
Some Problems Related to Keys and the

Boyce-Codd Normal Form

Vu Duc Thi∗ and Nguyen Hoang Son†

Acta Cybernetica 16 (2004) 473–483.

Abstract

The aim of this paper is to investigate the connections between minimal
keys and antikeys for special Sperner-systems by hypergraphs. The Boyce-
Codd normal form and some related problems are also studied in this paper.

1 Introduction

In the relational datamodel, one of the important concepts is the functional de-
pendency. Several types of families of functional dependencies which satisfy some
conditions are known under the name of normal forms (NFs). The most desirable
NF is Boyce-Codd NF (BCNF) that has been investigated in a lot of papers (see
[2, 8, 9, 10]). The minimal keys and set of antikeys are interesting concepts in the
relational datamodel (see, e.g., [11, 12]). A set of minimal keys and set of antikeys
form Sperner-systems. Sperner-systems and sets of minimal keys are equivalent in
the sense that for an arbitrary Sperner-system K a family of functional dependen-
cies F can be constructed so that the minimal keys of F are exactly the elements
of K (see [5]).

Hypergraph theory (see, e.g., [3]) is an important subfield of discrete mathe-
matics with many relevant applications in both theoretical and applied computer
science. The transversal and the minimal transversal of a hypergraph are important
concepts in this theory, on one hand.

The paper is structured as follows: in the second section, some necessary defi-
nitions and results about hypergraph theory are given.

In Section 3, transformations of the notions and the results of Section 2 con-
cerning hypergraphs to relational databases are shown. We prove that the set of all
prime attributes is the set of all independent attributes of a given relation scheme.
We give an effective algorithm finding a BCNF relation r such that r represents a
given BCNF relation scheme s (i.e., Kr = Ks, where Kr and Ks are sets of all min-
imal keys of r and s). We aslo give an effective algorithm which from a given BCNF

∗Institute of Information Technology, National Centre for Natural Science and Technology of
Vietnam, 18 Hoang Quoc Viet, Hanoi, Vietnam

†Department of Mathematics, College of Sciences, Hue University, Vietnam

473

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/147062221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

474 Vu Duc Thi and Nguyen Hoang Son

relation r finds a BCNF relation scheme s such that Kr = Ks. Section 4, we study
the connections between minimal keys and antikeys for special Sperner-system by
hypergraphs.

2 Basic definitions and results

In this section we start with some basic definitions and results on hypergraphs.

Definition 2.1. Let R be a nonempty finite set and put P(R) for the family of
all subsets of R (its power set). The family H = {Ei : Ei ∈ P(R), i = 1, ..., m} is
called a hypergraph over R if Ei �= ∅ holds for all i (in [3] it is required that the
union of Eis is R, in this paper we do not require this).

The elements of R are called vertices, and the sets E1, ..., Em the edges of the
hypergraph H.

A hypergraph H is called simple if it satisfies ∀Ei, Ej ∈ H : Ei ⊆ Ej ⇒ Ei = Ej .
It can be seen that simple hypergraphs are Sperner-systems.

One can see easily that the family m(H) = {Ei ∈ H :� ∃Ej ∈ H : Ej ⊂ Ei} is a
simple hypergraph, and that m(H) is uniquely determined by H.

Definition 2.2. Let H be a hypergraph over R. A set T ⊆ R is called a transversal
of H (sometimes it is called hitting set) if it meets all edges of H, i.e., ∀E ∈ H :
T ∩E �= ∅. Denote by Trs(H) the family of all transversals of H. A transversal T
of H is called minimal if no proper subset T ′ of T is a transversal.

The family of all minimal transversals of H called the transversal hypergraph
of H, and denoted by Tr(H). Clearly, Tr(H) is a simple hypergraph.

The following algorithm finds the family of all minimal transversals of a given
hypergraph (by induction).

