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On regular languages determined by

nondeterministic directable automata∗

Balázs Imreh† and Masami Ito‡

Abstract

It is known that the languages consisting of directing words of determinis-
tic and nondeterministic automata are regular. Here these classes of regular
languages are studied and compared. By introducing further three classes of
regular languages, it is proved that the 8 classes considered form a semilattice
with respect to intersection.

1 Introduction

We recall that an input word of an automaton is called directing or synchronizing
if it brings the automaton from every state into the same state. An automaton is
directable if it has a directing word. The directable automata and directing words
have been studied from different points of view (see [2, 3, 5, 6, 7, 8, 10, 12, 13], for
example). For nondeterministic (n.d.) automata, the directability can be defined
in several ways. We study here three notions of directability which are defined in
[7] as follows. An input word w of an n.d. automaton A is

(1) D1-directing if the set of states aw in which A may be after reading w
consists of the same single state c whatever the initial state a is;

(2) D2-directing if the set aw is independent of the initial state a;

(3) D3-directing if there exists a state c included in all sets aw.

We mention that D1-directability of complete n.d. automata was already stud-
ied by Burkhard [1], where he gave an exact exponential bound for the length of
minimum-length D1-directing words of complete n.d. automata. In [5], classes of
languages consisting of directing words of different types of n.d. automata were
studied. Here, we extend our investigations to three further classes of languages
and present some of their properties. The paper is organized as follows. The next
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section provides general preliminaries, the formal definitions of the above language
classes and some earlier results. Finally, Section 3 presents some new properties of
the language families considered, in particular, it is proved that they constitute a
semilattice with respect to intersection.

2 Preliminaries

Let X be a finite nonempty alphabet. As usual the set of all (finite) words over X
is denoted by X∗ and the empty word by ε. The length of a word w is denoted by
|w|.

By a (deterministic) automaton we mean a triplet A = (A, X, δ), where A is
a finite nonempty set of states, X is the input alphabet, and δ : A × X → A is
the transition function. This function can be extended to A × X∗ in the usual
way. By a recognizer we mean a system A = (A, X, δ, a0, F ), where (A, X, δ) is an
automaton, a0(∈ A) is the initial state, and F (⊆ A) is the set of final states. The
language recognized by A is the set

L(A) = {w ∈ X∗ : δ(a0, w) ∈ F}.
A language is called recognizable, or regular, if it is recognized by some recognizer.
Sometimes, we say that the recognizer A accepts the language L(A).

An automaton A = (A, X, δ) can also be defined as a unary algebra A =
(A, X) for which each input letter x is realized as the unary operation xA : A →
A, a �→ δ(a, x). Now, nondeterministic automata can be introduced as generalized
automata in which the unary operations are replaced by binary relations. Therefore,
by a nondeterministic (n.d.) automaton we mean a system A = (A, X) where A
is a finite nonempty set of states, X is the set of the input signs (or letters), and
each sign x(∈ X) is realized as a binary relation xA(⊆ A×A) on A. For any a ∈ A
and x ∈ X , we define axA = {b ∈ A : (a, b) ∈ xA}. Thus, axA is the set of states
into which A may enter from state a by reading the input letter x. For any C ⊆ A
and x ∈ X , we set CxA =

⋃{axA : a ∈ C}. This transition can be extended to
arbitrary w ∈ X∗ and C ⊆ A. CwA is obtained inductively by

(1) Cε = C,
(2) CwA = (CvA)xA for w = vx, x ∈ X , w ∈ X∗.

An n.d. automaton A = (A, X) is called complete, or c.n.d. automaton, if axA �=
∅, for all a ∈ A and x ∈ X .

