
Acta Cybernetica 17 (2005) 247–271.

Coordination Language for Distributed Clean∗

Zoltán Horváth†, Zoltán Hernyák‡, and Viktória Zsók†

Abstract

The distributed evaluation of functional programs and the communica-
tion between computational nodes require high-level process description and
coordination mechanism. This paper presents the D-Clean high-level func-
tional language, which supports the distributed computation of Clean func-
tions over a cluster. The lazy functional programming language Clean is
extended by new language elements in order to achieve parallel features. The
distributed computations of functions are expressed in the form of process-
networks. D-Clean introduces language primitives to control the dataflow in
a distributed process-network.

A process scheme defines a partial computation graph, where the nodes are
functions to be evaluated and the edges are communication channels. The
computational nodes are implemented as statically typed Clean programs.
The schemes are parameterized by functions, types and data for defining
process networks.

D-Clean is compiled to an intermediate level language called D-Box. The
D-Clean generic constructs are instantiated into D-Box expressions. D-Box
is designed for the description of the computational nodes. D-Box expres-
sions hide implementation details and enable direct control over the process-
network. The asynchronous communication is based on language-independent
middleware services.

The present paper provides the syntax and the informal semantics of both
coordination languages. To illustrate the definition of a distributed functional
computational pattern using the D-Clean language a farm skeleton running
example is presented.
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Introduction

Nowadays it is prevailing to develop and to test parallel functional applications
on PC clusters [13]. The distributed evaluation of functional programs and the
communication between computational nodes require high-level process description
and coordination mechanism [1, 15]. Therefore it became important to provide dis-
tributed environments making possible the development of applications with client-
programs written in functional programming languages. The proposed D-Clean lan-
guage is an extension of the functional programming language Clean and supports
the distributed computation of Clean functions. The computation of functions is
expressed in the form of distributed process-networks. D-Clean primitives control
the dataflow in the process-networks.

Skeletons are computation patterns, algorithmic schemes that captures common
computation mechanism. Skeletons [12, 17] can be defined and parameterized by
functions, types and data. They are widely used in parallel computations. In
functional programming skeletons can be combined with evaluation strategies in
order to obtain optimal parallel behaviour [11]. D-Clean supports the composition
of the coordination primitives to build compound coordination structures. The
coordination structures are used to define distributed functional computational
skeletons, process schemes. D-Clean schemes are parameterized by types and by
functions. Before instantiation the actual values of the type parameters have to
be inferred from the type description of the embedded Clean expressions1. In the
case of the widely used skeletons (like farm, divide and conquer, pipe and reduce
[4, 5, 8]) it is easier to deal with the type inference problem than in general.

D-Clean is compiled to an intermediate level language called D-Box, similar to
the idea of [2]. D-Box is designed for the description of the computational nodes
implemented as Clean programs, which use middleware services for asynchronous
communication [9, 20]. D-Box expressions hide implementation details and enable
direct control over the process-network.

The D-Clean control language has a higher level coordination role, while D-Box
has a lower abstraction level. The syntax and informal semantics of both coordina-
tion languages are described. We also present a mapping from D-Clean expressions
to D-Box expressions.

The D-Box language is a description language for the source codes of compu-
tational nodes. In this language input and output protocols can be defined. A
transformation of D-Box definitions into Clean language programs is described. A
graphical developer environment was built to support a direct use of the D-Box
language.

In section 1 the main concepts of the D-Clean language are presented. As an
example a farm computation is defined. Section 2 presents the context-free syntax
of the D-Clean language. The semantics of the D-Clean language is described in
section 3 in an informal way. In section 4 the D-Box expressions corresponding
to the farm example are included. Section 5 defines the context-free syntax of the

1Similar to the C++ template parameter deduction [19].
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Figure 1: Farm scheme

D-Box language. The semantics of the D-Box language is described in section 6
also in an informal way and in section 7 the mapping from D-Clean to the D-Box
language is given. Section 8 shows an example how to compile D-Box definitions
into Clean language programs using channels. Section 9 presents measurements
about the object code to be generated. A second example is presented in section
9 to demonstrate the expressiveness and the ease-of-use of D-Clean and the D-Box
graphical developer environment. In section 10 the related works are discussed and
in the section 11 the conclusion closes the paper.

1 An example written in D-Clean

The present paper uses the well-known farm skeleton as running example (see
Figure 1). The farm skeleton divides the input data into n parts. The n parts of
the original input are sent to n different worker processes. Each worker applies the
same function on the partial data and calculates the n sub-results. The final result
can be combined when every worker completes the tasks.

In our example the farm scheme is used as a simple distributed computation,
where the computation node ’G’ generates a finite list of integer numbers to be
sorted. The master node ’M’ receives the sortable data, splits into sublists and
sends them to its workers (a worker is denoted by ’W’). The workers sort the sublists
and send them back to the farm master node (’M’). The master node receives
the sublists and merges them on-the-fly using the comparer function lessThan.
The finally produced sorted list can be forwarded to the last computational node
(denoted by ’F’) for any further processing.

A D-Clean program consists of a start expression, in which a collection of user-
defined D-Clean process schemes can be applied. A process scheme itself is written
in D-Clean too. The start expression is given as the DistrStart function definition.

D-Clean coordination structures are mappings between communication channels
and are designed as generic templates parameterized by types and by functions.
The value of type parameters are determined by type inference. The templates are
instantiated by the D-Clean pre-compiler at compile time.

The matching of types between the base types of channels and the types of em-
bedded Clean expressions is a static semantic requirement. A D-Clean expression
may be a compound expression or a direct use of coordination primitives. Process
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scheme definitions are named D-Clean expressions with formal parameters. A pro-
cess scheme library can be built using the coordination primitives and the already
defined schemes2.