Algorithm 2.1. (Demetrovics and Thi [7]).
Input: Let H = {E1, ..., Em} be a hypergraph over R.
Output: Tr(H).
Method:
Step 0: We set L1 := {{a} : a ∈ E1}. It is obvious that L1 = Tr({E1}).
Step q+1: (q < m) Assume that

Lq = Sq ∪ {B1, ..., Btq},
where Bi ∩ Eq+1 = ∅, i = 1, ..., tq and Sq = {A ∈ Lq : A ∩ Eq+1 �= ∅}.

For each i (i = 1, ..., tq) constructs the set {Bi ∪ {b} : b ∈ Eq+1}. Denote them
by Ai

1, ..., A
i
ri

(i = 1, ..., tq). Let

Lq+1 = Sq ∪ {Ai
p : A ∈ Sq ⇒ A �⊂ Ai

p, 1 ≤ i ≤ tq, 1 ≤ p ≤ ri}.

Theorem 2.1. (Demetrovics and Thi [7]). For every q (1 ≤ q ≤ m) Lq =
Tr({E1, ..., Eq}), i.e., Lm = Tr(H).

Some Problems Related to Keys and the Boyce-Codd Normal Form 475

It can be seen that the determination of Tr(H) based on our algorithm does
not depend on the order of E1, ..., Em.

Remark 2.1. (Demetrovics and Thi [7]). Denote Lq = Sq ∪ {B1, ..., Btq}, and
lq(1 ≤ q ≤ m − 1) be the number of elements of Lq. It can be seen that the
worst-case time complexity of our algorithm is

O(|R|2
m−1∑
q=0

tquq),

where l0 = t0 = 1 and

uq =
{

lq − tq, if lq > tq;
1, if lq = tq.

Clearly, in each step of our algorithm Lq is a simple hypergraph. It is known
that the size of arbitrary simple hypergraph over R cannot be greater than C

[n/2]
n ,

where n = |R|. C
[n/2]
n is asymptotically equal to 2n+1/2/(π.n)1/2. From this, the

worst-case time complexity of our algorithm cannot be more than exponential in the
number of attributes. In cases for which lq ≤ lm(q = 1, ..., m − 1), it is easy to see
that the time complexity of our algorithm is not greater than O(|R|2|H||Tr(H)|2).
Thus, in these cases this algorithm finds Tr(H) in polynomial time in |R|, |H| and
|Tr(H)|. Obviously, if the number of elements of H is small, then this algorithm is
very effective. It only requires polynomial time in |R|.

The above algorithm reminds that in [3], but its form seems to be more conve-
nient for our applications.

The following proposition is obvious.

Proposition 2.1. (Demetrovics and Thi [7]). The time complexity of finding
Tr(H) of a given hypergraph H is (in general) exponential in the number of el-
ements of R.

Proposition 2.1 is still true for a simple hypergraph.
However, if we restrict the number of edges of a hypergraph, then the time

complexity of finding Tr(H) of a given hypergraph H is polynomial time.

Algorithm 2.2.
Input: Let H = {E1, ..., Ek} be a simple hypergraph over R, where k is a constant.
Output: Tr(H).
Method:
Step 1: We construct the set

G = {{e1} ∪ ... ∪ {ek} : ei ∈ Ei, 1 ≤ i ≤ k}.
Step 2: Compute

m(G) = {Ei ∈ G :� ∃Ej ∈ G : Ej ⊂ Ei}.
Step 3: Let Tr(H) = m(G).

476 Vu Duc Thi and Nguyen Hoang Son

It is obvious that m(G) = Tr(H). Furthermore, G ⊇ Tr(H), and |G| < |R|k.
Hence, in this case Algorithm 2.2 finds Tr(H) in polynomial time. Clearly, if k is
small, then our algorithm is very effective.

Definition 2.3. Let R be a set and R′ ⊆ R a subset of it. Then R′ denotes R−R′.
Let H be a hypergraph over R. Then H = {E : E ∈ H} is called the comlemented
hypergraph of H.

It is known [3] that if H is a hypergraph, then H = H, and H is simple iff H is
simple.

