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Abstract

The aim of this paper is to investigate the connections between minimal
keys and antikeys for special Sperner-systems by hypergraphs. The Boyce-
Codd normal form and some related problems are also studied in this paper.

1 Introduction

In the relational datamodel, one of the important concepts is the functional de-
pendency. Several types of families of functional dependencies which satisfy some
conditions are known under the name of normal forms (NFs). The most desirable
NF is Boyce-Codd NF (BCNF) that has been investigated in a lot of papers (see
[2, 8, 9, 10]). The minimal keys and set of antikeys are interesting concepts in the
relational datamodel (see, e.g., [11, 12]). A set of minimal keys and set of antikeys
form Sperner-systems. Sperner-systems and sets of minimal keys are equivalent in
the sense that for an arbitrary Sperner-system K a family of functional dependen-
cies F can be constructed so that the minimal keys of F are exactly the elements
of K (see [5]).

Hypergraph theory (see, e.g., [3]) is an important subfield of discrete mathe-
matics with many relevant applications in both theoretical and applied computer
science. The transversal and the minimal transversal of a hypergraph are important
concepts in this theory, on one hand.

The paper is structured as follows: in the second section, some necessary defi-
nitions and results about hypergraph theory are given.

In Section 3, transformations of the notions and the results of Section 2 con-
cerning hypergraphs to relational databases are shown. We prove that the set of all
prime attributes is the set of all independent attributes of a given relation scheme.
We give an effective algorithm finding a BCNF relation r such that r represents a
given BCNF relation scheme s (i.e., Kr = Ks, where Kr and Ks are sets of all min-
imal keys of r and s). We aslo give an effective algorithm which from a given BCNF
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relation r finds a BCNF relation scheme s such that Kr = Ks. Section 4, we study
the connections between minimal keys and antikeys for special Sperner-system by
hypergraphs.

2 Basic definitions and results

In this section we start with some basic definitions and results on hypergraphs.

Definition 2.1. Let R be a nonempty finite set and put P(R) for the family of
all subsets of R (its power set). The family H = {Ei : Ei ∈ P(R), i = 1, ..., m} is
called a hypergraph over R if Ei �= ∅ holds for all i (in [3] it is required that the
union of Eis is R, in this paper we do not require this).

The elements of R are called vertices, and the sets E1, ..., Em the edges of the
hypergraph H.

A hypergraph H is called simple if it satisfies ∀Ei, Ej ∈ H : Ei ⊆ Ej ⇒ Ei = Ej .
It can be seen that simple hypergraphs are Sperner-systems.

One can see easily that the family m(H) = {Ei ∈ H :� ∃Ej ∈ H : Ej ⊂ Ei} is a
simple hypergraph, and that m(H) is uniquely determined by H.

Definition 2.2. Let H be a hypergraph over R. A set T ⊆ R is called a transversal
of H (sometimes it is called hitting set) if it meets all edges of H, i.e., ∀E ∈ H :
T ∩E �= ∅. Denote by Trs(H) the family of all transversals of H. A transversal T
of H is called minimal if no proper subset T ′ of T is a transversal.

The family of all minimal transversals of H called the transversal hypergraph
of H, and denoted by Tr(H). Clearly, Tr(H) is a simple hypergraph.

The following algorithm finds the family of all minimal transversals of a given
hypergraph (by induction).

Algorithm 2.1. (Demetrovics and Thi [7]).
Input: Let H = {E1, ..., Em} be a hypergraph over R.
Output: Tr(H).
Method:
Step 0: We set L1 := {{a} : a ∈ E1}. It is obvious that L1 = Tr({E1}).
Step q+1: (q < m) Assume that

Lq = Sq ∪ {B1, ..., Btq},
where Bi ∩ Eq+1 = ∅, i = 1, ..., tq and Sq = {A ∈ Lq : A ∩ Eq+1 �= ∅}.

For each i (i = 1, ..., tq) constructs the set {Bi ∪ {b} : b ∈ Eq+1}. Denote them
by Ai

1, ..., A
i
ri

(i = 1, ..., tq). Let

Lq+1 = Sq ∪ {Ai
p : A ∈ Sq ⇒ A �⊂ Ai

p, 1 ≤ i ≤ tq, 1 ≤ p ≤ ri}.

