ck

∞ω formula ΨM, we only consider the databases
I for which the machine M halts, i.e., the databases on which the query computed
by M is defined. The models of ΨM are clearly the databases for which the query
computed by M evaluates to true. To prove that the class of models of ΨM is r.e.,
we construct a Turing machine M which builds on its work tape a sequence (which
of course is countably infinite) of all the databases of the schema of the query
of every possible size, ordered by their size. At the same time M simulates the
operation of the RCMk M on all the different databases built on the work tape,
executing one step at a time on each of them, in such a way that after M executes
the first step of the computation of M on a given database in the sequence, say Ii,
it then executes one more step of the computation of M on each one of the previous
databases in the sequence, i.e., on I1, I2, . . . , Ii−1. Whenever the simulation of M
on a given database halts, if it halts in an accepting state, then M outputs that
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database in the sequence which it builds on the output tape of the machine. Then,
M stops the simulation of M on that particular database. In this way we get a
recursive enumeration of the models of the sentence ΨM in the output tape of M .

⊇): In this case we also follow a similar strategy as in the corresponding case in
the proof of Theorem 28. Once M built on its TM tape an encoding of a database
I ′ such that I ≡Ck I ′, the machine M uses the TM M of the first part of the
proof of the present theorem, to enumerate the models of ΨM. Then, M accepts
the input database if the database I ′ is generated in the enumeration of M .

Using an analogous strategy we get a characterization of the expressive power
of the computation models RRMk when we consider also machines which compute
partial queries, in terms of the fragment Lk

∞ω|r.e..

Theorem 31. For every k ≥ 1, the expressive power of the RRM k machines which
compute partial queries, restricted to Boolean queries, is exactly Lk

∞ω|r.e..

5.2 The Relevance of Counting in the Hierarchy

Note, that the hierarchy defined by the sub-classes QCQCk

by using k as a pa-
rameter, has some similar properties to the hierarchy defined by QCQk classes of
([Tur01a], [Tur04]). Both are strict and properly contained in CQ, both are orthogo-
nal to the Turing machine complexity hierarchy, and are characterized syntactically
by machines which have a very similar behaviour. However, the expressive power of
every logic Ck is much bigger than the expressive power of the corresponding logic
FOk ([Ott97]). It turns out that the sub-classes QCQk are “very small”, while the

sub-classes QCQCk

are “very big”, in a certain precise sense which we define below.
This fact can be clearly noted by using the notion of asymptotic probability (see
Section 2). Recall from ([Tur01a], [Tur04]) that each sub-class QCQk, as well as
the whole hierarchy QCQω, have a 0–1 Law. This implies a strong limitation with
respect to expressive power. It is well known that a query as simple as the parity
query (i.e., q(I) = true iff |dom(I)| is even) has not a 0–1 Law, and this means
that this query does not even belong to the whole hierarchy QCQω. On the other
hand, the parity query belongs to the first layer of the hierarchy QCQCω

. Recall
the second part of the proof of Theorem 13. There, we defined a machine RCM k

which in first place computed the size of the input database. This was done using
a dynamic query in C1, so that the parity query can be computed by an RCM 1

machine. Hence, it belongs to the sub-class QCQC1

. Then the following result
follows immediately.

Proposition 32. For any k ≥ 1, QCQCk

does not have a 0–1 Law. Hence, the
whole hierarchy QCQCω

does not have a 0–1 Law either.

Propositions 33 and 35 below (see [Gro98a]) will help us to understand the
difference in the expressiveness of the corresponding sub-classes, as well as of the
hierarchies. Proposition 33 is obtained as a corollary to the combination of a result
by L. Babai, P. Erdős, and S. Selkow [BES80], and a result by N. Immerman and
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E. Lander [IL90]. Proposition 35 can be also found in [Gro98a], and follows from
results of P. Kolaitis and M. Vardi [KV92].

Proposition 33. ([BES80] and [IL90]) There is a class C of graphs with µC = 1
such that for all graphs I, J ∈ C we have I ' J ⇐⇒ I ≡C2 J . Moreover, for all
I ∈ C and a, b ∈ dom(I), there is an automorphism mapping a to b iff tpC2

I (a) =

tpC2

I (b).

Note that the class C of Proposition 33 is C2-homogeneous, moreover, it is also
strongly C2-homogeneous. So, the following corollary is immediate.

Corollary 34.

(i) Almost all graphs are strongly C2-homogeneous.

(ii) Almost all graphs which are C2-homogeneous are also strongly C2-homo-
geneous.

Further note that this result is quite relevant not only in our context, but also
in complexity theory, since the isomorphism problem is well known to be in NP ,
whereas M. Grohe has proved that for every k ≥ 1, Ck equivalence is PTIME
complete under quantifier free reductions ([Gro96]). Examples of classes of well
known graphs, though not having asymptotic probability 1, where Ck equivalence
coincides with isomorphism are the class of planar graphs ([Gro98b]) and the class
of trees ([IL90]).