3 Boyce-Codd normal form and transversals

Definition 3.1. Let R = {a1, ..., an} be a nonempty finite set of attributes. A
functional dependency (FD) is a statement of form X → Y , where X, Y ⊆ R. The
FD X → Y holds in a relation r = {h1, ..., hm} over R if

(∀hi, hj ∈ r)((∀a ∈ X)(hi(a) = hj(a)) ⇒ (∀b ∈ Y)(hi(b) = hj(b))).

We also say that r satisfies the FD X → Y .
Let Fr be a family of all FDs that holds in r. Then F = Fr satisfies
(F1) X → X ∈ F,
(F2) (X → Y ∈ F, Y → Z ∈ F) ⇒ (X → Z ∈ F),
(F3) (X → Y ∈ F, X ⊆ V, W ⊆ Y) ⇒ (V → W ∈ F),
(F4) (X → Y ∈ F, V → W ∈ F) ⇒ (X ∪ V → Y ∪ W ∈ F).

A family of FDs satisfying (F1) - (F4) is called a f -family over R.
Clearly, Fr is a f -family over R. It is known [1] that if F is an arbitraryf -family,

then there is a relation r over R such that Fr = F .
Given a family F of FDs over R, there exists a unique minimal f -family F+

that contains F . It can be seen that F+ contains all FDs which can be derived
from F by the rules (F1) - (F4).

A relation scheme s is a pair (R, F), where R is a set of attributes, and F is
a set of FDs over R. Denote X+ = {a ∈ R : X → {a} ∈ F+}. X+ is called the
closure of X over s. It is clear that, X → Y ∈ F+ iff Y ⊆ X+.

Clearly, if s = (R, F) is a relation scheme, then there is a relation r over R such
that Fr = F+ (see, [1]).

Let r be a relation, s = (R, F) be a relation scheme over R and A ⊆ R. Then
A is a key of r (a key of s) if A → R ∈ Fr(A → R ∈ F+). A is a minimal key of
r(s) if A is a key of r(s) and any proper subset of A is not a key of r(s).

Denote Kr(Ks) the set of all minimal keys of r(s). It can be seen that Kr, Ks

are simple hypergraphs over R.

Definition 3.2. Let s = (R, F) be a relation scheme over R. We say that
an attribute a ∈ R is prime if it belongs to a minimal key of s, and nonprime
otherwise.s = (R, F) is in BCNF if A → {a} �∈ F+ for A+ �= R, a �∈ A.

Some Problems Related to Keys and the Boyce-Codd Normal Form 477

If a relation scheme is changed to a relation we have the definition of BCNF for
relation.

Let s be a relation scheme and r a relation over R. We say that r represents s
if Kr = Ks.

Definition 3.3. Let r be a relation over R, and Er the equality set of r, i.e.
Er = {Eij : 1 ≤ i < j ≤ |r|}, where Eij = {a ∈ R : hi(a) = hj(a)}. Let
Tr = {Eij ∈ Er :� ∃Epq ∈ Er : Eij ⊂ Epq}. Then Tr is called the maximal equality
system of r.

Definition 3.4. Let K be a simple hypergraph over R. We define the set of antikeys
of K, denoted by K−1, as follows:

K−1 = {A ⊂ R : (B ∈ K) ⇒ (B �⊆ A) and (A ⊂ C) ⇒ (∃B ∈ K)(B ⊆ C)}.
It is easy to see that K−1 is also a simple hypergraph over R.
In this paper, we always assume that if a simple hypergraph plays the role of

the set of minimal keys (antikeys), then this simple hypergraph is not empty (does
not contain R).

Definition 3.5. Let s = (R, F) be a relation scheme and r a relation over R. For
every A ⊆ R, set I(A) = {a ∈ R : A → {a} /∈ F+}. Then I(A) is called an
independent set of s. For r, put I(A) = {a ∈ R : A → {a} /∈ Fr}. Denote by Is the
family of all independent sets of s.

Set m(s) = {B ∈ Is : B �= ∅, � ∃C ∈ Is : C ⊂ B}. m(s) is called the family of all
minimal independent sets of s. Clearly, m(s) is a simple hypergraph over R.