The notion of the directability of deterministic automata can be generalized to
n.d. automata in several ways. The following three definitions are taken from [7].
Let A = (A, X) be an n.d. automaton. For any word w ∈ X∗ we consider the
following three conditions:

(D1) (∃c ∈ A)(∀a ∈ A)(awA = {c});
(D2) (∀a, b ∈ A)(awA = bwA);
(D3) (∃c ∈ A)(∀a ∈ A)(c ∈ awA).
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If w satisfies condition (Di), then w is called a Di-directing word of A (i = 1, 2, 3).
For every i, i = 1, 2, 3, the set of Di-directing words of A is denoted by Di(A),
and A is called Di-directable if Di(A) �= ∅. It is proved (see [7]) that Di(A) is
recognizable, for every n.d. automaton A and i, i = 1, 2, 3. The classes of Di-
directable n.d. automata and c.n.d. automata are denoted by Dir(i) and CDir(i),
respectively.

Now, we can define the following classes of languages: For i = 1, 2, 3, let

LND(i) = {Di(A) : A ∈ Dir(i)} and LCND(i) = {Di(A) : A ∈ CDir(i)}.
Finally, let D denote the class of directable deterministic automata, and for any
A ∈ D, let D(A) be the set of directing words of A. Moreover, let

LD = {D(A) : A ∈ D}.
Since all of the languages occuring in the definitions above are recognizable, the

defined classes are subclasses of the class of the regular languages.
In what follows, we need the following definition. For any language L ⊆ X∗, let

us denote by Pr(L) the set of all prefixes of the words in L, i.e., Pr(L) = {u : u ∈
X∗ & (∃v ∈ X∗)(uv ∈ L)}.

Now, we recall some results from [5] and [7] which are used in the following
section.

Lemma 1 ([7]). For any n.d. automaton A = (A, X), D2(A)X∗ = D2(A). If A
is complete, then X∗D1(A) = D1(A), X∗D2(A)X∗ = D2(A), and X∗D3(A)X∗ =
D3(A).

Proposition 1 ([5]). For a language L ⊆ X∗, L ∈ LD if and only if L �= ∅, L is
regular, and X∗LX∗ = L.

Proposition 2 ([5]). LCND(2) = LD, LCND(3) = LD, LCND(1) ∩LND(2) = LD, and
LCND(1) ∩ LND(3) = LD.

Furthermore, we need the following proper inclusions from [5].

Remark 1 ([5]). The following proper inclusions are valid:

(a) LD ⊂ LCND(1) ⊂ LND(1),

(b) LD ⊂ LND(2),

(c) LD ⊂ LND(3).

By Proposition 2, LCND(3) = LCND(2) = LD, and thus, we shall investigate
the remaining 5 classes and three more defined as follows. Languages L ⊆ X∗

satisfying X∗L = L are called ultimate definite (cf. [9] or [11]), and we shall consider
the subclass U which consists of all the regular ultimate definite languages. The
second class, denoted by L′, contains all the nonempty regular languages satisfying
Pr(L)LX∗ = L. Finally, we shall also consider the class LND(1) ∩ LND(3).
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3 Some observations on languages of directing
words of n.d. automata

First we consider the classes U and LND(1). It is known (see [5]) that LCND(1) ⊂ U .
LCND(1) ⊂ LND(1) by Remark 1. The following assertion shows that LCND(1) is the
intersection of these two wider classes.

Proposition 3. LCND(1) = LND(1) ∩ U .

Proof. As we mentioned, LCND(1) is contained in both U and LND(1). Therefore, it
is sufficient to show that LND(1)∩U ⊆ LCND(1). For this reason, let L ∈ LND(1)∩U .
Then, there exists a nondeterministic D1-directable automaton A = (A, X) such
that L = D1(A). We show that A is a complete n.d. automaton. In order to
obtain a contradiction, let us assume that there are a′ ∈ A and x ∈ X such that
a′xA = ∅. Let p ∈ L be arbitrary and consider the word xp. Since L ∈ U , we have
X∗L = L, and therefore, xp ∈ L, i.e., xp is a D1-directing word. Thus, there exists
a state ā ∈ A such that a(xp)A = {ā}, for all a ∈ A. In particular, a′(xp)A = {ā}
which is a contradiction. Consequently, A is a complete n.d. automaton, and thus,
L ∈ LCND(1).