In our running example a user-defined scheme FARM can be applied in the start
expression in the following way:

DistrStart =
(DStop finish) (FARM comb solve divide N) (DStart generator)

where
generator = [1,4,2,3,8,6]
finish = (WriteResultDat "sorted.dat")
comb = (mergeSort lessThan)
solve = qsort
divide = (divide N)
N = 2

The above start expression is a composition of three coordination structures. It
applies two D-Clean language coordination primitives (DStop and DStart) and the
user-defined scheme called FARM (see below the D-Clean definition of the FARM
scheme).

By Ch a we denote the type of a channel carrying elements of type a. A
D-Clean expression is a mapping from a sequence of input channels to a sequence
of output channels. The sequence of the types of the input and output channels of
a coordination structure is given in the <Ch a, Ch b, ...> form. In our example
the inferred signatures of the instantiated control structures are as follows:

DStart generator :: <Ch Int>
FARM :: <Ch Int> -> <Ch Int>
DStop finish :: <Ch Int>

DStart generates the data to be sorted (corresponds to the box ’G’ in Fig. 1).
An expression called generator is used for generating the input data. The
generator is actually a Clean function with the output type [Int]. The gen-
erated data are sent via a channel to the FARM coordination structure, which
computes the sorted list and forwards it to the last component of the computation.
Finally DStop applies the WriteResult "sorted.dat" function on the sorted list
received from the farm in order to save the result (it corresponds to the box ’F’ in
Figure 1). The pseudo codes of DStart and DStop primitives are presented in the
appendix.

The definition of the process scheme FARM uses four parameter functions: comb,
solve, divide and n. The process scheme is the composition of the coordination
primitives DMerge, DApply and DDivideS:

SCHEME FARM comb solve divide n =
(DMerge comb) (DApply solve) (DDivideS divide n)

2We present a solution to the problem of the recursively called instances of the coordination
structures in a language extension of the D-Clean [10].
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The process scheme FARM composes the three actions taken by the farm com-
putational pattern: first the incoming data list is divided into n parts using the
parameter function divide as the parameter of DDivideS. After that the solve
function is applied by DApply on every sub-list. Finally their sub-results are col-
lected and merged by DMerge into one list applying the parameter function comb.

The instance of the process scheme FARM has the signature <Ch Int> -> <Ch
Int>, while the instances of the components have the following signatures3:

DDivideS divide n :: <Ch Int> -> <Ch Int, Ch Int, ..., Ch Int>
DApply solve :: <Ch Int, ..., Ch Int > -> <Ch Int, ..., Ch Int>
DMerge comb :: <Ch Int, Ch Int, ..., Ch Int> -> <Ch Int>

The set of the worker boxes corresponds to the boxes generated from the
DApply solve expression.

The functions mergeSort lessThan, qsort, divide, N are the actual param-
eters of the FARM process scheme in our example. The role of the master node
is shared between two computation nodes, implementing the tasks of DDivideS
and DMerge respectively. The input is divided into N pieces by the user defined
divide function, where N=2 is a constant value. The sublists are sent to the worker
nodes using a special splitk output protocol (see section 3). The workers solve
the main task - the sorting of the sublists using the qsort standard Clean func-
tion. After sorting the sublists, the workers send their results to the collector node,
which receives the input sublists and merges them using the mergeSort lessThan
function.

2 The syntax definition of the D-Clean language

We introduce the following extensions to the standard BNF syntax:

• {notion}+ means that the notion occurs at least once,
• {notion}* means that the notion occurs zero, one or more times,
• {notion}-list means one or more occurrences of the notion separated by

commas,
• terminals are closed between apostrophes.

〈DISTART RULE〉 :==”DistrStart” ”=” 〈DEXPR〉
〈DEXPR〉 :==〈DPRIMITIVE〉 | 〈SCHEME NAME〉 { 〈act param〉 }*

| 〈DEXPR〉 〈DEXPR〉
〈DPRIMITIVE〉 :==〈DStart USE〉 | 〈DStop USE〉 | 〈DMap USE〉 |

〈DDivideS USE〉 | 〈DMerge USE〉
〈SCHEME DEF〉 :==”SCHEME” 〈SCHEME NAME〉 { 〈formal param〉}*

”=” { 〈DEXPR〉 }+
〈SCHEME NAME〉 :=={〈UpCaseLetter〉 }+

3The description of the type inference system in general is out of the scope of this paper.
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Every D-Clean program contains exactly one start expression given as the right-
hand side of the DistrStart definition. A scheme is a compound D-Clean coordi-
nation structure parameterized by types and by functions. The actual parameters
of schemes are Clean expressions [16]. The identity function is the simplest Clean
expression which can be embedded into a D-Clean expression.

The type of the arguments of the Clean expressions determines the type of
the communication channels, which is restricted by the limitations of the used
middleware interface. Due to these limitations we say that T is a transmissible
type, if T is Int, Real, Bool, Char or a record built from these basic Clean types.
At this time functions cannot be transferred through channels.

〈act param〉 :== 〈fun expr〉
〈fun expr〉 :== 〈clean expr〉 | ”(|” 〈DEXPR〉 ”|)” | 〈fun expr〉 〈fun expr〉
〈formal param〉 :== 〈identifier〉

The direct use of coordination primitives is a parameterized form of basic dataflow
structures.