It can be seen that A is a key of s if and only if I(A) = ∅.
Denote by Ir and m(r) the family of all independent sets and the family of all

minimal independent sets of r.
The following result was discovered in [7].

Theorem 3.1. (Demetrovics and Thi [7]). Let s = (R, F) be a relation scheme
over R. Then

Tr(Ks) = m(s).

It is known [3] that if H,G are two simple hypergraphs over R, then H = Tr(G)
if and only if G = Tr(H). From this we obtain

Corollary 3.1. Let s = (R, F) be a relation scheme over R. Then

Ks = Tr(m(s)).

Definition 3.6. Let s = (R, F) be a relation scheme over R. We say that an
attribute a ∈ R is independent if it belongs to an independent set of s, and dependent
otherwise.

Denote by Dn the set of all dependent attributes of s. Clearly, R − Dn is the
set of all independent attributes of s.

478 Vu Duc Thi and Nguyen Hoang Son

Lemma 3.1. Let H be a simple hypergraph over R. Then

∪Tr(H) = ∪H.

Proof. Assume that a ∈ ∪Tr(H). Hence, there exists a minimal transversal T of
H such that a ∈ T . From this, we obtain a ∈ E, E ∈ H. This means that a ∈ ∪H.
Consequently, ∪Tr(H) ⊆ ∪H holds.

Conversely, if a ∈ ∪H then there is E ∈ H such that a ∈ E. From this, according
to the definition of transversal hypergraph of H there exists T ∈ Tr(H) such that
a ∈ T , i.e. a ∈ ∪Tr(H). Hence, ∪H ⊆ ∪Tr(H). The proof is complete.

From Lemma 3.1 we obtain the following

Corollary 3.2. Let s = (R, F) be a relation scheme over R, m(s) be a family of
all independent sets of s. Then

∪Tr(m(s)) = ∪m(s).

Theorem 3.2. Let s = (R, F) be a relation scheme over R. Then

∪Ks = R − Dn.

Proof. Assume that a is an element of R − Dn, i.e., there exists an I(A) ∈ m(s)
such that a ∈ I(A). Hence, a ∈ ∪m(s). By Corollary 3.2 we attain a ∈ ∪Tr(m(s)).
By Theorem 3.1 we also obtain a ∈ ∪Ks. Thus, R − Dn ⊆ ∪Ks.

Conversely, suppose that a ∈ ∪Ks. Thus, by Corollary 3.1 and Corollary 3.2
a ∈ ∪m(s). Hence, there exists an I(A) ∈ m(s) such that a ∈ I(A), i.e., a ∈ R−Dn.
Consequently, ∪Ks ⊆ R − Dn.

The theorem is proved.

Minimal keys and antikeys are related as follows:

Proposition 3.1. Let s = (R, F) be a relation scheme over R. Then

K−1
s = Tr(Ks).

Proof. Assume X ∈ K−1
s . From Definition 3.4 we have that for every minimal key

K, K − X �= ∅, thus X ∩ K �= ∅. Which implies that X ∈ Trs(Ks). On the other
hand, according to the definition of antikey set, we have

X ∪ {a} ⊇ K,

where a ∈ X and K ∈ Ks, which implies that (X − {a}) ∩ K = ∅. Consequently,
X ∈ Tr(Ks), i.e., X ∈ Tr(Ks). Hence, we have K−1

s ⊆ Tr(Ks).
Conversely, suppose that Y ∈ Tr(Ks). Then Y is not superset of any minimal

keys. Clearly, for all a ∈ Y, Y −{a} �∈ Trs(Ks), i.e. (Y −{a})∩K = ∅. This means
that

Y ∪ {b} ⊇ K,

for all b ∈ Y. Consequently, Tr(Ks) ⊆ K−1
s .

The proposition is proved.