Theorem 2.1. (Demetrovics and Thi [7]). For every q (1 ≤ q ≤ m) Lq =
Tr({E1, ..., Eq}), i.e., Lm = Tr(H).
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It can be seen that the determination of Tr(H) based on our algorithm does
not depend on the order of E1, ..., Em.

Remark 2.1. (Demetrovics and Thi [7]). Denote Lq = Sq ∪ {B1, ..., Btq}, and
lq(1 ≤ q ≤ m − 1) be the number of elements of Lq. It can be seen that the
worst-case time complexity of our algorithm is

O(|R|2
m−1∑
q=0

tquq),

where l0 = t0 = 1 and

uq =
{

lq − tq, if lq > tq;
1, if lq = tq.

Clearly, in each step of our algorithm Lq is a simple hypergraph. It is known
that the size of arbitrary simple hypergraph over R cannot be greater than C

[n/2]
n ,

where n = |R|. C
[n/2]
n is asymptotically equal to 2n+1/2/(π.n)1/2. From this, the

worst-case time complexity of our algorithm cannot be more than exponential in the
number of attributes. In cases for which lq ≤ lm(q = 1, ..., m − 1), it is easy to see
that the time complexity of our algorithm is not greater than O(|R|2|H||Tr(H)|2).
Thus, in these cases this algorithm finds Tr(H) in polynomial time in |R|, |H| and
|Tr(H)|. Obviously, if the number of elements of H is small, then this algorithm is
very effective. It only requires polynomial time in |R|.

The above algorithm reminds that in [3], but its form seems to be more conve-
nient for our applications.

The following proposition is obvious.

Proposition 2.1. (Demetrovics and Thi [7]). The time complexity of finding
Tr(H) of a given hypergraph H is (in general) exponential in the number of el-
ements of R.

Proposition 2.1 is still true for a simple hypergraph.
However, if we restrict the number of edges of a hypergraph, then the time

complexity of finding Tr(H) of a given hypergraph H is polynomial time.

Algorithm 2.2.
Input: Let H = {E1, ..., Ek} be a simple hypergraph over R, where k is a constant.
Output: Tr(H).
Method:
Step 1: We construct the set

G = {{e1} ∪ ... ∪ {ek} : ei ∈ Ei, 1 ≤ i ≤ k}.
Step 2: Compute

m(G) = {Ei ∈ G :� ∃Ej ∈ G : Ej ⊂ Ei}.
Step 3: Let Tr(H) = m(G).
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It is obvious that m(G) = Tr(H). Furthermore, G ⊇ Tr(H), and |G| < |R|k.
Hence, in this case Algorithm 2.2 finds Tr(H) in polynomial time. Clearly, if k is
small, then our algorithm is very effective.

Definition 2.3. Let R be a set and R′ ⊆ R a subset of it. Then R′ denotes R−R′.
Let H be a hypergraph over R. Then H = {E : E ∈ H} is called the comlemented
hypergraph of H.

It is known [3] that if H is a hypergraph, then H = H, and H is simple iff H is
simple.

3 Boyce-Codd normal form and transversals

Definition 3.1. Let R = {a1, ..., an} be a nonempty finite set of attributes. A
functional dependency (FD) is a statement of form X → Y , where X, Y ⊆ R. The
FD X → Y holds in a relation r = {h1, ..., hm} over R if

(∀hi, hj ∈ r)((∀a ∈ X)(hi(a) = hj(a)) ⇒ (∀b ∈ Y )(hi(b) = hj(b))).

We also say that r satisfies the FD X → Y .
Let Fr be a family of all FDs that holds in r. Then F = Fr satisfies
(F1) X → X ∈ F,
(F2) (X → Y ∈ F, Y → Z ∈ F ) ⇒ (X → Z ∈ F ),
(F3) (X → Y ∈ F, X ⊆ V, W ⊆ Y ) ⇒ (V → W ∈ F ),
(F4) (X → Y ∈ F, V → W ∈ F ) ⇒ (X ∪ V → Y ∪ W ∈ F ).