〈DStart USE〉 :== ”DStart” 〈act param〉
〈DStop USE〉 :== ”DStop” 〈act param〉
〈DDivideS USE〉 :== ”DDivideS” 〈act param〉 〈number〉
〈DMerge USE〉 :== ”DMerge” 〈act param〉
〈DMap USE〉 :== 〈Simple DMap DEF〉 | 〈Multi DMap DEF〉
〈Simple DMap USE〉 :== 〈DApplyVariations〉 〈act param〉
〈Multi DMap USE〉 :== 〈DApplyVariations〉 ”[” { 〈act param〉 }-list ”]”
〈DApplyVariations〉 :== ”DApply” | ”DMap” | ”DReduce” | ”DProduce”

| ”DFilter”
〈UpCaseLetter〉 :== ”A” | ”B” | ”C” | ”D” | . . . | ”Z”

3 Informal semantics of the D-Clean language

This section presents the newly introduced coordination primitives in an informal
way. The figures of the section illustrate the working mechanism. F denotes the
function expression embedded into the coordination primitive.

The coordination structures use channels for receiving the input data required
for the arguments of their function expressions. The results (components of a k
tuple in general case) of the function expression are sent to the output channels.
Every channel is capable of carrying data elements of a specified base type from one
computational node to another one. We use the unary algebraic type constructor
Ch a to construct channel types, where the base type a is a transmissible type.

A coordination primitive usually has two parameters: a function expression (or
a list of function expressions) and a sequence of input channels. The coordination
primitives return a sequence of output channels. The signature of the coordination
primitive, i.e. the types of the input and output channels are inferred according
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to the type of the embedded Clean expressions. In the following the aCh denotes a
channel type, while aCh∗ denotes a finite sequence of channel types.

DStart fun expr :: aCh∗

The task of DStart primitive is to start the distributed computation by producing
the input data for the dataflow graph. It has no input channels, only output
channels. The results of the fun expr are sent to the output channels. Each D-
Clean program contains at least one DStart primitive (see Figure 2).

F ...

1

k

2

Figure 2: DStart node

DStop fun expr :: aCh∗ –> <>

When a function expression embedded into a DStop primitive has k arguments,
then the computation node evaluating the expression needs k input channels. Each
input channel carries one argument for the function expression.

The task of this primitive is to receive and save the result of the computation.
It has as many input channels as the function expression requires, but it has no
output channels. DStop closes the computational process. Each D-Clean program
contains at least one DStop primitive (see Figure 3).

DStop is the last element of the D-Clean composition, the last element of the
control flow. In some cases when the control flow contains forks, the network has
multiple DStop elements.

F...

1

k

2

Figure 3: DStop node

DApply fun expr :: aCh∗ –> aCh∗

This variant of DApply applies the same function expression n times (see Figure
4/a) on n ∗ k channels. When the function expression has k arguments of types:
t1, t2, ..., tk, the number of input channels is n ∗ k. The types of the arguments
periodically match the type of the channels:
< Ch t1, Ch t2, ..., Ch tk, Ch t1, Ch t2, ..., Ch tk, ..., Ch t1, Ch t2, ..., Ch tk > .
If the expression produces a tuple with m elements of the type (p1, p2, ..., pm), then
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F...
k

2

F
1

k

2

...

F
1

k

2

...
1

m

2

...
1

m

2

...
1

m

2

...

...

1

1. {
2. {
n. {

F1
...

...

F2
...

...

F3
...

...

(Identity)

1

2

k
1

1

2

k
2

1

2

k
3

1

2

m
1

1

2

m
2

1

2

m
3

Figure 4: DApply variant a) and variant b).

the output channel sequence will contain m ∗ n elements, repeating the m type-
sequences n times:
< Ch p1, ..., Ch pm, Ch p1, ..., Ch pm, ..., Ch p1, ..., Ch pm > .

DApply <fun expr> :: aCh∗ –> aCh∗

The second variant of DApply may apply different function expressions, which are
given in the <fun expr> sequence. The types and the number of the arguments of
the function expressions can also be different. If the <fun expr> sequence contains
an identity function, then data received via the corresponding channel is directly
forwarded to the next node.

The sequence of the input channels is constructed out of the channels required
by the function expressions in the <fun expr> sequence. The output sequence of
channels is built up according to the results obtained by applying the function ex-
pressions. For example DApply <F1, id, F2, F3]> yields the structure presented
in Figure 4/b.

DFilter (a –> Bool) :: aCh∗ –> aCh∗

DFilter <a –> Bool> :: aCh∗ –> aCh∗

The DFilter primitive filters the elements of the input channels using a boolean
function. It has two variants similarly to DApply. This is the D-Clean variant of
the standard filter library function. This variant filters the incoming data elements
before sending them to the outgoing channels.

F

Figure 5: A DFilter node
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DMap fun expr :: aCh∗ –> aCh∗

DMap <fun exp> :: aCh∗ –> aCh∗

DMap is a special case of DApply where the function expression must be an ele-
mentwise processable function [11]. It is the D-Clean variant of the standard map
library function. It modifies the incoming data elements processing them one by
one.

A valid parameter function expression for DMap can be a function expression
either of type a->b or of type [a]->[b]. Suppose we have a list of n sublists
as input data, then the qsort::[!a]->[a] sorting function4 is a valid function
expression as parameter for DMap. It takes every sublist element of the input list
and applies the parameter function expression, i.e. the qsort function on it. The
result will be the list of the n sorted sub-lists.

F

Figure 6: DMap nodes

DReduce fun expr :: aCh∗ –> aCh∗

DReduce <fun expr> :: aCh∗ –> aCh∗

DReduce is another special case of DApply with similar restrictions. A valid expres-
sion for DReduce has to decrease the dimension of the input channel type5. A valid
expression has the type of form [a]->b. For example the sum::[a]->a function -
which computes the sum of the elements of the input list - is a valid expression for
DReduce.