Using Propositions 1 and 2, by the same argument as in the proof of Proposition
3, one can prove the following statement.

Proposition 4. LND(2) ∩ U = LD and LND(3) ∩ U = LD.

By the definitions, one can easily prove the following:

Lemma 2. If L ∈ LND(3), then Pr(L)L = L and LPr(L) = L.

Lemma 3. If L ∈ LND(1), then Pr(L)L = L.

Now, we show that LND(1) and LND(3) are incomparable. To this aim, let us
consider the following examples.

Example 1. Let us define the n.d. automaton A = ({1, 2}, {x, y}) by xA =
{(1, 1), (1, 2), (2, 1), (2, 2)} and yA = {(1, 2), (2, 2)}.

Then, A is D1-directable and D1(A) = X∗y. Now, let us suppose that X∗y ∈
LND(3). Since y, xy ∈ X∗y and x ∈ Pr(X∗y), by Lemma 2, we have that yx ∈ X∗y
which is a contradiction. Therefore, LND(1) �⊆ LND(3).

Example 2. Let A = ({1, 2}, {x, y}) be the n.d. automaton for which xA =
{(1, 2), (2, 1), (2, 2)} and yA = {(1, 1)}.

Now, A is D3-directable and x, x2y ∈ D3(A) while xy �∈ D3(A). Let us suppose
that D3(A) ∈ LND(1). Then, there exists an n.d. automaton B = (B, X) such that
D3(A) = D1(B). In this case, x and x2y are D1-directing words of B, and thus,
there are states c, d ∈ B such that bxB = {c}, for all b ∈ B, in particular cxB = {c},
and b(x2y)B = {d} for all b ∈ B. Then, it is easy to see that b(xy)B = {d}, for all
b ∈ B, and hence, xy ∈ D1(B) = D3(A) must hold, which is a contradiction since
xy �∈ D3(A). Consequently, LND(3) �⊆ LND(1).
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Regarding the class L′ defined by property Pr(L)LX∗ = L, where L ⊆ X∗ is a
nonempty regular language, the following assertion is valid.

Proposition 5. L′ = LND(2) ∩ LND(3).

Proof. To prove the inclusion LND(2) ∩ LND(3) ⊆ L′, let us suppose that L ∈
LND(2) ∩LND(3). Since both classes, LND(2) and LND(3), contain nonempty regular
languages (cf. [7]), L is nonempty and regular. Since L ∈ LND(2), by Lemma
1, LX∗ = L. On the other hand, by Lemma 2, from L ∈ LND(3) it follows that
Pr(L)L = L. Therefore, Pr(L)LX∗ = L, and thus, L ∈ L′.

In order to prove the inclusion L′ ⊆ LND(2) ∩ LND(3), let L ∈ L′. Then, L is a
nonempty regular language with Pr(L)LX∗ = L. Since L is regular, there exists
a minimal recognizer (A, X, δ, a0, F ) recognizing L. By our assumption, LX∗ = L,
and hence, by the minimality of the recognizer, we have that F = {f} for some
f ∈ A. Now, let us define the new n.d. automaton B = (B, X) for which B =
{a0q

A : q ∈ Pr(L)} and the transitions are defined as follows. For every b ∈ B and
x ∈ X , let

bxB =

{
bxA ifbxA ∈ B,

∅ otherwise.

Now, we prove that B is both D2-directable and D3-directable, moreover, L =
D2(B) = D3(B). For this purpose, let us observe that if p ∈ L, then a0(qp)B = {f},
for every q ∈ Pr(L) since Pr(L)L = L. Consequently, p is simultaneously a D2-
directing and a D3-directing word of B, moreover, L ⊆ D2(B) and L ⊆ D3(B).