A family of FDs satisfying (F1) - (F4) is called a f -family over R.
Clearly, Fr is a f -family over R. It is known [1] that if F is an arbitraryf -family,

then there is a relation r over R such that Fr = F .
Given a family F of FDs over R, there exists a unique minimal f -family F+

that contains F . It can be seen that F+ contains all FDs which can be derived
from F by the rules (F1) - (F4).

A relation scheme s is a pair (R, F ), where R is a set of attributes, and F is
a set of FDs over R. Denote X+ = {a ∈ R : X → {a} ∈ F+}. X+ is called the
closure of X over s. It is clear that, X → Y ∈ F+ iff Y ⊆ X+.

Clearly, if s = (R, F ) is a relation scheme, then there is a relation r over R such
that Fr = F+ (see, [1]).

Let r be a relation, s = (R, F ) be a relation scheme over R and A ⊆ R. Then
A is a key of r (a key of s) if A → R ∈ Fr(A → R ∈ F+). A is a minimal key of
r(s) if A is a key of r(s) and any proper subset of A is not a key of r(s).

Denote Kr(Ks) the set of all minimal keys of r(s). It can be seen that Kr, Ks

are simple hypergraphs over R.

Definition 3.2. Let s = (R, F ) be a relation scheme over R. We say that
an attribute a ∈ R is prime if it belongs to a minimal key of s, and nonprime
otherwise.s = (R, F ) is in BCNF if A → {a} �∈ F+ for A+ �= R, a �∈ A.
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If a relation scheme is changed to a relation we have the definition of BCNF for
relation.

Let s be a relation scheme and r a relation over R. We say that r represents s
if Kr = Ks.

Definition 3.3. Let r be a relation over R, and Er the equality set of r, i.e.
Er = {Eij : 1 ≤ i < j ≤ |r|}, where Eij = {a ∈ R : hi(a) = hj(a)}. Let
Tr = {Eij ∈ Er :� ∃Epq ∈ Er : Eij ⊂ Epq}. Then Tr is called the maximal equality
system of r.

Definition 3.4. Let K be a simple hypergraph over R. We define the set of antikeys
of K, denoted by K−1, as follows:

K−1 = {A ⊂ R : (B ∈ K) ⇒ (B �⊆ A) and (A ⊂ C) ⇒ (∃B ∈ K)(B ⊆ C)}.
It is easy to see that K−1 is also a simple hypergraph over R.
In this paper, we always assume that if a simple hypergraph plays the role of

the set of minimal keys (antikeys), then this simple hypergraph is not empty (does
not contain R).

Definition 3.5. Let s = (R, F ) be a relation scheme and r a relation over R. For
every A ⊆ R, set I(A) = {a ∈ R : A → {a} /∈ F+}. Then I(A) is called an
independent set of s. For r, put I(A) = {a ∈ R : A → {a} /∈ Fr}. Denote by Is the
family of all independent sets of s.

Set m(s) = {B ∈ Is : B �= ∅, � ∃C ∈ Is : C ⊂ B}. m(s) is called the family of all
minimal independent sets of s. Clearly, m(s) is a simple hypergraph over R.

It can be seen that A is a key of s if and only if I(A) = ∅.
Denote by Ir and m(r) the family of all independent sets and the family of all

minimal independent sets of r.
The following result was discovered in [7].

Theorem 3.1. (Demetrovics and Thi [7]). Let s = (R, F ) be a relation scheme
over R. Then

Tr(Ks) = m(s).

It is known [3] that if H,G are two simple hypergraphs over R, then H = Tr(G)
if and only if G = Tr(H). From this we obtain

Corollary 3.1. Let s = (R, F ) be a relation scheme over R. Then

Ks = Tr(m(s)).

Definition 3.6. Let s = (R, F ) be a relation scheme over R. We say that an
attribute a ∈ R is independent if it belongs to an independent set of s, and dependent
otherwise.

Denote by Dn the set of all dependent attributes of s. Clearly, R − Dn is the
set of all independent attributes of s.
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Lemma 3.1. Let H be a simple hypergraph over R. Then

∪Tr(H) = ∪H.