Some Problems Related to Keys and the Boyce-Codd Normal Form 479

Remark 3.1. Let s = (R, F) be a relation scheme over R. Set Zs = {A+ : A ⊆ R},
i.e., Zs is the set of all closures of s. Put Ts = {A ∈ Zs : A �= R, � ∃B ∈ Zs : A ⊂ B}.
Hence, Ts is the set of all maximal elements of Zs − {R}. By the definition of the
independent set of s, we can see that Ts = {R − B : B ∈ m(s)}.

From Theorem 3.1, Proposition 3.1 and Remark 3.1 we have

Proposition 3.2. Let s = (R, F) be a relation scheme over R. Then

Tr(Ks) = Ts.

The Proposition 3.2 means that for all A ∈ Tr(Ks) : A+ = A and A �= R.

Remark 3.2. Let r be a relation over R. From r we compute Er. We construct the
maximal equality system Tr of r. Then we have Tr = K−1

r (see, e.g., [8]). Denote
elements of Tr by A1, ..., At.

Set Mr = {B : B �= ∅, B = Ai − {a} : a ∈ R, i = 1, ..., t}. Denote elements of
Mr by B1, ..., Bl. We construct a relation r′ = {h0, h1, ..., hl} as follows:

for all a ∈ R, h0(a) = 0, ∀i = 1, ..., l

hi(a) =
{

0, if a ∈ Bi,
i, otherwise.

Clearly, r′ is in BCNF and Kr = Kr′ .
We give the following algorithm that from a given relation scheme s constructs

a relation r such that r represents s.

Algorithm 3.1.
Input: a BCNF relation scheme s =< R, F > .
Output: a BCNF relation r such that Kr = Ks.
Method:
Step 1: From s compute Ks.
Step 2: By Algorithm 2.1 we construct the set Tr(Ks).
Step 3: Compute Tr(Ks). Denote elements of Tr(Ks) by A1, ..., At.
Step 4: Set Qs = {B : B �= ∅, B = Ai−{a} : a ∈ R, i = 1, 2, ..., t}. Denote elements
of Qs by B1, ..., Bl.
Step 5: Construct a relation r = {h0, h1, ..., hl} as follows:

for all a ∈ R, h0(a) = 0, ∀i = 1, ..., l

hi(a) =
{

0, if a ∈ Bi,
i, otherwise.

Based on Proposition 3.1, Remark 3.2 and Proposition 3.2 we have Kr = Ks

and r is in BCNF. It is easy to see that the time complexity of Algorithm 3.1 is
exponential in the number of attributes.

Let r be a relation over R. Let Nr = {Nij : 1 ≤ i < j ≤ |r|}, where Nij = {a ∈
R : hi(a) �= hj(a)}. Then Nr is called the nonequality set of r.

480 Vu Duc Thi and Nguyen Hoang Son

Let Mr = {A ∈ Nr :� ∃B ∈ Nr : B ⊂ A}. Mr is called the minimal nonequality
system of r.

The following result was discovered in [7].

Theorem 3.3. (Demetrovics and Thi [7]). Let r be a relation over R. Then
Kr = Tr(Mr), where Mr is the minimal nonequality system of r.

From Theorem 3.3 we have an effective application of Theorem 3.3, which is the
following algorithm finding a BCNF relation scheme s such that Ks = Kr from a
given relation r in BCNF.

Algorithm 3.2.
Input: Let r be a BCNF relation over R.
Output: a BCNF relation scheme s =< R, F > such that Ks = Kr.
Method:
Step 1: From r compute Nr.
Step 2: From Nr compute the minimal nonequality system Mr.
Step 3: By Algorithm 2.1 constructs Tr(Mr). Clearly, Kr = Tr(Mr).
Step 4: Denoting elements of Kr by A1, ..., Am. We construct a relation scheme as
follows: s =< R, F >, where F = {A1 → R, ..., Am → R}.

Clearly, s is in BCNF and Ks = Kr. The time complexity of this algorithm is
the time complexity of Algorithm 2.1. In many cases this algorithm is very effective
(see Remark 2.1).

