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On DOL systems with finite axiom sets 

Juha Honkala* 

Abstract 

We give a new solution for the language equivalence problem of DOL sys-
tems with finite axiom sets by using the decidability of the equivalence prob-
lem of finite valued transducers on HDTOL languages proved by Culik II and 
Karhumaki. 

1 Introduction 
The language equivalence problem for DOL systems with finite axiom sets was solved 
in [4]. The problem turns out to be much more difficult for DFOL systems than for 
DOL systems. The main idea in [4] is to decompose a given DFOL language in a 
canonical way into finitely many parts such that no part contains two words with 
equal Parikh vectors. This makes it possible to use ideas from [8]. The resulting 
algorithm gives a lot of information concerning the structures of the languages 
generated by two equivalent DFOL systems. Also the equivalence problem for DFOL 
power series over a computable field is solved in [4]. 

The purpose of this paper is to give a new solution of the DFOL language 
equivalence problem. The new proof for the decidability of the problem avoids many 
difficulties in [4] but fails to give precise information about language equivalent 
DFOL systems. In that respect it resembles the solutions of the DOL equivalence 
problem based on Hilbert's basis theorem which also are short but do not, for 
example, give any bounds for the problem (see [3]). 

Our new solution again uses methods from [8] which in turn use ideas from 
[1]. In addition, we use the decidability of the equivalence problem of finite val-
ued transducers proved by Culik II and Karhumaki [2]. In this way we obtain a 
solution of the DFOL language equivalence problem which is essentially based on 
commutative methods (see [5]). 

For further background and motivation we refer to [6, 7, 8, 9, 10, 4]. It is 
assumed that the reader is familiar with the basics concerning DOL systems and 
their generalizations such as HDTOL systems, see [6, 7]. 
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2 Definitions and earlier results 
Let X — {xi,... ,Xk) be an alphabet with k > 1 letters. The Parikh mapping 
ip :X* —• N* is defined by 

1p{w) = {#Xl{™), •••,#xk(v>)), 

for w G X*. Here # I ; (ui ) is the number of occurrences of the letter Xi in the word 
w. The length of a word w is denoted by |iu|. The length of the empty word e 
equals zero. 

A DOL system is a triple G = {X, h,w) where X is a finite alphabet, h : X* —> 
X* is a morphism and w G X* is a word. A DFOL system is obtained from a DOL 
system by replacing the word w by a finite set F. Hence, a DFOL system is a triple 
G = (X,h,F) where X is a finite alphabet, h : X* —> X* is a morphism and 
F C X* is a finite set. 

The sequence S(G) and the language L(G) of the DOL system G = (X, h, w) are 
given by 

S(G) = (hn(w))n> o 

and 
L(G) = {hn(w) | n > 0}. 

The language L{G) of the DFOL system G = (X, h, F) is defined by 

L{G) = {hn(w) | w G F, n > 0}. 

Below we will discuss also DTOL and HDTOL systems. By definition, a 
DTOL system is a construct (X,hi,... ,hn,u>) such that n > 1 is an integer and 
(X,hi,w) is a DOL system for 1 < i < n. An HDTOL system is a construct 
G = (X, Y, hi,..., hn, hy w) such that (X, hi,..., hn, w) is a DTOL system (called 
the underlying DTOL system of G), Y is a finite alphabet and h : X* —> Y* is a 
morphism. 

Let G = (X, Y, hi,..., hn, h, w) be an HDTOL system and let Zn = {zi,..., 
znj be an alphabet with n letters. Then the sequence of G is the mapping S(G) : 
Z*n —> Y* defined by 

S (G) {zh ... zim) = hhim ...hh{ w) 

for m > 0, 1 < ¿ i , . . . ,im < n. The sequence of a DTOL system ( X , hi,..., hn, w) 
equals the sequence of the HDTOL system (X , X, hi,..., hn, g, w) where the mor-
phism g : X* —» X* is defined by g(x) = x for all x € X. 

A finite transducer is a construct r = (Q, A, s0,F, E) where Q is the finite 
set of states, £ and A are the input and output alphabets, respectively, so G Q is 
the initial state, F C Q is the set of final states and E CQ xT,* xA* x Q i s the 
finite set consisting of the transitions of r . If U G £* and v G A* we write v G T(U) 
if there is an accepting computation of r having input u and output v. Let k be 
a nonnegative integer. A transducer r is called k-valued if for all u G the set 
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T(U) contains at most k words. Finally, a transducer r is called finite valued if it is 
k- valued for some k. 

The following important result is due to Culik II and Karhumaki, [2]. Here two 
transducers T\ and r2 are called equivalent on a language L if n (u) = T2 (U) for all 
u E L. 