DProduce fun expr :: aCh∗ –> aCh∗

DProduce <fun expr> :: aCh∗ –> aCh∗

DProduce is another special case of DApply. The expression has to increase the
dimension of the channel type6. A valid expression must be of the form a->[b].
For example the divisors::Int->[Int] function - which generates all the divisors
for an integer number - is a valid expression for a DProduce.

DDivideS fun expr n :: aCh∗ –> aCh∗

DDivideS is a static divider (see Figure 7). The expression splits the input data
list into n parts and broadcasts them to n computational nodes. This primitive is
called static divider since the value of n must be known at pre-compile time.

4! denotes strict evaluation of the argument.
5For example: list of lists → list.
6For example: list → list of lists.
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The base type of the sublists has to be the same type as of the original list.
Therefore the types of the output channels are the same as of the input ones.
Consequently there will be n output channels.

F ...

1

n

2

Figure 7: DDivideS node

DMerge fun expr :: aCh∗ –> aCh∗

DMerge collects the input sublists from channels and builds up the output data
lists. All the input channels must have the same type (see Figure 8).

F...

1

n

2

Figure 8: DMerge node

DLinear <fun expr> :: aCh∗ –> aCh∗

DLinear is a special coordination primitive. It simplifies the definition of the
pipeline computation graph, where the nodes are connected to each other in a
linear way (see Figure 9).

F ... F ...
... F ...

1 2 3

Figure 9: DLinear nodes

DLinear <expr1, expr2, . . . , exprk> is equivalent to the following composition of
DMap primitives: (DMap exprk) ...(DMap expr2) (DMap expr1).

4 Examples on D-Box language

The D-Box language is used to generate the Clean code for a computational node.
D-Clean expressions are mapped to D-Box definitions, the details of the mapping
are given in section 7. Every box definition describes a computational node which
contains an embedded expression, the input protocol and the output protocol (see
Figure 10).
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Figure 10: A computational node

BOX <BOXID>

{ { <INPUT_DEF> }, { <EXPRESSION_DEF> }, { <OUTPUT_DEF> } }

A computational node may use more than one input channel. At this level a
channel identification mechanism is used. One input channel is described by its type
and by the unique id of the channel. Notation [T ] is used in the type description
of a channel, which is used to transfer a single list of elements of the base type T .
Whenever a list of lists is sent via a channel, type [[T ]] is associated to it.

The input protocol also determines the synchronization mode of the input chan-
nels. There are three modes: memory, join1 and joink (see section 5). The input
is completely defined when the list of the input channels (<INPUT_CHANNEL_LIST>)
and the input protocol (INPUT_PROC_MODE) are given.

The number and/or the base types of the input channels can be different from
the types of arguments of the expression (<ARGUMENT_TYPE_LIST>). The matching
of channel types to argument types is completed at code generation time according
to the actual protocol. The same holds for the <RESULT_TYPE_LIST> too.

The output protocol definition has the same structure as the input definition.
A complete D-Box definition has the following parts:

BOX <BOXID>

{ { (<INPUT_CHANNEL_LIST>), INPUT_PROC_MODE },

{ (<ARGUMENT_TYPE_LIST>), <EXPRESSION>, (<RESULT_TYPE_LIST>) },

{ (<OUTPUT_CHANNEL_LIST>), OUTPUT_PROC_MODE } }

The running example presented in section 1 is mapped into D-Box expressions.
A detailed description of the generated D-Boxes is given in the following.

The BoxID 00 definition describes a computational node, which generates the
data. Because it requires no input, there are no input channels, and the input
protocol is the memory protocol. It produces a list of integers, which values are
sent to the channel with the id #1. The split1 protocol means a one-to-one mapping
of the components of the results to the output channels.

BOX BoxID_00 // for DStart generator

{ { ( null ), memory }, // INP CHNS and PROT

{ ( null ), generator, ( [Int] ) }, // EXPR

{ ( ( [Int], 1 ) ), split1 } // OUTP CHNS and PROT }

The BoxID 01 definition describes the first task of the farm master node (the
node marked with ’M’ in the farm scheme in Figure 1). It receives integer elements
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from channel #1. The join1 protocol reads this input channel and passes the
data elements to the expression as arguments. The expression applies the divide
function on it with the constant parameter N. The result is a list of N sublists. In
the running example N = 2. These two sub-lists are sent to channels #2 and #3
by the splitk output protocol.

BOX BoxID_01 // for DDivideS divide N

{ { ( ( [Int], 1 ) ), join1 }, // INP CHNS and PROT

{ ( [Int] ), divide N, ( [[Int]] ) }, // EXPR

{ ( ( [Int], 2 ), ( [Int], 3 ) ), splitk } // OUTPUT }

The BoxID 02 definition implements the first farm worker node. It receives the
input list from channel #2, then sorts the list using the qsort function. The sorted
list is sent to channel #4.

The split1 protocol sends the elements of the result directly to a channel.

BOX BoxID_02 // for DMap qsort

{ { ( ( [Int], 2 ) ), join1 },

{ ( [!Int] ), qsort, ( [Int] ) },

{ ( ( [Int], 4 ) ), split1 } }

The BoxID 03 describes the second farm worker node. The only differences are
the id-s of the input and output channels: #3 and #5 respectively.

The BoxID 04 definition presents the D-Box code of the second job of the farm
master node. The data received from the two farm worker nodes on channels #4
and #5 are merged. After reconstructing the list of lists it applies the mergeSort
lessThan function composition. In this particular case the expression merges two
sorted lists and sends to channel #6.