4 Special Sperner-systems and transversals

The notion of saturated Sperner-system is defined in [6] as follows:

Definition 4.1. (Demetrovics [6]). A Sperner-system K over R is saturated if for
any A ⊆ R, K ∪ {A} is not a Sperner-system.

Now we are going to give a new characterization of saturate Sperner-systems.
To do this, we need the following definition:

Definition 4.2. Let H and G be two hypergraphs over R. Then H > G iff for every
H ∈ H there exists G ∈ G such that H ⊃ G, and H < G iff for every H ∈ H there
exists G ∈ G such that H ⊂ G.

From this definition we obtain the following:

Proposition 4.1. Let H �= ∅ and G �= ∅ be two hypergraphs over R. Then
(1) ∅ > H and ∅ < H.
(2) H > {∅}.
(3) {∅} < H.
(4) H > G (resp. H < G) does not imply G < H (resp. G > H.
(5) H < {R} iff R �∈ H.
(6) H ⊆ G does not imply H < G.

Some Problems Related to Keys and the Boyce-Codd Normal Form 481

Proof.
(1) It is obvious from Definition 4.2.
(2) Since H is hypergraph, we have (2).
(3) By similar arguments we also have (3).
(4) We give a counterexample. Let R = {a, b, c}. Consider the hypergraphs

H = {{a, b}},G = {{a}, {b}, {c}, {a, b, c}}.
It holds that H > G (resp. H < G), but it does not hold that G < H (resp.

G > H).
(5) From definition of hypergraphs and Definition 4.2 we obtain (5).
(6) We give a counterexample. Let R = {a, b}. Consider the hypergraphs

H = {{a}},G = {{a}, {b}}.
It holds that H ⊆ G, but it does not hold that H < G.
The proposition is proved.

Remark 4.1. > and < are transitive on the hypergraphs on R.

Theorem 4.1. Let K be a Sperner-system over R. Then K is saturated if and
only if Tr(K) < K.

Proof. Let K be a saturated Sperner-system. Suppose that there exists an A ∈
Tr(K) such that for every B ∈ K, A �⊂ B. By Proposition 3.1 and Definition 3.4
we have K ∪ {A}, a Sperner-system. Which contradicts the hypothesis that K is
saturated. Consequently, Tr(K) < K.

Conversely, suppose that Tr(K) < K, but K is not saturated. Hence, there
exists an A ⊂ R such that K ∪ {A} is a Sperner-system. Because R �∈ K, for every
C ∈ K we have C ⊂ R. Thus, we can construct B such that A ⊆ B, K ∪ {B} is
a Sperner-system and for every D(B ⊂ D), there exists C ∈ K such that D ⊇ C.
Which implies that B ∈ K−1. This contradicts the hypothesis Tr(K) < K, i.e.,
for every A ∈ K−1 (because Tr(K) = K−1), there exists B ∈ K such that A ⊂ B.
Consequently, K is saturated. The theorem is proved.

Definition 4.3. Let K be a Sperner-system over R. We say that K is embedded
if for every A ∈ K there is a B ∈ H such that A ⊂ B, where H−1 = K.

From Proposition 3.1, Theorem 4.1 we have the following

Proposition 4.2. Let K be a Sperner-system over R. Then K is saturated if and
only if Tr(K) is embedded.

From Proposition 3.1 and Proposition 4.2 the following corollary is immediate:

Corollary 4.1. Let K be a Sperner-system over R. Then K is saturated if and
only if K−1 is embedded.

Corollary 4.1 was shown in [12].

482 Vu Duc Thi and Nguyen Hoang Son

Definition 4.4. Let K be a Sperner-system over R. We say that K is inclusive if
for every A ∈ K, there exists a B ∈ K−1 such that B ⊂ A.

From Proposition 3.1, Definition 4.2 and Definition 4.4, the following proposi-
tion is evident.

Proposition 4.3. Let K be a Sperner-system over R. Then K is inclusive if and
only if K > Tr(K).