Proof. Assume that a ∈ ∪Tr(H). Hence, there exists a minimal transversal T of
H such that a ∈ T . From this, we obtain a ∈ E, E ∈ H. This means that a ∈ ∪H.
Consequently, ∪Tr(H) ⊆ ∪H holds.

Conversely, if a ∈ ∪H then there is E ∈ H such that a ∈ E. From this, according
to the definition of transversal hypergraph of H there exists T ∈ Tr(H) such that
a ∈ T , i.e. a ∈ ∪Tr(H). Hence, ∪H ⊆ ∪Tr(H). The proof is complete.

From Lemma 3.1 we obtain the following

Corollary 3.2. Let s = (R, F ) be a relation scheme over R, m(s) be a family of
all independent sets of s. Then

∪Tr(m(s)) = ∪m(s).

Theorem 3.2. Let s = (R, F ) be a relation scheme over R. Then

∪Ks = R − Dn.

Proof. Assume that a is an element of R − Dn, i.e., there exists an I(A) ∈ m(s)
such that a ∈ I(A). Hence, a ∈ ∪m(s). By Corollary 3.2 we attain a ∈ ∪Tr(m(s)).
By Theorem 3.1 we also obtain a ∈ ∪Ks. Thus, R − Dn ⊆ ∪Ks.

Conversely, suppose that a ∈ ∪Ks. Thus, by Corollary 3.1 and Corollary 3.2
a ∈ ∪m(s). Hence, there exists an I(A) ∈ m(s) such that a ∈ I(A), i.e., a ∈ R−Dn.
Consequently, ∪Ks ⊆ R − Dn.

The theorem is proved.

Minimal keys and antikeys are related as follows:

Proposition 3.1. Let s = (R, F ) be a relation scheme over R. Then

K−1
s = Tr(Ks).

Proof. Assume X ∈ K−1
s . From Definition 3.4 we have that for every minimal key

K, K − X �= ∅, thus X ∩ K �= ∅. Which implies that X ∈ Trs(Ks). On the other
hand, according to the definition of antikey set, we have

X ∪ {a} ⊇ K,

where a ∈ X and K ∈ Ks, which implies that (X − {a}) ∩ K = ∅. Consequently,
X ∈ Tr(Ks), i.e., X ∈ Tr(Ks). Hence, we have K−1

s ⊆ Tr(Ks).
Conversely, suppose that Y ∈ Tr(Ks). Then Y is not superset of any minimal

keys. Clearly, for all a ∈ Y, Y −{a} �∈ Trs(Ks), i.e. (Y −{a})∩K = ∅. This means
that

Y ∪ {b} ⊇ K,

for all b ∈ Y. Consequently, Tr(Ks) ⊆ K−1
s .

The proposition is proved.



Some Problems Related to Keys and the Boyce-Codd Normal Form 479

Remark 3.1. Let s = (R, F ) be a relation scheme over R. Set Zs = {A+ : A ⊆ R},
i.e., Zs is the set of all closures of s. Put Ts = {A ∈ Zs : A �= R, � ∃B ∈ Zs : A ⊂ B}.
Hence, Ts is the set of all maximal elements of Zs − {R}. By the definition of the
independent set of s, we can see that Ts = {R − B : B ∈ m(s)}.

From Theorem 3.1, Proposition 3.1 and Remark 3.1 we have

Proposition 3.2. Let s = (R, F ) be a relation scheme over R. Then

Tr(Ks) = Ts.

The Proposition 3.2 means that for all A ∈ Tr(Ks) : A+ = A and A �= R.

Remark 3.2. Let r be a relation over R. From r we compute Er. We construct the
maximal equality system Tr of r. Then we have Tr = K−1

r (see, e.g., [8]). Denote
elements of Tr by A1, ..., At.

Set Mr = {B : B �= ∅, B = Ai − {a} : a ∈ R, i = 1, ..., t}. Denote elements of
Mr by B1, ..., Bl. We construct a relation r′ = {h0, h1, ..., hl} as follows:

for all a ∈ R, h0(a) = 0, ∀i = 1, ..., l

hi(a) =
{

0, if a ∈ Bi,
i, otherwise.