The joink protocol merges the different input channels and constructs a list of
lists. The elements of sub-lists are received on different channels.

BOX BoxID_04 // for DMerge (mergeSort lessThan)

{ { ( [Int], 4 ), ( [Int], 5 ) ), joink },

{ ( [[Int]] ), mergeSort lessThan, ( [Int] ) },

{ ( ( [Int], 6 ), split1 }}

The last D-Box definition describes the final box. It receives the input data
from channel #6 and saves it to a file. The box has no output channel, so the
memory protocol is used.

BOX BoxID_05 // for DStop (WriteResultDat "sorted.dat")

{ { ( ( [Int], 6 ), join1 },

{ ( [Int] ), WriteResultDat "sorted.dat", (null ) },

{ ( null ), memory } }

5 Syntax definition of the D-Box language

The D-Box language has a lower abstraction level for describing the distributed
computation. Each D-Box definition defines one computational node. The defini-
tion consists of three parts: the input protocol, the embedded expression and the
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output protocol. Both protocols contain the descriptions of the channels and the
processing mode.

〈BOXDEF〉 :== ”BOX” 〈BoxID〉
”{” 〈InpProt〉 ”,” 〈ExpressionDef〉 ”,” 〈OutProt〉 ”}”

The expression part contains the specification of the types of the arguments, the
Clean expression itself and the types of the components of the result.

〈ExpressionDef〉 :== ”{” ”(” ({〈TypeDef〉}-list | ”null”) ”)” ”,” 〈Expression〉 ”,”
”(” ({〈TypeDef〉}-list | ”null”) ”)” ”}”

The expression can be a pure Clean expression, or a composition of Clean functions
and embedded D-Clean expressions. An embedded D-Clean expression must be
lifted out [10]. It generates a sub-graph, which has an entry and an exit box. On
this level (D-Box level) the box id-s of these boxes must be given as arguments of
a BOXES expression.

〈Expression〉 :== 〈BoxesExpr〉 | 〈CleanFv〉 | 〈Expression〉 〈Expression〉
〈BoxesExpr〉 :== ”BOXES” ”(” 〈BoxID〉 ”,” 〈BoxID〉 ”)”
〈BoxID〉 :== 〈string〉

The input section contains the description of the channels (types and id-s) and the
concept of synchronizing and mapping the incoming data elements.

〈InpProt〉 :== ”{” ({〈IChannelDef〉}-list|”null”) ”,” 〈InpProtMain〉 ”}”
〈InpProtMain〉 :== ”join1” | ”joink” | ”memory”
〈IChannelDef〉 :== ”(” 〈TypeDef〉 ”,” 〈IChannelID〉 ”)”
〈IChannelID〉 :== 〈Number〉

Similarly the output section defines the output channels and the output protocol.

〈OutProt〉 :== ”{” {〈OChannelDef〉}-list ”,” 〈OutProtMain〉 ”}”
〈OutProtMain〉 :== ”split1” | ”splitk” | ”memory”
〈OChannelDef〉 :== ”(” 〈TypeDef〉 ”,” 〈OChannelID〉 ”)”
〈OChannelID〉 :== 〈Number〉

Transmissible types, and list or list of list of transmissible types are allowed.

〈TypeDef〉 :== 〈TypeName〉 | ”[” 〈TypeName〉 ”]” | ”[[” 〈TypeName〉 ”]]”

6 Informal semantics of the D-Box language

A box defines a computational node which is a Clean language program. It re-
ceives input data from input channels, then executes the computation and sends
the results to output channels. The channels in our environment are remote ob-
jects providing operations to retrieve data elements from and to store elements. A
computational node may perform the following actions:
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1. connects to the input channels and gathers their identifiers into a list,
2. reads the input data elements from all the input channels,
3. processes the input data elements using the embedded expression of the box,
4. calculates the result of the computation,
5. connects to the output channels and gathers their identifiers into a list,
6. sends the result to the channels.

Some of these actions may overlap in time as a consequence of the lazy evaluation
strategy of the host functional language.

The protocols define the processing mode of the input and the output channels,
including the mapping of the input channels to the arguments of the expression.
First we enumerate the protocol names, then we define their meanings.

The input protocols are the following: memory, join1, joink, while the out-
put protocols are: memory, split1, splitk. In the following we give a detailed
description of the above mentioned actions and protocols.

If a box has no input channels, then actions 1 and 2 are not performed. The
input protocol is the memory protocol.

When the input arguments of the expression are carried by different input chan-
nels, a one-to-one mapping between arguments and channels is required. This input
protocol is join1.

Let us consider an example. The first channel (list a) is processed lazily, but
the second one is processed strictly (list b). The difference is given by the type
definition of the embedded expression. The ! annotation indicates the strict eval-
uation mode, since the default evaluation is the lazy one. Observe that the lazy or
strict processing of the channels depends on the type definition of the expression.
The processing mode is automatically implemented by the protocol.

expr:: [a] [!b] -> [c]
list_a = list of all the elements from input channel 1
list_b = list of all the elements from input channel 2
result = expr list_a list_b
send result to the output channel

Let us observe how a strictness annotation controls the semantics of the protocol.
The first parameter of the expr is a list of a evaluated lazily. Reading and evaluating
of the next element of list a will always be postponed until it is really needed by
the evaluation of the expression. The type of the second argument is annotated for
a strict evaluation. The Clean reduction system is forced to read and evaluate the
whole list b before the evaluation of the expression starts.

An argument of the expression may have the type of list of lists (sub-lists). When
elements belonging to different sub-lists are carried by different input channels, then
the list of lists is built by the input protocol joink.