To prove the inclusion D2(B) ⊆ L, let p ∈ D2(B) be arbitrary. Then there exists
a set H of states of B such that bpB = H , for all b ∈ B. But, fpB = {f}, and
therefore, H = {f}, which results that p ∈ L.

For verifying D3(B) ⊆ L, let p ∈ D3(B) be arbitrary. Since p ∈ D3(B) and
fpB = {f}, we have f ∈ bpB, for all b ∈ B. Then, by the definition of B, bpB = {f},
for all b ∈ B. In particular, a0p

B = {f}, so that a0p
A = f , proving p ∈ L.

Consequently, we have proved that L ∈ LND(2) and L ∈ LND(3), and therefore,
L ∈ LND(2) ∩ LND(3).

Regarding the above proof, let us observe that the constructed automaton B is
also D1-directable, and L = D1(B). By this observation, one can prove the next
statement in the same way as Proposition 5.

Proposition 6. L′ = LND(2) ∩ LND(1).

The next corollary follows from Propositions 5 and 6.

Corollary 1. L′ = (LND(1) ∩ LND(3)) ∩ LND(2).

Since LND(1) and LND(3) are incomparable with respect to set inclusion, LND(1)∩
LND(3) is a proper subclass of both LND(1) and LND(3). Moreover, by Corollary 1,
L′ ⊆ LND(1) ∩ LND(3) and L′ ⊆ LND(2). Both inclusions are proper. To verify this
observation, let us consider the following examples.
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Example 3. Let the n.d. automaton A = ({1, 2}, X) be defined by X = {x, y},
xA = {(2, 1), (2, 2)}, and yA = {(1, 1), (2, 1)}.

Then, y is a D1- and D3-directing word, and L = y{y}∗ = D1(A) = D3(A).
Now, if L ∈ L′, then Pr(L)LX∗ = L must hold, which is a contradiction since
ykx �∈ L, for every integer k ≥ 1. Therefore, L′ ⊂ LND(1) ∩ LND(3).

Example 4. Let the n.d. automaton A = ({1, 2}, X) be defined by X = {x, y},
xA = {(1, 2), (2, 2)}, and yA = {(2, 1)}.
Then, A is D2-directable and D2(A) = xX∗ ∪ X∗y2X∗. Now, if D2(A) ∈ L′,
then since y ∈ Pr(D2(A)) and x ∈ D2(A), yx ∈ D2(A) must hold, which is a
contradiction. Consequently, L′ ⊂ LCND(2).

By the definition of L′ and Proposition 1, we obviously have that LD ⊆ L′. For
proving that this inclusion is proper, let us consider the following example.

Example 5. Let A = ({1, 2}, X), where X = {x, y}, xA = {(2, 2)}, and yA =
{(1, 2), (2, 2)}.

Then, D1(A) = D2(A) = D3(A) = yX∗. By Proposition 5, yX∗ ∈ L′. Let us
suppose now that yX∗ ∈ LD. Then, by Proposition 1, xy ∈ yX∗ must hold, which
is a contradiction. Therefore, yX∗ �∈ LD, and thus, LD ⊂ L′.

Summarizing, we obtain the following result.

Theorem 1. If |X | ≥ 2, then the 8 classes under consideration constitute a semi-
lattice with respect to intersection.

The semilatice of these classes is depicted in Figure 1.

U LND(1)

LND(2)

LND(3)

LCND(1)

L′

LD

LCND(1) ∩ LND(3)

Figure 1: Semilattice of the classes considered.
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Let A = (A, X) be an n.d. automaton and x ∈ X . Then, x is called a complete
input sign if axA �= ∅, for all a ∈ A.

The following statement shows that the languages belonging to LND(2) can be
decomposed into a particular form.