Remark 4.2. (Demetrovics [4]). If K is an arbitrary Sperner-system over R, then
there is a relation scheme s = (R, F) such that K = Ks.

Theorem 4.2. Let K be a Sperner-system over R. Then K is inclusive if and
only if Tr(Tr(K)) < Tr(K).

Proof. Suppose that K is an inclusive Sperner-system, but there exists an A ∈
Tr(Tr(K)) such that for every B ∈ Tr(K), A �⊂ B. Hence, Tr(K) ∪ {A} is a
Sperner-system. By Remark 4.2, for K there is a relation scheme s such that
K = Ks. If A+ ⊂ R then according to Proposition 3.2 there exists C ∈ Tr(K) such
that A+ ⊆ C, which contradicts the fact that Tr(K) ∪ {A} is a Sperner-system.
Consequently, A is a key of s. It is obvious that there is a minimal key A′(A′ ⊆ A)
such that A′ ∈ K. Thus, Tr(K) ∪ {A′} is a Sperner-system. By Proposition 4.3,
this is a contradiction. Consequently, Tr(Tr(K)) < Tr(K).

Conversely, assume that Tr(Tr(K)) < Tr(K). By Proposition 4.2, we obtain
which Tr(K) is saturated. From this, Proposition 3.2 and Proposition 4.3, we have
K, an inclusive Sperner-system. The theorem is proved.

From Theorem 4.2, Definition 4.3, Proposition 4.2 and Proposition 3.1, we have
the following

Corollary 4.2. K is an inclusive Sperner-system if and only if K−1 is a saturated
one.

Corollary 4.2 was shown in [12].
From Corollary 4.1 and Corollary 4.2 the following corollary is obvious:

Corollary 4.3. Let K be a Sperner-system over R. Denote H a Sperner-system
for which H−1 = K. Then the followings are equivalent:

(1) K is saturated,
(2) K−1 is embedded,
(3) H is inclusive.

References

[1] Armstrong W. W., Dependency Structure of Database Relationship, Informa-
tion Processing 74, North-Holland Pub. Co. (1974) 580-583.

Some Problems Related to Keys and the Boyce-Codd Normal Form 483

[2] Beeri C., Bernstein P. A., Computational Problems Related to the Design of
Normal Form Relation Scheme, ACM Trans. on Database Syst. 4, 1 (1979)
30-59.

[3] Berge C., Hypergraphs: Combinatorics of Finite Sets, North - Holland, Ams-
terdam (1989).

[4] Demetrovics J.,Logical and structural investigation of relation datamodel, MTA
SZTAKI Tanulm-ányok, 114 (1980), 1-97 (in Hungarian).

[5] Demetrovics J., On the equivalence of candidate keys with Sperner systems,
Acta Cybernetica 4, (1979), 247-252.

[6] Demetrovics J., F üredi Z., Katona G., A függőségek és az individumok száma
közötti kapcsolat összetett adatrendszerek esetén, Alkalmazott Matematikai
Lapok 9 (1983),13-21.

[7] Demetrovics J., Thi V. D., Describing Candidate Keys by Hypergraphs, Com-
puters and Artificial Intelligence 18, 2 (1999), 191-207.

[8] Demetrovics J., Thi V.D., On the time complexity of algorithms related to
Boyce-Codd normal form, SERDICA-Bulgaricae Mathematicae Publicationes,
19, (1993), 134-144.

[9] Demetrovics J., Thi V. D., Some computational problems related to Boyce-Codd
normal form, Annales Univ. Sci. Budapest. Sect. Comp. 19, (2000), 119-132.

[10] Gottlob G., Libkin L., Investigations on Armstrong relations, denpendency
inference, and excluded functional dependencies, Acta Cybernetica Hungary
9, 4 (1990), 385-402.

[11] Lucchesi C. L., Osborn S. L., Candidate keys for relations, J. Comput. Syst.
Scien. 17, 2 (1978), 270-279.

[12] Thi V. D., Minimal keys and Antikeys, Acta Cybernetica 7, 4 (1986), 361-371.

Received January, 2004