Similar rules are valid for the output protocols. When the result of the ex-
pression is a tuple (r1, r2, . . . , rk), we need k output channels, one for each result
component. In this case the output protocol is the split1 protocol. The result
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elements are sent to the output channels one by one. When a computation is ter-
minated (all the input elements are processed), then a terminal signal is sent to all
the output channels.

When the expression produces list of sub-lists, then the splitk protocol may
be used. In this case we need as many output channels as many sub-lists the result
list contains. The splitk protocol sends the sub-lists to different channels. When
the box needs no output channel (for example a DStop-box), the output protocol
is memory.

7 Mapping from D-Clean to D-Box

First we define several functions. The elementTypeOf function gives the base type
of the given list. Type inference is done at compile time. It is required to determine
all the types of the necessary channels before the code generation starts.

The lengthOf function determines how many elements are in a finite list. In
case a list is a list of lists, then lengthOf determines the number of the sublists.
The nextChannelID function generates the next free channel id number which
was never used before and they are positive integer numbers. The nextBoxID nn
function generates a unique box id. It is required to be in form ”BoxID nn” and
must be unique.

Here we give the structure of a TUP, the base type used in the description of
the coordination structures at D-Box level:

TUP = ( TypeDef, Id )
where TypeDef defines the type of the channel and the Id is a unique identifi-

cation number of the communication channel.
In addition we define an OUTPROT_LIST expression using the following algo-

rithm. The algorithm processes the type of the components of the result of a given
expression and generates the output protocol list for the box. The output protocol
list is constructed according to the result types of the expression and generating
id-s for the channels in parallel.

OUTPROT_LIST :: [TypeDef] -> [TUP]

OUTPROT_LIST [] = []

OUTPROT_LIST [x:xs] = [(x, nextChannelID) : OUTPROT_LIST xs]

Function INPROT_LIST processes a list of types (the list of the types of the
arguments of an expression) and a TUP list in parallel and generates the input
protocol list for the box. The types of the arguments has to match the types of the
channels.

INPROT_LIST :: [TypeDef] [TUP] -> [TUP]

INPROT_LIST [] [] = []

INPROT_LIST [x:xs] [(t, c) : ts]

| match(x,t) = [(t, c) : INPROT_LIST xs ts]

| otherwise = abort "Error!"

For each D-Clean coordination primitives we give the description of the gener-
ated boxes including the protocols used in the following.
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The input protocol of a DStart structure is null. The output channel list is
defined by processing the output types of the expression. This primitive uses the
split1 protocol. The result of the mapping is a box definition and a TUP list of
output channels.

D( [ DStart expr ] = [ (B, RESULT_OUTPUT_TUP_LIST) ], where

RESULT_OUTPUT_TUP_LIST = OUTPROT_LIST (outputTypeOf expr)

B = BOX NextBoxID_nn

{ { (null), memory },

{ inputTypeOf expr, expr, outputTypeOf expr }

{ RESULT_OUTPUT_TUP_LIST, split1 } }

The output protocol of a DStop primitive is always null. The input channel list
is determined by the previous control structure in the computational graph. The
result of the mapping is a box definition and an empty output TUP list.

D [ DStop expr TUP list ] = [ (B, RESULT_OUTPUT_TUP_LIST) ], where

RESULT_OUTPUT_TUP_LIST = []

BOX NextBoxID_nn

{ { INPROT_LIST (inputTypeOf expr) TUP_List, join1 },

{ inputTypeOf expr, expr, outputTypeOf expr },

{ (null), memory } }

The DApply primitive is mapped to n box definitions (see Section 3). One box
uses k channels as its own input channels from the TUP list. The mapping is
done when all the channels are bound. Each box will contain the same expression.
The input protocol is always join1 and the output protocol is split1. The result
output TUP list is the merged list of all the output channels of all the boxes. The
result also contains a set of boxes.

D [ DApply expr TUP list ] = F TUP_list [] expr, where

F [] Y expr = Y

F TUP_List Y expr =

F (drop k TUP_List) (Y ++ [(B, OUTPUT_TUP_LIST)]) expr

where

OUTPUT_TUP_LIST = OUTPROT_LIST (outputTypeOf expr)

k = lengthOf (inputTypeOf expr)

B = BOX NextBoxID_nn

{ { INPROT_LIST (inputTypeOf expr) (take k TUP_list), join1 },

{ inputTypeOf expr, expr, outputTypeOf expr },

{ OUTPUT_TUP_LIST, split1 } }

The second variant of DApply is mapped to more box expressions (see Section 3),
but each box contains different expressions. Each box uses different numbers of
channels as their input channels according to the actual number of the arguments.
If the expression is the identity expression, there is no need to define a real box.
The result output TUP list is the merged list of all the output channels of all the
boxes. The result also contains a set of boxes.
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D [DApply expr list TUP list ] = F TUP_LIST expr_list [], where

F TUP_list [] Y = Y

F TUP_List [expr:xs] Y

| expr == id

= F (drop k TUP_List) xs (Y ++ [(B, OUTPUT_TUP_LIST)])

| otherwise

= F (drop k TUP_list) xs [Y : (B, OUTPUT_TUP_LIST)]

where

OUTPUT_TUP_LIST = OUTPROT_LIST (outputTypeOf expr)

k = lengthOf (inputTypeOf expr)

B = BOX NextBoxID_nn

{ { INPROT_LIST (inputTypeOf expr) (take k TUP_list), join1 },

{ inputTypeOf expr, expr, outputTypeOf expr },

{ OUTPUT_TUP_LIST, split1 } }

The following keywords are special cases of the DApply coordination primitive
and their semantics can be given in an analogous way:

D [DMap expr ] = D[ DApply expr ]
D [DMap expr list ] = D [ DApply expr list ]
D [DReduce expr ] = D [ DApply expr ]
D [DReduce expr list ] = D [ DApply expr list ]
D [DProduce expr list ] = D [ DApply expr ]
D [DProduce expr list ] = D [ DApply expr list ]
D [DFilter expr ] = D [ DApply (filter expr) ]
D [DFilter [expr1, expr2, . . . , exprk] ] =

D [ DApply [filter expr1, f ilter expr2, . . . , f ilter exprk] ]
DLinear keyword is a special case of the DMap primitive, so the semantics of it

can be given as the following composition:
D [DLinear [expr1, expr2, . . . , exprn] ] =

D [DMap exprn ... DMap expr2 DMap expr1 ]

DDivideS is mapped to a box definition where the output protocol is always
splitk. The output TUP list contains N elements. The divider expression splits
the input list into N sub-lists.

D [DDivideS expr N TUP list ]= [ (B, RESULT_OUTPUT_TUP_LIST) ],
where

RESULT_OUTPUT_TUP_LIST = OUTPROT (outputTypeOf expr) N

OUTPROT _ 0 = []

OUTPROT l k = OUTPROT_LIST l ++ OUTPROT l (k-1)

B = BOX NextBoxID_nn

{ { INPROT_LIST (inputTypeOf expr), TUP_list, join1 },

{ inputTypeOf expr, expr, outputTypeOf expr },

{ RESULT_OUTPUT_TUP_LIST, splitk } }

DMerge is mapped to a box definition where the input protocol is always joink
and the output protocol is split1. The result of the mapping produces an output
TUP list.
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D [DMerge expr TUP list ] = [ (B, RESULT_OUTPUT_TUP_LIST) ], where

RESULT_OUTPUT_TUP_LIST = OUTPROT_LIST (outputTypeOf expr)

B = BOX NextBoxID_nn

{ { INPROT (inputTypeOf expr), TUP_List, joink },

{ inputTypeOf expr, expr, outputTypeOf expr },

{ RESULT_OUTPUT_TUP_LIST, split1 } }

where

INPROT _ [] = []

INPROT l t = INPROT_LIST l t ++ INPROT l (drop k t)

k = lengthOf (InputTypeOf expr)

The problem of the embedded D-Clean expressions is discussed in [10].

8 Mapping from D-Box to Clean

The conversion between a D-Box code and a Clean program is straightforward. We
can use several functions defined in the middleware interface library. The library
contains skeletons for the pre-compiler, who instantiates them according to the
actual input types. First we initialize the middleware. Each computational node
communicates with at least one other computational node. Notation # introduces
a let expression, while #! forces an immediate evaluation of the let expression.
#! induces a sequential evaluation of the expressions. Function CHANNEL_FIND is
implemented according to the actual middleware.

The code generated from the following D-Box definition is presented:

BOX BoxID_04 // for DMerge (mergeSort lessThan)

{ { ( [Int], 4 ), ( [Int], 5 ) ), joink },

{ ( [[Int]] ), mergeSort lessThan, ( [Int] ) },

{ ( ( [Int], 6 ), split1 } }

After the middleware is initialized, the input channel list is built up by using
their ChannelID-s.

Start w =

#! w = MIDDLEWARE_INIT w

# (inp_chan_1,w) = CHANNEL_FIND 4 w

# (inp_chan_2,w) = CHANNEL_FIND 5 w

# input_channels = [inp_chan_1, inp_chan_2]

ChannelID-s are determined from the input protocol section of the box. After-
wards, the input process is started in order to gather all the incoming data elements
from the input channels.

# (input_data,w) = Joink input_channels w

Then we process the data:
# result = mergeSort lessThan input_data
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Before sending the result, connections to the output channels are required. The
ChannelID-s included into the box output protocol section are used.

# (outp_chan_1,w) = CHANNEL_FIND 6 w

# output_channels = [outp_chan_1]

The resulted data are sent to the output channels:
# w = Split1 output_channels result w

The complete generated code of our D-Box example is given here:
Start w =

#! w = MIDDLEWARE_INIT w

# (inp_chan_1,w) = CHANNEL_FIND 4 w

# (inp_chan_2,w) = CHANNEL_FIND 5 w

# input_channels = [inp_chan_1, inp_chan_2]

# (input_data,w) = Joink input_channels w

# result = mergeSort lessThan input_data

# (outp_chan_1,w) = CHANNEL_FIND 6 w

# output_channels = [outp_chan_1]

# w = Split1 output_channels result w

= w

9 Measurements

A sequential and several parallel implementations of the running example are mea-
sured and compared. We sorted integer lists of 250, 500, 1000, 2000, 4000 elements
and we used 2 and 4 PC-s for the parallel implementations. The first diagram (see
Figure 11) shows the computation time in seconds (Y axis) and the length of the
lists (X axis). We used a weighted comparer function lessThan to slow down the
computation simulating a complicated comparison of two data elements.

The diagram of the Figure 12 shows the speed-up. The diagrams show that
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Figure 11: The computation time of the FARM skeleton
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Figure 12: The speed-up of the FARM skeleton

the distributed implementation is efficient using the mapping from D-Clean to D-
Box. A slight increasing of the speed-up can be observed. In case the workers are
computing a weighted function, the overheads obtained during the communications
are negligible.

Similar measurements can be found in earlier papers [9, 20].