Theorem 1. It is decidable whether two finite valued finite transducers are equiv-
alent on a given HDTOL language. 

3 The HDTOL covering problem 
In this section we discuss the HDTOL covering problem which is a useful tool in 
the study of the DFOL language equivalence problem. It would suffice to consider 
the DOL covering problem but this would not simplify the discussion. 

Let Hi = (Xi , Yi, hn,..., hin, hi, w,), 1 < i < k + 1, be HDTOL systems. Then 
we say that the first k sequences S(Hi) cover the last sequence S(Hk+i) if 

S(Hk+1)(u) E {S(ffi)(u) | 1 <i<k} 

for all u E Z*. If k = 1, then S(Hi) covers S(H2) if and only if H\ and H2 are 
sequence equivalent. If k > 1, the covering relation generalizes sequence equivalence 
by allowing finitely many alternatives for each term of S(Hk+1). 

Let Hi, 1 < i < k + 1, be as above. By the HDTOL covering problem we under-
stand the problem of deciding whether or not S(Hi), 1 < i < k, cover S(Hk+i). To 
reduce the covering problem to the equivalence problem of finite valued transducers 
one lemma is required. 

Lemma 2. Let Hi = {Xt, Yi, hn,..., hin, hiy Wi), 1 < i < k, be HDTOL systems. 
Then there is a DTOL system H = (X, fi, ...,/„, w) and finite valued finite trans-
ducers TI for I C {1, . . . , k} such that 

r /(5(ff)(u)) = {S(Hi)(u) | i e / } (1) 

for all u£Z*n. 

Proof. We may assume that the alphabets Xi, 1 < i < k, are pairwise disjoint. 
Denote X = X1 U . . . U Xk, Y = Yi U . . . U Yk and let f j : X* —• X* be the 
morphism such that 

f j ( x ) = hij(x) 

whenever x E Xi, 1 < i < k, 1 < j < n. Denote w = wi ... wk and consider the 
DTOL system H = (X, fu ..., fn,w). 

Let Hi = (Xi, hn,..., hin, Wi) be the underlying DTOL system of Hi, 1 < i < k. 
Then we have 

S(H)(u) = S(Hi)(u)... S(Hk)(u) (2) 

for u E Z*n. 
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Let now I C {1. . . . , /c} be a nonempty set and let 77 be a transducer defined 
as follows. The input alphabet of 77 is X and the output alphabet of 77 is Y. The 
state set of 77 is {90} U {qi \ i £ 1} where qo is the initial state and {<7; | i £ I} is 
the final state set. The set E of transitions is defined by 

E = {(qo,£,e,qi) \i € / } U 
{(qi,x,hi(x),qi) | i £ / and x £ Xi} U 
{(qi,x,£,qi) | i el and x g Xi}. 

Then TJ is finite valued and (2) implies (1) for all u € Z*. • 

Theorem 3. The HDTOL covering problem is decidable. 

Proof. Let Hi = (Xi,Yi,hn,... ,hin,hi,Wi), 1 < i < k + 1, be HDTOL systems. 
Denote I = {1, . . . , fe} and J = {1, . . . , k + 1}. By Lemma 2 there exist a DTOL 
system H = (X, / 1 , . . . , /„, W) and finite valued finite transducers 77 and TJ such 
that 

rj(S(H)(u)) = {S(Hi)(u) ¡ i G l ) 

and 
TJ(S(H)(U)) = {S(HJ)(U) I J E J } 

for all u £ Z*n. Now 

T!(S(H)(u)) = TJ(S(H)(U)) fo r al l u £ Z*n (3) 

if and only if 

S{Hk+1)(u) £ {S{Hi)(u) | 1 < i < k} for all u £ Z*n. 

The claim follows because by Theorem 1 we can decide the validity of (3). (Here 
we use Theorem 1 for DTOL languages.) • 

4 The DFOL language equivalence problem 
Let X be an alphabet with k > 1 letters and let %}) : X* —> Nk be the Parikh 
mapping. If K C N a we denote 

1>-l(K) = {w£X* | iP(w) £ K). 

Lemma 4. Let G = (X,h,F) be a DFOL system and let u £ F. Assume that 
{hl(u) | i > 0} is an infinite set. Then there exist an integer s > 0, integers 
ni,...,ns and words ... ,us £ F such that 

f ' t ^ W j n L f G ) = {hn+^(Ul),...,hn+n>(Us)} 

for almost all n > 0. 
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Proof. We will show that if v G F then either 

(%phn(u)) fl {h{(v) | i > 0} = 0 (4) 

for almost all n > 0 or, otherwise, there exists an integer m such that 

i>~l(i!>hn{u)) n |» > 0} = {hn+m(v)} (5) 

for almost all n > 0. (Here and in the sequel we say that a property holds for 
almost all n if there is an integer no such that the property holds for all n > no.) 