Clearly, r′ is in BCNF and Kr = Kr′ .
We give the following algorithm that from a given relation scheme s constructs

a relation r such that r represents s.

Algorithm 3.1.
Input: a BCNF relation scheme s =< R, F > .
Output: a BCNF relation r such that Kr = Ks.
Method:
Step 1: From s compute Ks.
Step 2: By Algorithm 2.1 we construct the set Tr(Ks).
Step 3: Compute Tr(Ks). Denote elements of Tr(Ks) by A1, ..., At.
Step 4: Set Qs = {B : B �= ∅, B = Ai−{a} : a ∈ R, i = 1, 2, ..., t}. Denote elements
of Qs by B1, ..., Bl.
Step 5: Construct a relation r = {h0, h1, ..., hl} as follows:

for all a ∈ R, h0(a) = 0, ∀i = 1, ..., l

hi(a) =
{

0, if a ∈ Bi,
i, otherwise.

Based on Proposition 3.1, Remark 3.2 and Proposition 3.2 we have Kr = Ks

and r is in BCNF. It is easy to see that the time complexity of Algorithm 3.1 is
exponential in the number of attributes.

Let r be a relation over R. Let Nr = {Nij : 1 ≤ i < j ≤ |r|}, where Nij = {a ∈
R : hi(a) �= hj(a)}. Then Nr is called the nonequality set of r.
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Let Mr = {A ∈ Nr :� ∃B ∈ Nr : B ⊂ A}. Mr is called the minimal nonequality
system of r.

The following result was discovered in [7].

Theorem 3.3. (Demetrovics and Thi [7]). Let r be a relation over R. Then
Kr = Tr(Mr), where Mr is the minimal nonequality system of r.

From Theorem 3.3 we have an effective application of Theorem 3.3, which is the
following algorithm finding a BCNF relation scheme s such that Ks = Kr from a
given relation r in BCNF.

Algorithm 3.2.
Input: Let r be a BCNF relation over R.
Output: a BCNF relation scheme s =< R, F > such that Ks = Kr.
Method:
Step 1: From r compute Nr.
Step 2: From Nr compute the minimal nonequality system Mr.
Step 3: By Algorithm 2.1 constructs Tr(Mr). Clearly, Kr = Tr(Mr).
Step 4: Denoting elements of Kr by A1, ..., Am. We construct a relation scheme as
follows: s =< R, F >, where F = {A1 → R, ..., Am → R}.

Clearly, s is in BCNF and Ks = Kr. The time complexity of this algorithm is
the time complexity of Algorithm 2.1. In many cases this algorithm is very effective
(see Remark 2.1).

4 Special Sperner-systems and transversals

The notion of saturated Sperner-system is defined in [6] as follows:

Definition 4.1. (Demetrovics [6]). A Sperner-system K over R is saturated if for
any A ⊆ R, K ∪ {A} is not a Sperner-system.

Now we are going to give a new characterization of saturate Sperner-systems.
To do this, we need the following definition:

Definition 4.2. Let H and G be two hypergraphs over R. Then H > G iff for every
H ∈ H there exists G ∈ G such that H ⊃ G, and H < G iff for every H ∈ H there
exists G ∈ G such that H ⊂ G.

From this definition we obtain the following:

Proposition 4.1. Let H �= ∅ and G �= ∅ be two hypergraphs over R. Then
(1) ∅ > H and ∅ < H.
(2) H > {∅}.
(3) {∅} < H.
(4) H > G (resp. H < G) does not imply G < H (resp. G > H.
(5) H < {R} iff R �∈ H.
(6) H ⊆ G does not imply H < G.
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Proof.
(1) It is obvious from Definition 4.2.
(2) Since H is hypergraph, we have (2).
(3) By similar arguments we also have (3).
(4) We give a counterexample. Let R = {a, b, c}. Consider the hypergraphs

H = {{a, b}},G = {{a}, {b}, {c}, {a, b, c}}.
It holds that H > G (resp. H < G), but it does not hold that G < H (resp.

G > H).
(5) From definition of hypergraphs and Definition 4.2 we obtain (5).
(6) We give a counterexample. Let R = {a, b}. Consider the hypergraphs

H = {{a}},G = {{a}, {b}}.
It holds that H ⊆ G, but it does not hold that H < G.
The proposition is proved.