On the other hand, the class of linear graphs is an example of a class where
FO2 equivalence coincides with isomorphism (see [EF99]).

Proposition 35. ([KV92]) Let k ≥ 1. If C is a class of graphs such that for all
graphs I, J ∈ C we have I ' J ⇐⇒ I ≡FOk J , then µC = 0.

Following [HKL96], though using a slightly different perspective, we define the
notion of equality of queries almost everywhere. Let σ be a schema, and let q,q′ be
two computable queries of schema σ. Let µ(q=q′) be as follows:

µ(q=q′) = lim
n→∞

|{I ∈ Bσ : dom(I) = {1, . . . , n} ∧ q(I) = q′(I)}|

|{I ∈ Bσ : dom(I) = {1, . . . , n}}|

By Proposition 33 for every computable query q there is a query q′ in QCQC2

(and, hence in each layer QCQCk

, for k ≥ 2) such that µ(q=q′) = 1, i.e., such that q′

coincides with q over almost all databases. On the other hand, by Proposition 35,
this cannot be true for any layer in QCQω, and not even for the whole hierarchy.

On the other hand, regarding expressive power, the following result shows that
the number of variables allowed in formulas is more relevant than allowing the
formulas to be infinite and allowing the use of counting quantifiers. Moreover,
as it is well known (see [Gro98a]), if we consider only ordered databases, then

Lω
∞ω = Cω

∞ω, and hence, QCQω = QCQCω

.
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Proposition 36. ([Ott97]) For every k ≥ 1, there is a Boolean query which is
expressible in FOk+1, but which is not expressible in Ck

∞ω.

As every query which is expressible in FO is clearly recursive, by using Theorem
13 and Theorem 28 we get the following corollary:

Corollary 37. For every k ≥ 1, QCQk+1 6⊆ QCQCk

.

On the other hand, if we fix the number of variables, the strict inclusion is
straightforward.

Proposition 38. For every k ≥ 1, QCQk ⊂ QCQCk

.

Proof. The inclusion follows from Theorems 28 and 29. As to the strict inclusion,
note that for every k ≥ 1, an RCMk machine can compute the Ck-type index for
k-tuples of its input (see Remark 22), while clearly no RRM k machine can do it
for arbitrary databases.

Finally, we give some examples of known classifications of queries in the infini-
tary logics Cω

∞ω and Lω
∞ω and, hence, by Theorems 28 and 29, in the hierarchies

QCQCω

and QCQω, respectively.

Example 39.

1): The size of a database is even ∈ QCQC1

and 6∈ QCQω (see observation before
Proposition 32).

2): A graph is regular ∈ QCQC2

and 6∈ QCQω ([Ott97]).

3): A graph is Eulerian ∈ QCQC2

and 6∈ QCQω ([Ott97]).

4): A graph is a disjoint union of an even number of cliques ∈ QCQC2

and
6∈ QCQω ([KV95]).

5): A graph is connected ∈ QCQ3 and 6∈ QCQC2

([Gro98a]).

6): A graph has an even number of connected components ∈ QCQCω

and 6∈ QCQω

([KV95]).

7): A projective plane is Desargian 6∈ QCQC3

([Gro98a], see there also the defi-
nition of projective planes).

As we pointed out in Remark 17 (see also [Tur01a], [Tur04]), the hierarchies

QCQω and QCQCω

are orthogonal to the hierarchy of complexity classes defined in
terms of TIME and SPACE in Turing machine complexity. Then, we can use these
hierarchies to refine the TIME and SPACE complexity classes by intersecting these
classes with the different hierarchies QCQω and QCQCω

. In this way, we obtain
complexity classes which are much finer. This may result in a deeper and more
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subtle understanding on the nature of queries. Next, we give some examples to
illustrate this point.

Combining results from [KL99] and [KL00] with known results in descriptive
complexity and with Theorem 29, we get that the following Boolean queries, defined
in the class of finite groups, belong to the sub-class (QCQ4 ∩ NLOGSPACE):
1): Given a group G, it is completely reducible and centreless; 2): Given a group
G and a pair of elements a, b, the subgroup generated by a is a subgroup of the
subgroup generated by b; 3): Given a group G and a pair of elements a, b, the two
elements generate the same subgroup.

As to the hierarchy QCQCω

, combining known results in descriptive complexity
(see [Ott97]) with results from computational complexity and with Theorem 28,

we have that the following two Boolean queries belong to the sub-class (QCQC2

∩
PTIME): 1): A graph is Eulerian; 2) A graph is regular.
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