Proposition 7. If L ∈ LND(2), then L is a disjoint union of regular languages L1

and L2 where at least one of L1 and L2 is nonempty, furthermore,

(1) L1 ∈ LD or L1 = ∅,
and

(2) L2 = Pr(L2)L2Y
∗ and L2 = Y ∗L2Y

∗, where Y ⊆ X denotes the set of
complete input symbols of A, or L2 = ∅.

Proof. Let L ∈ LND(2) be arbitrary. Then, there exists a D2-directable n.d. au-
tomaton A = (A, X) such that L = D2(A), i.e., L consists of the D2-directing
words of A. Let us classify now the D2-directing words of A as follows. Let

L1 = {p : p ∈ L & apA = ∅, for all a ∈ A},
L2 = {p : p ∈ L & apA �= ∅, for some a ∈ A}.

Obviously, L1 ∩L2 = ∅ and L1 ∪L2 = L, furthermore, one of the languages L1 and
L2 is nonempty.

Let us suppose that L1 �= ∅. It is easy to see that L1 is regular. Now, if p ∈ L1,
then apA = ∅, for all a ∈ A. Thus also a(qpr)A = ∅, for all q, r ∈ X∗ and a ∈ A.
Therefore, X∗L1X

∗ = L1, and by Proposition 1, we obtain that L1 ∈ LD if L1 �= ∅.
The regularity of L2 can be concluded by the fact that L2 = L \ L1. Let us

observe that Y = ∅ implies L2 = ∅.
Now, let us suppose that L2 �= ∅ and let p ∈ L2 and q ∈ Pr(L2). Then, there

exists an r ∈ X∗ with qr ∈ L2. Since qr ∈ L2, a(qr)A �= ∅, for all a ∈ A. Therefore,
aqA = Aa �= ∅, for all a ∈ A. Furthermore, since p ∈ L2, we have that there exists
a nonempty set H of states such that A′pA = H , for every nonempty subset A′ of
A. In particular, AapA = H , for all a ∈ A. Consequently, a(qp)A = (aqA)pA =
AapA = H , for all a ∈ A, and hence, qp ∈ L2. On the other hand, since Y is the
set of complete input signs, L2Y

∗ = L2.
To prove the second equality, let q ∈ Y ∗ and p ∈ L2 be arbitrary words. From

p ∈ L2 it follows again that there exists a nonempty set H of states such that
A′pA = H , for all nonempty subsets A′ of A. On the other hand, since q ∈ Y ∗,
aqA �= ∅, for all a ∈ A. Consequently, H = aqApA = a(qp)A, for all a ∈ A, and
thus, Y ∗L2 = L2. The validity of the equality L2Y

∗ = L2 is obvious, and hence,
Y ∗L2Y

∗ = L2.

Now, we study the representation of the languages of LND(2) which have the
form L = MX∗, where M is a regular prefix code. For this reason, we recall some
notions.
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Let ∅ �= M ⊆ X+. Then, M is said to be a prefix code over X if M ∩MX+ = ∅.
A prefix code M ⊆ X+ is said to be maximal if, for any u ∈ X∗, there exists v ∈ X∗

such that uv ∈ MX∗. Finally, a prefix code M is called regular if M is a regular
language. Note that any L ∈ LND(2) can be represented as L = MX∗ such that
M = L \ LX+ and M is a prefix code because LX∗ = L.

Proposition 8. Let M ⊆ X+ be a regular prefix code that is not maximal. Let
L = MX∗. Then, L ∈ LND(2) if and only if Pr(M)M ⊆ L.