Remark 4.1. > and < are transitive on the hypergraphs on R.

Theorem 4.1. Let K be a Sperner-system over R. Then K is saturated if and
only if Tr(K) < K.

Proof. Let K be a saturated Sperner-system. Suppose that there exists an A ∈
Tr(K) such that for every B ∈ K, A �⊂ B. By Proposition 3.1 and Definition 3.4
we have K ∪ {A}, a Sperner-system. Which contradicts the hypothesis that K is
saturated. Consequently, Tr(K) < K.

Conversely, suppose that Tr(K) < K, but K is not saturated. Hence, there
exists an A ⊂ R such that K ∪ {A} is a Sperner-system. Because R �∈ K, for every
C ∈ K we have C ⊂ R. Thus, we can construct B such that A ⊆ B, K ∪ {B} is
a Sperner-system and for every D(B ⊂ D), there exists C ∈ K such that D ⊇ C.
Which implies that B ∈ K−1. This contradicts the hypothesis Tr(K) < K, i.e.,
for every A ∈ K−1 (because Tr(K) = K−1), there exists B ∈ K such that A ⊂ B.
Consequently, K is saturated. The theorem is proved.

Definition 4.3. Let K be a Sperner-system over R. We say that K is embedded
if for every A ∈ K there is a B ∈ H such that A ⊂ B, where H−1 = K.

From Proposition 3.1, Theorem 4.1 we have the following

Proposition 4.2. Let K be a Sperner-system over R. Then K is saturated if and
only if Tr(K) is embedded.

From Proposition 3.1 and Proposition 4.2 the following corollary is immediate:

Corollary 4.1. Let K be a Sperner-system over R. Then K is saturated if and
only if K−1 is embedded.

Corollary 4.1 was shown in [12].
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Definition 4.4. Let K be a Sperner-system over R. We say that K is inclusive if
for every A ∈ K, there exists a B ∈ K−1 such that B ⊂ A.

From Proposition 3.1, Definition 4.2 and Definition 4.4, the following proposi-
tion is evident.

Proposition 4.3. Let K be a Sperner-system over R. Then K is inclusive if and
only if K > Tr(K).

Remark 4.2. (Demetrovics [4]). If K is an arbitrary Sperner-system over R, then
there is a relation scheme s = (R, F ) such that K = Ks.

Theorem 4.2. Let K be a Sperner-system over R. Then K is inclusive if and
only if Tr(Tr(K)) < Tr(K).

Proof. Suppose that K is an inclusive Sperner-system, but there exists an A ∈
Tr(Tr(K)) such that for every B ∈ Tr(K), A �⊂ B. Hence, Tr(K) ∪ {A} is a
Sperner-system. By Remark 4.2, for K there is a relation scheme s such that
K = Ks. If A+ ⊂ R then according to Proposition 3.2 there exists C ∈ Tr(K) such
that A+ ⊆ C, which contradicts the fact that Tr(K) ∪ {A} is a Sperner-system.
Consequently, A is a key of s. It is obvious that there is a minimal key A′(A′ ⊆ A)
such that A′ ∈ K. Thus, Tr(K) ∪ {A′} is a Sperner-system. By Proposition 4.3,
this is a contradiction. Consequently, Tr(Tr(K)) < Tr(K).

Conversely, assume that Tr(Tr(K)) < Tr(K). By Proposition 4.2, we obtain
which Tr(K) is saturated. From this, Proposition 3.2 and Proposition 4.3, we have
K, an inclusive Sperner-system. The theorem is proved.

From Theorem 4.2, Definition 4.3, Proposition 4.2 and Proposition 3.1, we have
the following

Corollary 4.2. K is an inclusive Sperner-system if and only if K−1 is a saturated
one.

Corollary 4.2 was shown in [12].
From Corollary 4.1 and Corollary 4.2 the following corollary is obvious:

Corollary 4.3. Let K be a Sperner-system over R. Denote H a Sperner-system
for which H−1 = K. Then the followings are equivalent:

(1) K is saturated,
(2) K−1 is embedded,
(3) H is inclusive.
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