Henceforth a second example is presented to demonstrate the expressiveness
and ease-of-use of D-Clean. A matrix m is given with k columns and k rows.
A sequence of vectors vs =< v1, . . . vn > is generated, the size of each vector is
k. The sequence of products < v1 ∗ m, . . . , vt, . . . , vn ∗ m > has to be calculated
elementwise. We compute the sequence sequentially, but the k elements of each
product (vt ∗ m)(1..k) is calculated in a parallel way. Every vector vt is replicated
in k copies (vt1 , . . . vtk

) first and the scalar products of the columns and a copy of
the vector, (

∑k
j=1(vti(j) ∗ m(j)(i))) is computed in parallel for every i ∈ [1..k].

We present the structure of a D-Clean solution and the diagram of the corre-
sponding process network. We omit the details of the D-Box definitions, which may
be obtained by compiling D-Clean to D-Box or by generating D-Box source text
by the D-Box graphical developer tool [6] (see Figure 13).

DistrStart =

(DStop saver) (DMerge vectorize)

(DApply [multiply column_1, multiply column_2, ..., multiply column_k])

(DDivideS repeater k) (DStart vector_generator)

where

k = 4

saver = saveToFile "result.dat"

vectorize = id

column_1 = getColumn matrix 1

...

column_k = getColumn matrix k

repeater k inp = take k (repeat inp) // k copies

vector_generator:: [[Int]] // generates the vectors

getColumn:: [[Int]] Int -> [Int] // gets the ith column

multiply::[Int] [Int] -> Int
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Figure 13: Matrix-multiplier example

10 Related works

• PMLS and GpH are implicit parallel extensions of ML and Haskell respec-
tively [14], on the other hand D-Clean uses explicit coordination structures.

Opposed to skeleton based languages, D-Clean is designed to implement skele-
tons of distributed functional computations in the language itself.

• Eden [15, 13] extends Haskell to explicitly define parallel computation. Eden
program consits of processes and uses communication channels, and the pro-
grammer has explicit control over communication topology. The execution is
based on GHC implementation of concurrency, the run-time system controls
sending and receiving messages, process placements and data distribution.
On the other hand the middleware supporting the implementation of DClean
and DBox languages is not language specific, components developed using
other languages can be integrated into easily distributed applications.

• Nimo [3] is a visual functional dataflow language, supporting process net-
works. Nimo allows totally graphic programming only, while DClean and
DBox programs can be expressed in textual code form too. Nodes in Nimo
are restricted for a fixed set of primitive operations of Haskell prelude, while in
DClean nodes Clean expressions are allowed to achieve full power of functional
programming at node level. Nimo does not support distributed computing,
only concurrent execution is supported.

• JoCaml is an extension of Objective Caml with primitives for network-
transparent distributed and mobile programming [7] based on the join-
calculus model instead of a pure data flow approach.
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Advanced discussion and survey of the dataflow languages can be found in
[18]. Data oriented skeletons (like the farm skeleton) can be implemented us-
ing primitives which are quite similar to the primitives of dataflow languages.

11 Conclusion and future works

The distributed functional skeletal programming requires higher order coordination
structures in order to coordinate the computation of several functional clients in an
abstract way. We extended Clean with powerful coordination language elements
as tools for description of distributed computation patterns. We proposed a higher
level and an intermediate level coordination language, the D-Clean and the D-Box
languages. The implementation is based on a multi-paradigm environment, using
an object-oriented middleware, which supports the interconnection of client and
server programs written in different programming languages.

The high-level coordination language D-Clean is appropriate for definition of
functional skeletons at a very high abstraction level. These skeletons can be pa-
rameterized by types and by functions. As future work we plan to extend the
language with the possibility of parameterization of schemes by distribution strat-
egy and to enable the description of dynamic configurations. We also plan a de-
scription of a more formal type system and type constraints. Dynamic creation of
the computational nodes, communication channels and dynamic start of the func-
tional components are highly needed at the development of the applications using
recursive expressions.
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[10] Hernyák Z., Horváth Z., Zsók V.: Design of Language Elements for Dynamic
Distributed Computation of Clean Expressions on Clusters, In: Loidl, H.W.
(Eds.) Proceedings of the Fifth Symposium on Trends in Functional Program-
ming, Ludwig-Maximilians University, 25-26 November, Munich, Germany,
2004, pp. 257-270.
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13 Appendix

The pseudo code of DStart expr:
Start w

# (result1, result2, ..., w) = expr w

# (channel1, w) = Channel_FIND output_channel_id_1 w

...

# channels = [channel1, channel2,...]

# w = split1 channels result_1 result_2 ... w

= w

The pseudo code of DStop expr:
Start w

# (channel1, w) = Channel_FIND input_channel_id_1 w

...

# channels = [channel1, channel2,...]

# (data, w) = join1 channels w

= expr data w

The pseudo code of split1 and splitk:
split1 ::[ChannelID] [a] [b] [c] [d] ... *World -> *World

split1 channels data0 data1 data2 ... w

# w = SendStream channels!!0 data0 w

# w = SendStream channels!!1 data1 w

...

= w

splitk :: [ChannelID] [[a]] *World -> *World

splitk [] [] w = w

splitk [ch:channels] [d:data] w

= SendStream ch d w2

where

w2 = splitk channels data w

The pseudo code of join1:
join1 ::[ChannelID] *World -> ([a],[b],[c],...,*World)

join1 channels w

# (a,w) = ReceiveStream channels!!0 w

# (b,w) = ReceiveStream channels!!1 w

...

= (a,b,c,...,w)

The pseudo code of joink:
joink:: [ChannelID] *World -> ([[a]], *World)

joink [] w = ([],w)

joink [ch:cs] w = ( [data : remaining], w4 )

where

(data, w3) = ReceiveStream ch w

(remaining, w4) = joink cs w3