Proof. To prove the necessity, let us assume L ∈ LND(2). Then, there exists an n.d.
automaton A = (A, X) such that L = D2(A). Let u ∈ Pr(M) and w ∈ M . Since
u ∈ Pr(M), there exists v ∈ X∗ such that uv ∈ M ⊆ L. Hence, for any a, b ∈ A,
a(uv)A = b(uv)A. Suppose a(uv)A = ∅ for any a ∈ A. Then, for any a ∈ A and
z ∈ X∗, a(z(uv))A = ∅. This yields that zuv ∈ L, for all z ∈ X∗, and hence, M is
a maximal prefix code, which is a contradiction. Therefore, a(uv)A �= ∅, and thus,
auA �= ∅, for all a ∈ A. Consequently, a(uw)A = b(uw)A for any a, b ∈ A since
w ∈ M ⊆ L. Thus, uw ∈ L.

In order to prove the sufficiency, let A′ = (A, X, a0, δ, F ) be the minimal recog-
nizer (deterministic but not necessarily complete) accepting L. Notice that A′ is a
trim (i.e. accessible and coaccessible, see [4]) and F = {f}, since M is a prefix code
and L = MX∗. Consider the n.d. automaton A = (A, X). Note that fxA = {f}
for any x ∈ X . Let a ∈ A and w ∈ L. Since A′ is trim, there exist u, v ∈ X∗ such
that {a} = a0u

A and a0(uv)A = {f}, i.e., uv ∈ L. Consequently, u ∈ Pr(M) or
u ∈ MX∗. If u ∈ Pr(M), then uw ∈ Pr(M)MX∗ ⊆ LX∗ = L. If u ∈ MX∗, then
uw ∈ MX∗X∗ = MX∗ = L. Hence, awA = {f}, for all a ∈ A. This means that
w ∈ D2(A). Now, let w /∈ L. In this case, fwA = {f} but a0w

A �= {f}. This
means that w /∈ D2(A). Consequently, L = D2(A). This completes the proof of
the proposition.

The above proposition does not always hold for a regular maximal prefix code.

Example 6. Let X = {x, y} and let A = {1, 2}. Moreover, let A = (A, X) be the
following n.d. automaton: xA = {(1, 2), (2, 2)}, yA = {(1, 2)}.
Then, L = D2(A) = (x∪yx∗y)X∗ ∈ LND(2). Let M = L\LX+. Then, Pr(M)M ⊆
L does not hold since y ∈ Pr(M), x ∈ M but yx /∈ L = MX∗.

However, for the class of finite maximal prefix codes, we have the following:

Proposition 9. Let ∅ �= M ⊆ X+ be a finite maximal prefix code. Let L = MX∗.
Then, L ∈ LND(2) if and only if Pr(M)M ⊆ L.

Proof. The sufficiency can be proved in the same way as in the proof of the previous
proposition. To prove the necessity, let us assume that L = MX∗ ∈ LND(2). Let
A = (A, X) be an n.d. automaton such that L = D2(A). Let u ∈ Pr(M) and
w ∈ M . Since M is a finite maximal prefix code, uwi ∈ MX∗ for some i, i ≥ 1.
There are two cases. First, assume a(uwi)A �= ∅ for any a ∈ A. In this case,
auA �= ∅ for any a ∈ A. Since w ∈ M ⊆ L, (auA)wA = (buA)wA for any
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a, b ∈ A. Thus, a(uw)A = b(uw)A for any a, b ∈ A. This means that uw ∈ L.
Now, assume a(uwi)A = ∅ for any a ∈ A. Suppose that there exists a ∈ A such
that a(uw)A �= ∅. In this case, there exists a nonempty subset H of A such that
(auA)wA = H �= ∅. Thus, HwA = H holds because w ∈ L. This implies that
a(uwi)A = (a(uwi−1)A)wA = H �= ∅, a contradiction. Consequently, a(uw)A = ∅
for any a ∈ A, and hence uw ∈ L. In either case, uw ∈ L, completing the proof of
the proposition.

Example 7. Let X = {x, y} and let M = {x, yxx, yxy, yy}. Then, M is a finite
maximal prefix code. Take y ∈ Pr(M) and x ∈ M . Then, yx /∈ MX∗. Therefore,
MX∗ /∈ LND(2).
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