First, if {hl(v) | i > 0} is a finite set then (4) holds for almost all n > 0. Suppose 
{h*(v) I i > 0} is infinite. Then 

iphi(v)?il>hi(v) if i ^ j . 

Now, if there exist integers mi and m2 such that 

iphmi{u) =iphm2(v) (6) 

then (5) holds for almost all n > 0 if we set m = rn2 — mi. Finally, if (6) holds for 
no values of mi and m 2 then (4) holds for all n > 0. • 

Let G = (X, h, F) be a DF0L system. A word sequence (wn)n>o is called a 
subsequence of G if there exist w e L(G) and a positive integer a such that 

wn = han{w) 

for all n > 0. In Section 3 we have explained what it means that a given DOL 
sequence is covered by finitely many given DOL sequences. We now define this 
notion for DF0L systems. 

Let Gi = (X,hi,Fi), i = 1,2, be DF0L systems. Then G2 is said to cover G\ if 
for all u € Fi there exist a nonnegative integer r and a positive integer k such that 
for all integers j, 0 < j < k, the sequence (h'ln+j+r(u))n>0 is covered by finitely 
many subsequences of G2 . 

L e m m a 5. Let Gi = (X, hi, Fi), i = 1,2, be DF0L systems. Assume that L(Gi) = 
L(G2) and that alph(w) = X for all w G L(Gi). Then Gi and G2 cover each other. 

Proof. Let Gi = (X,h i ,F i ) , i = 1,2, be DF0L systems such that L(GX) = L{G2) 
and alph(w) = X for all w G L(Gi). If L(Gi) is finite the claim holds. Assume 
that L(Gi) is infinite. Without restriction assume also that card(f \ ) = card(F2). 
(If necessary, we replace Fi by the set {h{(u) | u G F i ,0 < j < card(F2)} and F2 

by the set {hJ
2{v) \ v G F2,0 < j < card(Fi)}.) Denote t = card(Fi), 

Fi = {wo, • • • , « t - i } 

and 
F2 = {iJ0,... ,i;t_i}. 
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Further, denote k = card(X) and let P(xi,... ,xk) be a polynomial with nonnega-
tive integer coefficients such that the mapping P : Nk —> N is injective (see [8]). 
Define the mappings / : N —> N and g : N —> N by 

f(ti+j) = P№h\(Uj)) 

and 
g(ti + j) = P^hUvj)) 

for i > 0 and 0 < j <t. Then / and g are DOL growth functions (see [8]) and 

{/(n) I n G N} = {g(n) I n G N}. 

Hence there exist integers a > 1, r > 0, xk > 1 and yk > 0 for 0 < k < a such that 

f{an + k + r) = g(xkn + yk) 

for n > 0, 0 < k < a (see [1]). Without restriction we assume that t divides a and 
that't divides xk for all 0 < k < a. Denote a = bt. Fix uG.Fi. It follows that there 
is an integer /3 > 0 such that for all integers a, 0 < a < b, there exist Vja G F2 and 
integers qa > 1, pa > 0 such that 

iPhb
1
n+a+0(u)=i>hl°n+p°(vja) 

for n > 0. Because L{G\) = L(G2) we have 

h\n+a+?{u) G f ' ^ ^ K D n l t f t ) 

for n > 0. 
Next, fix a, 0 < a < b. Because alph(u,Q) = X, the set {h\(vja) | i > 0} is 

infinite. By Lemma 4 there exist an integer s > 0, integers n\,... ,ns and words 
w i , . . . , ws G F2 such that 

for almost all n > 0. Hence 

h»n+a+/j(u) G { ^ . ^ ( m ) ^ ^ ( n , , ) } 

for almost all n > 0. In other words, G2 covers G\. It is seen similarly that G\ 
covers G2 • • 

Theorem 6. It is decidable whether or not two given DF0L systems are language 
equivalent. 

Proof. It suffices to consider DF0L systems G = (X, h, F) such that alph(w) = X 
for all w G L{G) (see [8]). The claim follows because there exists a semialgorithm for 
equivalence and there exists a semialgorithm for nonequivalence. The existence of 
a semialgorithm for equivalence follows by Theorem 3 and Lemma 5. (Here we use 
Theorem 3 for DOL systems.) The existence of a semialgorithm for nonequivalence 
is clear. • 
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